File size: 8,704 Bytes
3c8c1fc
 
 
948475f
3c8c1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
948475f
 
3c8c1fc
948475f
 
 
 
3c8c1fc
 
 
 
 
948475f
3c8c1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
948475f
3c8c1fc
948475f
3c8c1fc
948475f
 
3c8c1fc
 
 
 
 
 
 
948475f
 
3c8c1fc
 
 
 
 
948475f
3c8c1fc
 
948475f
 
 
 
 
 
 
 
3c8c1fc
 
 
 
948475f
 
 
 
 
 
 
3c8c1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
948475f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c8c1fc
 
 
 
 
 
 
 
 
 
 
 
 
948475f
 
3c8c1fc
948475f
3c8c1fc
 
 
948475f
 
 
 
 
 
 
 
 
3c8c1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
948475f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from __future__ import annotations

import csv
import json
import logging
from dataclasses import dataclass
from pathlib import Path
from typing import Any, Dict, Iterable, List, Optional

logger = logging.getLogger(__name__)


@dataclass(frozen=True)
class ImageEntry:
    """Container für Bildmetadaten und Pfade zu Embeddings."""

    image_id: str
    image_url: str
    clip_model: str
    embedding_path: Path


def load_image_entries(csv_path: Path | str) -> List[ImageEntry]:
    """Liest die Bildliste aus einer CSV-Datei."""
    path = Path(csv_path)
    if not path.exists():
        raise FileNotFoundError(f"Die Datei {path} existiert nicht.")

    entries: List[ImageEntry] = []
    with path.open("r", encoding="utf-8") as csvfile:
        reader = csv.DictReader(csvfile)
        for row in reader:
            image_id = row.get("image_id") or row.get("id")
            image_url = row.get("image_url") or row.get("url")
            clip_model = row.get("clip_model") or "jinaai/jina-clip-v2"
            embedding_path = row.get("embedding_path") or f"embeddings/{image_id}.npy"
            entries.append(
                ImageEntry(
                    image_id=image_id,
                    image_url=image_url,
                    clip_model=clip_model,
                    embedding_path=Path(embedding_path),
                )
            )
    return entries


def similarity_to_score(similarity: float) -> int:
    """Wandelt eine Kosinusähnlichkeit (-1 bis 1) in einen Score von 0 bis 1000 um."""

    clipped = max(-1.0, min(1.0, similarity))
    score = int(round(((clipped + 1.0) / 2.0) * 1000))
    return score


def _require_numpy():
    try:
        import numpy as np  # type: ignore
    except ModuleNotFoundError as exc:  # pragma: no cover - defensive fallback
        raise ModuleNotFoundError("numpy wird benötigt, ist aber nicht installiert.") from exc
    return np


def _require_torch():
    try:
        import torch  # type: ignore
    except ModuleNotFoundError as exc:  # pragma: no cover - defensive fallback
        raise ModuleNotFoundError("torch wird benötigt, ist aber nicht installiert.") from exc
    return torch


def _require_transformers():
    try:
        from transformers import AutoModel, AutoProcessor  # type: ignore
    except ModuleNotFoundError as exc:  # pragma: no cover - defensive fallback
        raise ModuleNotFoundError("transformers wird benötigt, ist aber nicht installiert.") from exc
    return AutoModel, AutoProcessor


class ClipScorer:
    """Wrapper um CLIP für Text-/Bild-Embeddings und Scores."""

    def __init__(
        self,
        model_name: str = "jinaai/jina-clip-v2",
        pretrained: Optional[str] = None,
        device: Optional[str] = None,
    ) -> None:
        self.model_name = model_name
        self.pretrained = pretrained
        torch = _require_torch()
        AutoModel, AutoProcessor = _require_transformers()
        self._torch = torch
        self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
        if pretrained and pretrained != model_name:
            logger.warning(
                "Der Parameter 'pretrained' (%s) wird für transformers-basierte Modelle ignoriert.",
                pretrained,
            )
        logger.info("Lade CLIP Modell %s auf %s", model_name, self.device)
        self.processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
        self.model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
        self.model.to(self.device)
        self.model.eval()
        for parameter in self.model.parameters():
            parameter.requires_grad = False
        config = getattr(self.model, "config", None)
        embedding_dim = None
        if config is not None:
            embedding_dim = getattr(config, "projection_dim", None)
            if embedding_dim is None:
                embedding_dim = getattr(config, "hidden_size", None)
        self.embedding_dim: Optional[int] = embedding_dim
        self._image_embeddings: Dict[str, Any] = {}

    def load_precomputed_embeddings(self, entries: Iterable[ImageEntry]) -> None:
        """Lädt Embeddings aus .npy-Dateien und speichert sie intern."""

