Broke down code base into smaller files for readibility
Browse files- .gitignore +159 -0
- app.py +13 -896
- config.py +28 -0
- interface/__init__.py +8 -0
- interface/css_styles.py +65 -0
- interface/gradio_app.py +116 -0
- model/__init__.py +16 -0
- model/components.py +451 -0
- model/hat_model.py +221 -0
- utils/__init__.py +11 -0
- utils/image_utils.py +64 -0
- utils/model_utils.py +31 -0
.gitignore
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Byte-compiled / optimized / DLL files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
|
| 6 |
+
# C extensions
|
| 7 |
+
*.so
|
| 8 |
+
|
| 9 |
+
# Distribution / packaging
|
| 10 |
+
.Python
|
| 11 |
+
build/
|
| 12 |
+
develop-eggs/
|
| 13 |
+
dist/
|
| 14 |
+
downloads/
|
| 15 |
+
eggs/
|
| 16 |
+
.eggs/
|
| 17 |
+
lib/
|
| 18 |
+
lib64/
|
| 19 |
+
parts/
|
| 20 |
+
sdist/
|
| 21 |
+
var/
|
| 22 |
+
wheels/
|
| 23 |
+
share/python-wheels/
|
| 24 |
+
*.egg-info/
|
| 25 |
+
.installed.cfg
|
| 26 |
+
*.egg
|
| 27 |
+
MANIFEST
|
| 28 |
+
|
| 29 |
+
# PyInstaller
|
| 30 |
+
# Usually these files are written by a python script from a template
|
| 31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 32 |
+
*.manifest
|
| 33 |
+
*.spec
|
| 34 |
+
|
| 35 |
+
# Installer logs
|
| 36 |
+
pip-log.txt
|
| 37 |
+
pip-delete-this-directory.txt
|
| 38 |
+
|
| 39 |
+
# Unit test / coverage reports
|
| 40 |
+
htmlcov/
|
| 41 |
+
.tox/
|
| 42 |
+
.nox/
|
| 43 |
+
.coverage
|
| 44 |
+
.coverage.*
|
| 45 |
+
.cache
|
| 46 |
+
nosetests.xml
|
| 47 |
+
coverage.xml
|
| 48 |
+
*.cover
|
| 49 |
+
*.py,cover
|
| 50 |
+
.hypothesis/
|
| 51 |
+
.pytest_cache/
|
| 52 |
+
cover/
|
| 53 |
+
|
| 54 |
+
# Translations
|
| 55 |
+
*.mo
|
| 56 |
+
*.pot
|
| 57 |
+
|
| 58 |
+
# Django stuff:
|
| 59 |
+
*.log
|
| 60 |
+
local_settings.py
|
| 61 |
+
db.sqlite3
|
| 62 |
+
db.sqlite3-journal
|
| 63 |
+
|
| 64 |
+
# Flask stuff:
|
| 65 |
+
instance/
|
| 66 |
+
.webassets-cache
|
| 67 |
+
|
| 68 |
+
# Scrapy stuff:
|
| 69 |
+
.scrapy
|
| 70 |
+
|
| 71 |
+
# Sphinx documentation
|
| 72 |
+
docs/_build/
|
| 73 |
+
|
| 74 |
+
# PyBuilder
|
| 75 |
+
.pybuilder/
|
| 76 |
+
target/
|
| 77 |
+
|
| 78 |
+
# Jupyter Notebook
|
| 79 |
+
.ipynb_checkpoints
|
| 80 |
+
|
| 81 |
+
# IPython
|
| 82 |
+
profile_default/
|
| 83 |
+
ipython_config.py
|
| 84 |
+
|
| 85 |
+
# pyenv
|
| 86 |
+
# For a library or package, you might want to ignore these files since the code is
|
| 87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
| 88 |
+
# .python-version
|
| 89 |
+
|
| 90 |
+
# pipenv
|
| 91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
| 94 |
+
# install all needed dependencies.
|
| 95 |
+
#Pipfile.lock
|
| 96 |
+
|
| 97 |
+
# poetry
|
| 98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
| 99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 100 |
+
# commonly ignored for libraries.
|
