""" HAT model components and building blocks. """ import torch import torch.nn as nn import math from einops import rearrange def to_2tuple(x): """Convert input to tuple of length 2.""" if isinstance(x, (tuple, list)): return tuple(x) return (x, x) def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): """Truncated normal initialization.""" def norm_cdf(x): return (1. + math.erf(x / math.sqrt(2.))) / 2. with torch.no_grad(): l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) tensor.uniform_(2 * l - 1, 2 * u - 1) tensor.erfinv_() tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) tensor.clamp_(min=a, max=b) return tensor def drop_path(x, drop_prob: float = 0., training: bool = False): if drop_prob == 0. or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0], ) + (1, ) * (x.ndim - 1) random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() output = x.div(keep_prob) * random_tensor return output class DropPath(nn.Module): def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) class ChannelAttention(nn.Module): def __init__(self, num_feat, squeeze_factor=16): super(ChannelAttention, self).__init__() self.attention = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0), nn.ReLU(inplace=True), nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0), nn.Sigmoid()) def forward(self, x): y = self.attention(x) return x * y class CAB(nn.Module): def __init__(self, num_feat, compress_ratio=3, squeeze_factor=30): super(CAB, self).__init__() self.cab = nn.Sequential( nn.Conv2d(num_feat, num_feat // compress_ratio, 3, 1, 1), nn.GELU(), nn.Conv2d(num_feat // compress_ratio, num_feat, 3, 1, 1), ChannelAttention(num_feat, squeeze_factor) ) def forward(self, x): return self.cab(x) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def window_partition(x, window_size): b, h, w, c = x.shape x = x.view(b, h // window_size, window_size, w // window_size, window_size, c) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, c) return windows def window_reverse(windows, window_size, h, w): b = int(windows.shape[0] / (h * w / window_size / window_size)) x = windows.view(b, h // window_size, w // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(b, h, w, -1) return x class WindowAttention(nn.Module): def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.dim = dim self.window_size = window_size self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim**-0.5 self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) trunc_normal_(self.relative_position_bias_table, std=.02) self.softmax = nn.Softmax(dim=-1) def forward(self, x, rpi, mask=None): b_, n, c = x.shape qkv = self.qkv(x).reshape(b_, n, 3, self.num_heads, c // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] q = q * self.scale attn = (q @ k.transpose(-2, -1)) relative_position_bias = self.relative_position_bias_table[rpi.view(-1)].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nw = mask.shape[0] attn = attn.view(b_ // nw, nw, self.num_heads, n, n) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, n, n) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(b_, n, c) x = self.proj(x) x = self.proj_drop(x) return x class HAB(nn.Module): def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, compress_ratio=3, squeeze_factor=30, conv_scale=0.01, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.dim = dim self.input_resolution = input_resolution self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio if min(self.input_resolution) <= self.window_size: self.shift_size = 0 self.window_size = min(self.input_resolution) assert 0 <= self.shift_size < self.window_size, 'shift_size must in 0-window_size' self.norm1 = norm_layer(dim) self.attn = WindowAttention( dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.conv_scale = conv_scale self.conv_block = CAB(num_feat=dim, compress_ratio=compress_ratio, squeeze_factor=squeeze_factor) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x, x_size, rpi_sa, attn_mask): h, w = x_size b, _, c = x.shape shortcut = x x = self.norm1(x) x = x.view(b, h, w, c) # Conv_X conv_x = self.conv_block(x.permute(0, 3, 1, 2)) conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(b, h * w, c) # cyclic shift if self.shift_size > 0: shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) attn_mask = attn_mask else: shifted_x = x attn_mask = None # partition windows x_windows = window_partition(shifted_x, self.window_size) x_windows = x_windows.view(-1, self.window_size * self.window_size, c) # W-MSA/SW-MSA attn_windows = self.attn(x_windows, rpi=rpi_sa, mask=attn_mask) # merge windows attn_windows = attn_windows.view(-1, self.window_size, self.window_size, c) shifted_x = window_reverse(attn_windows, self.window_size, h, w) # reverse cyclic shift if self.shift_size > 0: attn_x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: attn_x = shifted_x attn_x = attn_x.view(b, h * w, c) # FFN x = shortcut + self.drop_path(attn_x) + conv_x * self.conv_scale x = x + self.drop_path(self.mlp(self.norm2(x))) return x class OCAB(nn.Module): def __init__(self, dim, input_resolution, window_size, overlap_ratio, num_heads, qkv_bias=True, qk_scale=None, mlp_ratio=2, norm_layer=nn.LayerNorm): super().