File size: 10,317 Bytes
3c8c1fc eade66b 3c8c1fc cf9cc02 3c8c1fc eade66b 50fd45d 3c8c1fc b8778c3 3c8c1fc 42d534b 3c8c1fc b8778c3 3c8c1fc 42d534b 92a7af7 3c8c1fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
from __future__ import annotations
import logging
import os
from pathlib import Path
from typing import List, Optional
import gradio as gr
from dotenv import load_dotenv
from db import (
configure_database,
create_score,
ensure_user,
get_global_top,
get_image_top,
get_user_recent,
init_db,
normalize_username,
scores_to_rows,
session_scope,
validate_username,
)
from model import ClipScorer, ImageEntry, load_image_entries
load_dotenv()
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("app")
DATABASE_URL = os.getenv("DATABASE_URL")
if not DATABASE_URL:
raise RuntimeError("DATABASE_URL ist nicht gesetzt. Bitte in den Space-Secrets hinterlegen.")
configure_database(DATABASE_URL)
init_db()
IMAGE_ENTRIES: List[ImageEntry] = []
SCORER: Optional[ClipScorer] = None
EMBEDDING_ERROR: Optional[str] = None
try:
IMAGE_ENTRIES = load_image_entries(Path("images.csv"))
except Exception as exc: # noqa: BLE001
EMBEDDING_ERROR = f"images.csv konnte nicht geladen werden: {exc}"
logger.exception("Fehler beim Laden der images.csv", exc_info=exc)
if EMBEDDING_ERROR is None and IMAGE_ENTRIES:
try:
SCORER = ClipScorer()
SCORER.load_precomputed_embeddings(IMAGE_ENTRIES)
except Exception as exc: # noqa: BLE001
EMBEDDING_ERROR = (
"Embeddings konnten nicht geladen werden. Bitte precompute_embeddings.py ausführen."
f"\nFehler: {exc}"
)
logger.exception("Fehler beim Laden der Embeddings", exc_info=exc)
APP_READY = EMBEDDING_ERROR is None
HELP_TEXT = (
"Beschreibe das angezeigte Bild in 3 bis 500 Zeichen. "
"Die KI vergleicht deine Beschreibung mit der (theoretisch) perfekten Prompt für das angezeigte Bild. "
"Der Score reicht von 0 (gar nicht passend) bis 1000 (perfekte Übereinstimmung)."
)
LEADERBOARD_HEADERS = [
"Platz",
"Benutzername",
"Bild-ID",
"Score",
"Ähnlichkeit",
"Text",
"Zeitstempel",
]
def fetch_global_rows() -> List[List[object]]:
with session_scope() as session:
scores = get_global_top(session)
return scores_to_rows(scores, include_rank=True)
def fetch_image_rows(image_id: str) -> List[List[object]]:
if not image_id:
return []
with session_scope() as session:
scores = get_image_top(session, image_id)
return scores_to_rows(scores, include_rank=True)
def fetch_user_rows(username: str) -> List[List[object]]:
if not username:
return []
canonical = normalize_username(username)
with session_scope() as session:
scores = get_user_recent(session, canonical)
return scores_to_rows(scores, include_rank=True)
def handle_score(username: str, text: str, image_index: int | None):
if not APP_READY or SCORER is None or not IMAGE_ENTRIES:
raise gr.Error(
"Embeddings sind nicht verfügbar. Bitte vor dem Start precompute_embeddings.py ausführen."
)
username_clean = (username or "").strip()
if not validate_username(username_clean):
raise gr.Error("Ungültiger Benutzername. Erlaubt sind 3-20 Zeichen aus A-Z, a-z, 0-9, _.-")
text_clean = (text or "").strip()
if len(text_clean) < 3:
raise gr.Error("Bitte gib mindestens 3 Zeichen Text ein.")
if len(text_clean) > 500:
raise gr.Error("Der Beschreibungstext darf höchstens 500 Zeichen enthalten.")
if image_index is None:
image_index = 0
if image_index < 0 or image_index >= len(IMAGE_ENTRIES):
image_index = 0
entry = IMAGE_ENTRIES[image_index]
similarity, score = SCORER.score_text_for_image(text_clean, entry.image_id)
with session_scope() as session:
user = ensure_user(session, username_clean)
create_score(
session,
user=user,
image_id=entry.image_id,
score_value=score,
similarity=similarity,
text=text_clean,
)
global_rows = fetch_global_rows()
image_rows = fetch_image_rows(entry.image_id)
user_rows = fetch_user_rows(username_clean)
gr.Info("Score gespeichert!")