| 101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
| 102 |
+
#poetry.lock
|
| 103 |
+
|
| 104 |
+
# pdm
|
| 105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
| 106 |
+
#pdm.lock
|
| 107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
| 108 |
+
# in version control.
|
| 109 |
+
# https://pdm.fming.dev/#use-with-ide
|
| 110 |
+
.pdm.toml
|
| 111 |
+
|
| 112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
| 113 |
+
__pypackages__/
|
| 114 |
+
|
| 115 |
+
# Celery stuff
|
| 116 |
+
celerybeat-schedule
|
| 117 |
+
celerybeat.pid
|
| 118 |
+
|
| 119 |
+
# SageMath parsed files
|
| 120 |
+
*.sage.py
|
| 121 |
+
|
| 122 |
+
# Environments
|
| 123 |
+
.env
|
| 124 |
+
.venv
|
| 125 |
+
env/
|
| 126 |
+
venv/
|
| 127 |
+
ENV/
|
| 128 |
+
env.bak/
|
| 129 |
+
venv.bak/
|
| 130 |
+
|
| 131 |
+
# Spyder project settings
|
| 132 |
+
.spyderproject
|
| 133 |
+
.spyproject
|
| 134 |
+
|
| 135 |
+
# Rope project settings
|
| 136 |
+
.ropeproject
|
| 137 |
+
|
| 138 |
+
# mkdocs documentation
|
| 139 |
+
/site
|
| 140 |
+
|
| 141 |
+
# mypy
|
| 142 |
+
.mypy_cache/
|
| 143 |
+
.dmypy.json
|
| 144 |
+
dmypy.json
|
| 145 |
+
|
| 146 |
+
# Pyre type checker
|
| 147 |
+
.pyre/
|
| 148 |
+
|
| 149 |
+
# pytype static type analyzer
|
| 150 |
+
.pytype/
|
| 151 |
+
|
| 152 |
+
# Cython debug symbols
|
| 153 |
+
cython_debug/
|
| 154 |
+
|
| 155 |
+
# PyCharm
|
| 156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
| 157 |
+
# be added to the global gitignore or merged into this project gitignore. For a PyCharm
|
| 158 |
+
# project, it is possible to include .idea/directory entries, you may need to remove them.
|
| 159 |
+
.idea/
|
app.py
CHANGED
|
@@ -1,904 +1,21 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
import numpy as np
|
| 5 |
-
from PIL import Image
|
| 6 |
-
import math
|
| 7 |
-
from einops import rearrange
|
| 8 |
-
import os
|
| 9 |
-
import glob
|
| 10 |
-
import base64
|
| 11 |
-
from io import BytesIO
|
| 12 |
-
|
| 13 |
-
# Constants
|
| 14 |
-
MODEL_CHECKPOINT = 'net_g_150000.pth'
|
| 15 |
-
REQUIRED_IMAGE_SIZE = (130, 130)
|
| 16 |
-
WINDOW_SIZE = 16
|
| 17 |
-
UPSCALE_FACTOR = 4
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
def to_2tuple(x):
|
| 21 |
-
"""Convert input to tuple of length 2."""
|
| 22 |
-
if isinstance(x, (tuple, list)):
|
| 23 |
-
return tuple(x)
|
| 24 |
-
return (x, x)
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
| 28 |
-
"""Truncated normal initialization."""
|
| 29 |
-
def norm_cdf(x):
|
| 30 |
-
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
| 31 |
-
|
| 32 |
-
with torch.no_grad():
|
| 33 |
-
l = norm_cdf((a - mean) / std)
|
| 34 |
-
u = norm_cdf((b - mean) / std)
|
| 35 |
-
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
| 36 |
-
tensor.erfinv_()
|
| 37 |
-
tensor.mul_(std * math.sqrt(2.))
