Spaces:
Runtime error
Runtime error
| import sklearn | |
| import gradio as gr | |
| import joblib | |
| import pandas as pd | |
| import datasets | |
| import requests | |
| import json | |
| import dateutil.parser as dp | |
| import pandas as pd | |
| from huggingface_hub import hf_hub_url, cached_download | |
| import time | |
| from datetime import datetime | |
| def get_row(): | |
| response_tomtom = requests.get( | |
| 'https://api.tomtom.com/traffic/services/4/flowSegmentData/absolute/10/json?key=azGiX8jKKGxCxdsF1OzvbbWGPDuInWez&point=59.39575,17.98343') | |
| json_response_tomtom = json.loads(response_tomtom.text) # get json response | |
| currentSpeed = json_response_tomtom["flowSegmentData"]["currentSpeed"] | |
| freeFlowSpeed = json_response_tomtom["flowSegmentData"]["freeFlowSpeed"] | |
| congestionLevel = currentSpeed/freeFlowSpeed | |
| confidence = json_response_tomtom["flowSegmentData"]["confidence"] # Reliability of the traffic data, by percentage | |
| # Get weather data from SMHI, updated hourly | |
| response_smhi = requests.get( | |
| 'https://opendata-download-metanalys.smhi.se/api/category/mesan1g/version/2/geotype/point/lon/17.983/lat/59.3957/data.json') | |
| json_response_smhi = json.loads(response_smhi.text) | |
| # weather data manual https://opendata.smhi.se/apidocs/metanalys/parameters.html#parameter-wsymb | |
| # referenceTime = dp.parse(json_response_smhi["referenceTime"]).timestamp() | |
| t = json_response_smhi["timeSeries"][0]["parameters"][0]["values"][0] # Temperature | |
| ws = json_response_smhi["timeSeries"][0]["parameters"][4]["values"][0] # Wind Speed | |
| prec1h = json_response_smhi["timeSeries"][0]["parameters"][6]["values"][0] # Precipation last hour | |
| fesn1h = json_response_smhi["timeSeries"][0]["parameters"][8]["values"][0] # Snow precipation last hour | |
| vis = json_response_smhi["timeSeries"][0]["parameters"][9]["values"][0] # Visibility | |
| # Use current time | |
| referenceTime = datetime.fromtimestamp(time.time()) | |
| row ={"referenceTime": referenceTime, | |
| "temperature": t, | |
| "wind speed": ws, | |
| "precipation last hour": prec1h, | |
| "snow precipation last hour": fesn1h, | |
| "visibility": vis, | |
| "confidence of data": confidence} | |
| row = pd.DataFrame([row], columns=row.keys()) | |
| print(row) | |
| row.dropna(axis=0, inplace=True) | |
| return row | |
| model = joblib.load(cached_download( | |
| hf_hub_url("Chenzhou/Traffic_Prediction", "traffic_model_adam.pkl") | |
| )) | |
| def infer(input_dataframe): | |
| serie = input_dataframe["referenceTime"] | |
| ts = dp.parse(serie.iloc[0]).timestamp() | |
| input_dataframe["referenceTime"] = ts | |
| res = pd.DataFrame(model.predict(input_dataframe)).clip(0, 1).iloc[0, 0] | |
| if res > 0.8: | |
| status = "Smooth Traffic on E4" | |
| elif res > 0.5: | |
| status = "Slight congestion on E4" | |
| else: | |
| status = "Total congestion on E4" | |
| return pd.DataFrame({'Freeflow Level':[res], 'Status': [status]}) | |
| title = "Stockholm Highway E4 Real Time Traffic Prediction" | |
| description = "Stockholm E4 (59°23'44.7"" N 17°59'00.4""E) highway real time traffic prediction" | |
| # inputs = [gr.Dataframe(row_count = (1, "fixed"), col_count=(7,"fixed"), | |
| # headers=["referenceTime", "t", "ws", "prec1h", "fesn1h", "vis", "confidence"], | |
| # # datatype=["timestamp", "float", "float", "float", "float", "float"], | |
| # label="Input Data", interactive=1)] | |
| # outputs = [gr.Dataframe(row_count = (1, "fixed"), col_count=(1, "fixed"), label="Predictions", headers=["Congestion Level"])] | |
| with gr.Blocks() as demo: | |
| gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>" | |
| + title | |
| + "</h1>") | |
| gr.Markdown(description) | |
| with gr.Row(): | |
| with gr.Column(): | |
| inputs = gr.Dataframe(row_count = (1, "fixed"), col_count=(7,"fixed"), | |
| headers=["referenceTime", "t", "ws", "prec1h", "fesn1h", "vis", "confidence"], | |
| # datatype=["timestamp", "float", "float", "float", "float", "float"], | |
| label="Input Data", interactive=1) | |
| with gr.Column(): | |
| outputs = gr.Dataframe(row_count = (1, "fixed"), col_count=(2, "fixed"), label="Predictions", headers=["Freeflow Level", "Status"]) | |
| with gr.Row(): | |
| btn_sub = gr.Button(value="Submit") | |
| with gr.Row(): | |
| btn_ref = gr.Button(value="Get real-time data") | |
| btn_sub.click(infer, inputs = inputs, outputs = outputs) | |
| btn_ref.click(get_row, inputs = None, outputs = inputs) | |
| #example_row = ["2023-01-01 15:00:00", 4.5, 6.6, 0, 0, 40, 1] | |
| ref_ex = datetime.fromtimestamp(1672585200) | |
| example_row ={"referenceTime": ref_ex, | |
| "temperature": 4.5, | |
| "wind speed": 6.6, | |
| "precipation last hour": 0.0, | |
| "snow precipation last hour": 0.0, | |
| "visibility": 40, | |
| "confidence of data": 1} | |
| example_row = pd.DataFrame([example_row], columns=example_row.keys()) | |
| example_row.dropna(axis=0, inplace=True) | |
| #examples = gr.Examples(fn = infer, examples=[get_row()],inputs=inputs,outputs=outputs ,cache_examples=True) | |
| examples = gr.Examples(fn = infer, examples=[example_row] ,inputs=inputs, outputs=outputs, cache_examples=False) | |
| # demo.load(get_row, inputs = None, outputs = [inputs], every=10) | |
| demo.load(get_row, inputs = None, outputs = [inputs]) | |
| # interface = gr.Interface(fn = infer, inputs = inputs, outputs = outputs, title=title, description=description, examples=[get_row()], cache_examples=False) | |
| # interface.launch() | |
| if __name__ == "__main__": | |
| demo.queue().launch() |