        loaded = 0
        for entry in entries:
            if entry.clip_model != self.model_name:
                logger.warning(
                    "Überspringe Bild %s: erwartet Modell %s, gefunden %s",
                    entry.image_id,
                    self.model_name,
                    entry.clip_model,
                )
                continue
            if not entry.embedding_path.exists():
                raise FileNotFoundError(
                    f"Embedding-Datei für {entry.image_id} fehlt: {entry.embedding_path}"
                )
            torch = self._torch
            suffix = entry.embedding_path.suffix.lower()
            if suffix == ".json":
                with entry.embedding_path.open("r", encoding="utf-8") as handle:
                    payload = json.load(handle)
                if isinstance(payload, dict):
                    values = (
                        payload.get("embedding")
                        or payload.get("values")
                        or payload.get("data")
                    )
                else:
                    values = payload
                if values is None:
                    raise ValueError(
                        f"Embedding-Datei {entry.embedding_path} enthält keine Werte."
                    )
                tensor = torch.tensor(values, dtype=torch.float32, device=self.device)
                if tensor.ndim > 1:
                    tensor = tensor.view(-1)
            else:
                np = _require_numpy()
                array = np.load(entry.embedding_path)
                if array.ndim > 1:
                    array = array.squeeze()
                tensor = torch.from_numpy(array).to(self.device)
                tensor = tensor.to(dtype=torch.float32)
            expected_dim = self.embedding_dim
            if expected_dim is not None and tensor.shape[-1] != expected_dim:
                raise ValueError(
                    "Embedding-Dimension stimmt nicht mit dem geladenen Modell überein. "
                    f"Erwartet: {expected_dim}, erhalten: {tensor.shape[-1]} für {entry.image_id}."
                )
            norm = torch.linalg.norm(tensor)
            if norm == 0:
                raise ValueError(f"Embedding für {entry.image_id} hat Norm 0.")
            tensor = tensor / norm
            self._image_embeddings[entry.image_id] = tensor
            loaded += 1

        if loaded == 0:
            raise ValueError("Keine Embeddings konnten geladen werden.")
        logger.info("%d Embeddings geladen.", loaded)

    def encode_text(self, text: str) -> Any:
        torch = self._torch
        inputs = self.processor(text=[text], return_tensors="pt", padding=True, truncation=True)
        inputs = {key: value.to(self.device) for key, value in inputs.items() if isinstance(value, torch.Tensor)}
        with torch.no_grad():
            text_features = self.model.get_text_features(**inputs).float()
        text_features = text_features / text_features.norm(dim=-1, keepdim=True)
        return text_features[0]

    def encode_image(self, image: Any) -> Any:
        torch = self._torch
        inputs = self.processor(images=image, return_tensors="pt")
        inputs = {key: value.to(self.device) for key, value in inputs.items() if isinstance(value, torch.Tensor)}
        with torch.no_grad():
            image_features = self.model.get_image_features(**inputs).float()
        image_features = image_features / image_features.norm(dim=-1, keepdim=True)
        return image_features[0]

    def get_image_embedding(self, image_id: str) -> Any:
        try:
            return self._image_embeddings[image_id]
        except KeyError as exc:
            raise KeyError(f"Kein Embedding für Bild-ID {image_id} geladen.") from exc

    def compute_similarity(self, text_embedding: Any, image_embedding: Any) -> float:
        torch = self._torch
        similarity = torch.matmul(text_embedding, image_embedding)
        return float(similarity.item())

    def score_text_for_image(self, text: str, image_id: str) -> tuple[float, int]:
        text_embedding = self.encode_text(text)
        image_embedding = self.get_image_embedding(image_id)
        similarity = self.compute_similarity(text_embedding, image_embedding)
        score = similarity_to_score(similarity)
        return similarity, score


__all__ = [
    "ClipScorer",
    "ImageEntry",
    "load_image_entries",
    "similarity_to_score",
]