|
| 38 |
-
tensor.add_(mean)
|
| 39 |
-
tensor.clamp_(min=a, max=b)
|
| 40 |
-
return tensor
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
def drop_path(x, drop_prob: float = 0., training: bool = False):
|
| 44 |
-
if drop_prob == 0. or not training:
|
| 45 |
-
return x
|
| 46 |
-
keep_prob = 1 - drop_prob
|
| 47 |
-
shape = (x.shape[0], ) + (1, ) * (x.ndim - 1)
|
| 48 |
-
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
|
| 49 |
-
random_tensor.floor_()
|
| 50 |
-
output = x.div(keep_prob) * random_tensor
|
| 51 |
-
return output
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
class DropPath(nn.Module):
|
| 55 |
-
def __init__(self, drop_prob=None):
|
| 56 |
-
super(DropPath, self).__init__()
|
| 57 |
-
self.drop_prob = drop_prob
|
| 58 |
-
|
| 59 |
-
def forward(self, x):
|
| 60 |
-
return drop_path(x, self.drop_prob, self.training)
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
class ChannelAttention(nn.Module):
|
| 64 |
-
def __init__(self, num_feat, squeeze_factor=16):
|
| 65 |
-
super(ChannelAttention, self).__init__()
|
| 66 |
-
self.attention = nn.Sequential(
|
| 67 |
-
nn.AdaptiveAvgPool2d(1),
|
| 68 |
-
nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0),
|
| 69 |
-
nn.ReLU(inplace=True),
|
| 70 |
-
nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0),
|
| 71 |
-
nn.Sigmoid())
|
| 72 |
-
|
| 73 |
-
def forward(self, x):
|
| 74 |
-
y = self.attention(x)
|
| 75 |
-
return x * y
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
class CAB(nn.Module):
|
| 79 |
-
def __init__(self, num_feat, compress_ratio=3, squeeze_factor=30):
|
| 80 |
-
super(CAB, self).__init__()
|
| 81 |
-
self.cab = nn.Sequential(
|
| 82 |
-
nn.Conv2d(num_feat, num_feat // compress_ratio, 3, 1, 1),
|
| 83 |
-
nn.GELU(),
|
| 84 |
-
nn.Conv2d(num_feat // compress_ratio, num_feat, 3, 1, 1),
|
| 85 |
-
ChannelAttention(num_feat, squeeze_factor)
|
| 86 |
-
)
|
| 87 |
-
|
| 88 |
-
def forward(self, x):
|
| 89 |
-
return self.cab(x)
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
class Mlp(nn.Module):
|
| 93 |
-
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
| 94 |
-
super().__init__()
|
| 95 |
-
out_features = out_features or in_features
|
| 96 |
-
hidden_features = hidden_features or in_features
|
| 97 |
-
self.fc1 = nn.Linear(in_features, hidden_features)
|
| 98 |
-
self.act = act_layer()
|
| 99 |
-
self.fc2 = nn.Linear(hidden_features, out_features)
|
| 100 |
-
self.drop = nn.Dropout(drop)
|
| 101 |
-
|
| 102 |
-
def forward(self, x):
|
| 103 |
-
x = self.fc1(x)
|
| 104 |
-
x = self.act(x)
|
| 105 |
-
x = self.drop(x)
|
| 106 |
-
x = self.fc2(x)
|
| 107 |
-
x = self.drop(x)
|
| 108 |
-
return x
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
def window_partition(x, window_size):
|
| 112 |
-
b, h, w, c = x.shape
|
| 113 |
-
x = x.view(b, h // window_size, window_size, w // window_size, window_size, c)
|
| 114 |
-
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, c)
|
| 115 |
-
return windows
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
def window_reverse(windows, window_size, h, w):
|
| 119 |
-
b = int(windows.shape[0] / (h * w / window_size / window_size))
|
| 120 |
-
x = windows.view(b, h // window_size, w // window_size, window_size, window_size, -1)
|
| 121 |
-
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(b, h, w, -1)
|
| 122 |
-
return x