return (
gr.update(value=score),
gr.update(value=round(similarity, 4)),
gr.update(value=global_rows),
gr.update(value=image_rows),
gr.update(value=user_rows),
)
def handle_next_image(current_index: int | None):
if not IMAGE_ENTRIES:
raise gr.Error("Keine Bilder konfiguriert.")
if current_index is None:
current_index = 0
new_index = (current_index + 1) % len(IMAGE_ENTRIES)
entry = IMAGE_ENTRIES[new_index]
image_rows = fetch_image_rows(entry.image_id)
return (
new_index,
gr.update(value=entry.image_url),
gr.update(value=f"**Bild-ID:** {entry.image_id}"),
gr.update(value=entry.image_id),
gr.update(value=image_rows),
)
def handle_image_dropdown(image_id: str):
rows = fetch_image_rows(image_id)
return gr.update(value=rows)
def handle_username_change(username: str):
if not username:
return gr.update(value=[])
username_clean = username.strip()
if not validate_username(username_clean):
gr.Warning("Benutzername ungültig. Zeige keine Ergebnisse.")
return gr.update(value=[])
rows = fetch_user_rows(username_clean)
return gr.update(value=rows)
def build_interface() -> gr.Blocks:
status_message = ""
if EMBEDDING_ERROR:
status_message = f"⚠️ {EMBEDDING_ERROR}"
elif not IMAGE_ENTRIES:
status_message = "⚠️ Keine Bilder konfiguriert."
else:
status_message = "✅ Bereit zum Scoren!"
initial_index = 0 if IMAGE_ENTRIES else None
initial_entry = IMAGE_ENTRIES[0] if IMAGE_ENTRIES else None
global_rows = fetch_global_rows() if APP_READY else []
image_rows = fetch_image_rows(initial_entry.image_id) if initial_entry else []
image_choices = [entry.image_id for entry in IMAGE_ENTRIES]
with gr.Blocks(title="KI Prompt Challenge", theme=gr.themes.Soft()) as demo:
gr.Markdown("# KI Prompt Challenge")
gr.Markdown(HELP_TEXT)
gr.Markdown(status_message)
image_state = gr.State(initial_index)
with gr.Row():
with gr.Column(scale=3):
image_component = gr.Image(
value=initial_entry.image_url if initial_entry else None,
label="Bild",
show_download_button=False,
)
image_info = gr.Markdown(
f"**Bild-ID:** {initial_entry.image_id}" if initial_entry else "Kein Bild geladen."
)
next_button = gr.Button(
"Nächstes Bild",
variant="secondary",
interactive=bool(IMAGE_ENTRIES),
)
with gr.Column(scale=2):
username_input = gr.Textbox(
label="Benutzername",
placeholder="3-20 Zeichen (A-Z, a-z, 0-9, _.-)",
)
text_input = gr.Textbox(
label="Beschreibungstext",
placeholder="Was siehst du auf dem Bild?",
lines=5,
)
score_button = gr.Button(
"Scoren",
variant="primary",
interactive=APP_READY and bool(IMAGE_ENTRIES),
)
score_output = gr.Number(label="Score", value=0, precision=0)
similarity_output = gr.Number(label="Ähnlichkeit", value=0.0, precision=4)
gr.Markdown("### Leaderboard")
with gr.Tabs():
with gr.Tab("Top 50"):
global_df = gr.Dataframe(
headers=LEADERBOARD_HEADERS,
value=global_rows,
datatype=[
"number",
"str",
"str",
"number",
"number",
"str",
"str",
],
interactive=False,
wrap=True,
)
with gr.Tab("Dieses Bild Top 50"):
image_dropdown = gr.Dropdown(
choices=image_choices,
value=initial_entry.image_id if initial_entry else None,
label="Bild auswählen",
interactive=bool(image_choices),
)
image_df = gr.Dataframe(
headers=LEADERBOARD_HEADERS,
value=image_rows,
datatype=[
"number",
"str",
"str",
"number",
"number",
"str",
"str",
],
interactive=False,
wrap=True,
)
with gr.Tab("Meine letzten 50"):
user_df = gr.Dataframe(
headers=LEADERBOARD_HEADERS,
value=[],
datatype=[
"number",
"str",
"str",
"number",
"number",
"str",
"str",
],
interactive=False,
wrap=True,
)
next_button.click(
handle_next_image,
inputs=[image_state],
outputs=[image_state, image_component, image_info, image_dropdown, image_df],
)
score_button.click(
handle_score,
inputs=[username_input, text_input, image_state],
outputs=[score_output, similarity_output, global_df, image_df, user_df],
)
image_dropdown.change(handle_image_dropdown, inputs=[image_dropdown], outputs=[image_df])
username_input.change(handle_username_change, inputs=[username_input], outputs=[user_df])
return demo
demo = build_interface()
if __name__ == "__main__":
demo.launch()
|