__init__() self.dim = dim self.input_resolution = input_resolution self.window_size = window_size self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim**-0.5 self.overlap_win_size = int(window_size * overlap_ratio) + window_size self.norm1 = norm_layer(dim) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.unfold = nn.Unfold(kernel_size=(self.overlap_win_size, self.overlap_win_size), stride=window_size, padding=(self.overlap_win_size-window_size)//2) self.relative_position_bias_table = nn.Parameter( torch.zeros((window_size + self.overlap_win_size - 1) * (window_size + self.overlap_win_size - 1), num_heads)) trunc_normal_(self.relative_position_bias_table, std=.02) self.softmax = nn.Softmax(dim=-1) self.proj = nn.Linear(dim,dim) self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=nn.GELU) def forward(self, x, x_size, rpi): h, w = x_size b, _, c = x.shape shortcut = x x = self.norm1(x) x = x.view(b, h, w, c) qkv = self.qkv(x).reshape(b, h, w, 3, c).permute(3, 0, 4, 1, 2) q = qkv[0].permute(0, 2, 3, 1) kv = torch.cat((qkv[1], qkv[2]), dim=1) # partition windows q_windows = window_partition(q, self.window_size) q_windows = q_windows.view(-1, self.window_size * self.window_size, c) kv_windows = self.unfold(kv) kv_windows = rearrange(kv_windows, 'b (nc ch owh oww) nw -> nc (b nw) (owh oww) ch', nc=2, ch=c, owh=self.overlap_win_size, oww=self.overlap_win_size).contiguous() k_windows, v_windows = kv_windows[0], kv_windows[1] b_, nq, _ = q_windows.shape _, n, _ = k_windows.shape d = self.dim // self.num_heads q = q_windows.reshape(b_, nq, self.num_heads, d).permute(0, 2, 1, 3) k = k_windows.reshape(b_, n, self.num_heads, d).permute(0, 2, 1, 3) v = v_windows.reshape(b_, n, self.num_heads, d).permute(0, 2, 1, 3) q = q * self.scale attn = (q @ k.transpose(-2, -1)) relative_position_bias = self.relative_position_bias_table[rpi.view(-1)].view( self.window_size * self.window_size, self.overlap_win_size * self.overlap_win_size, -1) relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() attn = attn + relative_position_bias.unsqueeze(0) attn = self.softmax(attn) attn_windows = (attn @ v).transpose(1, 2).reshape(b_, nq, self.dim) # merge windows attn_windows = attn_windows.view(-1, self.window_size, self.window_size, self.dim) x = window_reverse(attn_windows, self.window_size, h, w) x = x.view(b, h * w, self.dim) x = self.proj(x) + shortcut x = x + self.mlp(self.norm2(x)) return x class AttenBlocks(nn.Module): def __init__(self, dim, input_resolution, depth, num_heads, window_size, compress_ratio, squeeze_factor, conv_scale, overlap_ratio, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList([ HAB(dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else window_size // 2, compress_ratio=compress_ratio, squeeze_factor=squeeze_factor, conv_scale=conv_scale, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer) for i in range(depth) ]) # OCAB self.overlap_attn = OCAB(dim=dim, input_resolution=input_resolution, window_size=window_size, overlap_ratio=overlap_ratio, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, mlp_ratio=mlp_ratio, norm_layer=norm_layer) # patch merging layer if downsample is not None: self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) else: self.downsample = None def forward(self, x, x_size, params): for blk in self.blocks: x = blk(x, x_size, params['rpi_sa'], params['attn_mask']) x = self.overlap_attn(x, x_size, params['rpi_oca']) if self.downsample is not None: x = self.downsample(x) return x class RHAG(nn.Module): def __init__(self, dim, input_resolution, depth, num_heads, window_size, compress_ratio, squeeze_factor, conv_scale, overlap_ratio, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, img_size=224, patch_size=4, resi_connection='1conv'): super(RHAG, self).__init__() self.dim = dim self.input_resolution = input_resolution self.residual_group = AttenBlocks( dim=dim, input_resolution=input_resolution, depth=depth, num_heads=num_heads, window_size=window_size, compress_ratio=compress_ratio, squeeze_factor=squeeze_factor, conv_scale=conv_scale, overlap_ratio=overlap_ratio, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, drop_path=drop_path, norm_layer=norm_layer, downsample=downsample, use_checkpoint=use_checkpoint) if resi_connection == '1conv': self.conv = nn.Conv2d(dim, dim, 3, 1, 1) elif resi_connection == 'identity': self.conv = nn.Identity() self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None) self.patch_unembed = PatchUnEmbed( img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None) def forward(self, x, x_size, params): return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size, params), x_size))) + x class PatchEmbed(nn.Module): def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] self.img_size = img_size self.patch_size = patch_size self.patches_resolution = patches_resolution self.num_patches = patches_resolution[0] * patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): x = x.flatten(2).transpose(1, 2) if self.norm is not None: x = self.norm(x) return x class PatchUnEmbed(nn.Module): def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] self.img_size = img_size self.patch_size = patch_size self.patches_resolution = patches_resolution self.num_patches = patches_resolution[0] * patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim def forward(self, x, x_size): x = x.transpose(1, 2).contiguous().view(x.shape[0], self.embed_dim, x_size[0], x_size[1]) return x class Upsample(nn.Sequential): def __init__(self, scale, num_feat): m = [] if (scale & (scale - 1)) == 0: for _ in range(int(math.log(scale, 2))): m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) m.append(nn.PixelShuffle(2)) elif scale == 3: m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) m.append(nn.PixelShuffle(3)) else: raise ValueError(f'scale {scale} is not supported. Supported scales: 2^n and 3.') super(Upsample, self).__init__(*m)