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
class WindowAttention(nn.Module):
|
| 126 |
-
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
| 127 |
-
super().__init__()
|
| 128 |
-
self.dim = dim
|
| 129 |
-
self.window_size = window_size
|
| 130 |
-
self.num_heads = num_heads
|
| 131 |
-
head_dim = dim // num_heads
|
| 132 |
-
self.scale = qk_scale or head_dim**-0.5
|
| 133 |
-
|
| 134 |
-
self.relative_position_bias_table = nn.Parameter(
|
| 135 |
-
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))
|
| 136 |
-
|
| 137 |
-
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 138 |
-
self.attn_drop = nn.Dropout(attn_drop)
|
| 139 |
-
self.proj = nn.Linear(dim, dim)
|
| 140 |
-
self.proj_drop = nn.Dropout(proj_drop)
|
| 141 |
-
|
| 142 |
-
trunc_normal_(self.relative_position_bias_table, std=.02)
|
| 143 |
-
self.softmax = nn.Softmax(dim=-1)
|
| 144 |
-
|
| 145 |
-
def forward(self, x, rpi, mask=None):
|
| 146 |
-
b_, n, c = x.shape
|
| 147 |
-
qkv = self.qkv(x).reshape(b_, n, 3, self.num_heads, c // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 148 |
-
q, k, v = qkv[0], qkv[1], qkv[2]
|
| 149 |
-
|
| 150 |
-
q = q * self.scale
|
| 151 |
-
attn = (q @ k.transpose(-2, -1))
|
| 152 |
-
|
| 153 |
-
relative_position_bias = self.relative_position_bias_table[rpi.view(-1)].view(
|
| 154 |
-
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)
|
| 155 |
-
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
|
| 156 |
-
attn = attn + relative_position_bias.unsqueeze(0)
|
| 157 |
-
|
| 158 |
-
if mask is not None:
|
| 159 |
-
nw = mask.shape[0]
|
| 160 |
-
attn = attn.view(b_ // nw, nw, self.num_heads, n, n) + mask.unsqueeze(1).unsqueeze(0)
|
| 161 |
-
attn = attn.view(-1, self.num_heads, n, n)
|
| 162 |
-
attn = self.softmax(attn)
|
| 163 |
-
else:
|
| 164 |
-
attn = self.softmax(attn)
|
| 165 |
-
|
| 166 |
-
attn = self.attn_drop(attn)
|
| 167 |
-
|
| 168 |
-
x = (attn @ v).transpose(1, 2).reshape(b_, n, c)
|
| 169 |
-
x = self.proj(x)
|
| 170 |
-
x = self.proj_drop(x)
|
| 171 |
-
return x
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
class HAB(nn.Module):
|
| 175 |
-
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
|
| 176 |
-
compress_ratio=3, squeeze_factor=30, conv_scale=0.01, mlp_ratio=4.,
|
| 177 |
-
qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
| 178 |
-
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
| 179 |
-
super().__init__()
|
| 180 |
-
self.dim = dim
|
| 181 |
-
self.input_resolution = input_resolution
|
| 182 |
-
self.num_heads = num_heads
|
| 183 |
-
self.window_size = window_size
|
| 184 |
-
self.shift_size = shift_size
|
| 185 |
-
self.mlp_ratio = mlp_ratio
|
| 186 |
-
if min(self.input_resolution) <= self.window_size:
|
| 187 |
-
self.shift_size = 0
|
| 188 |
-
self.window_size = min(self.input_resolution)
|
| 189 |
-
assert 0 <= self.shift_size < self.window_size, 'shift_size must in 0-window_size'
|
| 190 |
-
|
| 191 |
-
self.norm1 = norm_layer(dim)
|
| 192 |
-
self.attn = WindowAttention(
|
| 193 |
-
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
| 194 |
-
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
| 195 |
-
|
| 196 |
-
self.conv_scale = conv_scale
|
| 197 |
-
self.conv_block = CAB(num_feat=dim, compress_ratio=compress_ratio, squeeze_factor=squeeze_factor)
|
| 198 |
-
|
| 199 |
-
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 200 |
-
self.norm2 = norm_layer(dim)
|
| 201 |
-
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 202 |
-
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
| 203 |
-
|
| 204 |
-
def forward(self, x, x_size, rpi_sa, attn_mask):
|
| 205 |
-
h, w = x_size
|
| 206 |
-
b, _, c = x.shape
|
| 207 |
-
|
| 208 |
-
shortcut = x
|
| 209 |
-
x = self.norm1(x)
|
| 210 |
-
x = x.view(b, h, w, c)
|
| 211 |
-
|
| 212 |
-
# Conv_X
|
| 213 |
-
conv_x = self.conv_block(x.permute(0, 3, 1, 2))
|
| 214 |
-
conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(b, h * w, c)
|
| 215 |
-
|
| 216 |
-
# cyclic shift
|
| 217 |
-
if self.shift_size > 0:
|
| 218 |
-
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
| 219 |
-
attn_mask = attn_mask
|
| 220 |
-
else:
|
| 221 |
-
shifted_x = x
|
| 222 |
-
attn_mask = None
|
| 223 |
-
|
| 224 |
-
# partition windows
|
| 225 |
-
x_windows = window_partition(shifted_x, self.window_size)
|
| 226 |
-
x_windows = x_windows.view(-1, self.window_size * self.window_size, c)
|
| 227 |
-
|
| 228 |
-
# W-MSA/SW-MSA
|
| 229 |
-
attn_windows = self.attn(x_windows, rpi=rpi_sa, mask=attn_mask)
|
| 230 |
-
|
| 231 |
-
# merge windows
|
| 232 |
-
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, c)
|
| 233 |
-
shifted_x = window_reverse(attn_windows, self.window_size, h, w)
|
| 234 |
-
|
| 235 |
-
# reverse cyclic shift
|
| 236 |
-
if self.shift_size > 0:
|
| 237 |
-
attn_x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
| 238 |
-
else:
|
| 239 |
-
attn_x = shifted_x
|
| 240 |
-
attn_x = attn_x.view(b, h * w, c)
|
| 241 |
-
|
| 242 |
-
# FFN
|
| 243 |
-
x = shortcut + self.drop_path(attn_x) + conv_x * self.conv_scale
|
| 244 |
-
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
| 245 |
-
|
| 246 |
-
return x
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
class OCAB(nn.Module):
|
| 250 |
-
def __init__(self, dim, input_resolution, window_size, overlap_ratio, num_heads,
|
| 251 |
-
qkv_bias=True, qk_scale=None, mlp_ratio=2, norm_layer=nn.LayerNorm):
|
| 252 |
-
super().__init__()
|
| 253 |
-
self.dim = dim
|
| 254 |
-
self.input_resolution = input_resolution
|
| 255 |
-
self.window_size = window_size
|
| 256 |
-
self.num_heads = num_heads
|
| 257 |
-
head_dim = dim // num_heads
|
| 258 |
-
self.scale = qk_scale or head_dim**-0.5
|
| 259 |
-
self.overlap_win_size = int(window_size * overlap_ratio) + window_size
|
| 260 |
-
|
| 261 |
-
self.norm1 = norm_layer(dim)
|
| 262 |
-
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 263 |
-
self.unfold = nn.Unfold(kernel_size=(self.overlap_win_size, self.overlap_win_size),
|
| 264 |
-
stride=window_size, padding=(self.overlap_win_size-window_size)//2)
|
| 265 |
-
|
| 266 |
-
self.relative_position_bias_table = nn.Parameter(
|
| 267 |
-
torch.zeros((window_size + self.overlap_win_size - 1) * (window_size + self.overlap_win_size - 1), num_heads))
|
| 268 |
-
|
| 269 |
-
trunc_normal_(self.relative_position_bias_table, std=.02)
|
| 270 |
-
self.softmax = nn.Softmax(dim=-1)
|
| 271 |
-
|
| 272 |
-
self.proj = nn.Linear(dim,dim)
|
| 273 |
-
|
| 274 |
-
self.norm2 = norm_layer(dim)
|
| 275 |
-
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 276 |
-
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=nn.GELU)
|
| 277 |
-
|
| 278 |
-
def forward(self, x, x_size, rpi):
|
| 279 |
-
h, w = x_size
|
| 280 |
-
b, _, c = x.shape
|
| 281 |
-
|
| 282 |
-
shortcut = x
|
| 283 |
-
x = self.norm1(x)
|
| 284 |
-
x = x.view(b, h, w, c)
|
| 285 |
-
|
| 286 |
-
qkv = self.qkv(x).reshape(b, h, w, 3, c).permute(3, 0, 4, 1, 2)
|
| 287 |
-
q = qkv[0].permute(0, 2, 3, 1)
|
| 288 |
-
kv = torch.cat((qkv[1], qkv[2]), dim=1)
|
| 289 |
-
|
| 290 |
-
# partition windows
|
| 291 |
-
q_windows = window_partition(q, self.window_size)
|
| 292 |
-
q_windows = q_windows.view(-1, self.window_size * self.window_size, c)
|
| 293 |
-
|
| 294 |
-
kv_windows = self.unfold(kv)
|
| 295 |
-
kv_windows = rearrange(kv_windows, 'b (nc ch owh oww) nw -> nc (b nw) (owh oww) ch',
|
| 296 |
-
nc=2, ch=c, owh=self.overlap_win_size, oww=self.overlap_win_size).contiguous()
|
| 297 |
-
k_windows, v_windows = kv_windows[0], kv_windows[1]
|
| 298 |
-
|
| 299 |
-
b_, nq, _ = q_windows.shape
|
| 300 |
-
_, n, _ = k_windows.shape
|
| 301 |
-
d = self.dim // self.num_heads
|
| 302 |
-
q = q_windows.reshape(b_, nq, self.num_heads, d).permute(0, 2, 1, 3)
|
| 303 |
-
k = k_windows.reshape(b_, n, self.num_heads, d).permute(0, 2, 1, 3)
|
| 304 |
-
v = v_windows.reshape(b_, n, self.num_heads, d).permute(0, 2, 1, 3)
|
| 305 |
-
|
| 306 |
-
q = q * self.scale
|
| 307 |
-
attn = (q @ k.transpose(-2, -1))
|
| 308 |
-
|
| 309 |
-
relative_position_bias = self.relative_position_bias_table[rpi.view(-1)].view(
|
| 310 |
-
self.window_size * self.window_size, self.overlap_win_size * self.overlap_win_size, -1)
|
| 311 |
-
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
|
| 312 |
-
attn = attn + relative_position_bias.unsqueeze(0)
|
| 313 |
-
|
| 314 |
-
attn = self.softmax(attn)
|
| 315 |
-
attn_windows = (attn @ v).transpose(1, 2).reshape(b_, nq, self.dim)
|
| 316 |
-
|
| 317 |
-
# merge windows
|
| 318 |
-
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, self.dim)
|
| 319 |
-
x = window_reverse(attn_windows, self.window_size, h, w)
|
| 320 |
-
x = x.view(b, h * w, self.dim)
|
| 321 |
-
|
| 322 |
-
x = self.proj(x) + shortcut
|
| 323 |
-
x = x + self.mlp(self.norm2(x))
|
| 324 |
-
return x
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
class AttenBlocks(nn.Module):
|
| 328 |
-
def __init__(self, dim, input_resolution, depth, num_heads, window_size, compress_ratio,
|
| 329 |
-
squeeze_factor, conv_scale, overlap_ratio, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
| 330 |
-
drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None,
|
| 331 |
-
use_checkpoint=False):
|
| 332 |
-
super().__init__()
|
| 333 |
-
self.dim = dim
|
| 334 |
-
self.input_resolution = input_resolution
|
| 335 |
-
self.depth = depth
|
| 336 |
-
self.use_checkpoint = use_checkpoint
|
| 337 |
-
|
| 338 |
-
# build blocks
|
| 339 |
-
self.blocks = nn.ModuleList([
|
| 340 |
-
HAB(dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size,
|
| 341 |
-
shift_size=0 if (i % 2 == 0) else window_size // 2, compress_ratio=compress_ratio,
|
| 342 |
-
squeeze_factor=squeeze_factor, conv_scale=conv_scale, mlp_ratio=mlp_ratio,
|
| 343 |
-
qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop,
|
| 344 |
-
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
| 345 |
-
norm_layer=norm_layer) for i in range(depth)
|
| 346 |
-
])
|
| 347 |
-
|
| 348 |
-
# OCAB
|
| 349 |
-
self.overlap_attn = OCAB(dim=dim, input_resolution=input_resolution, window_size=window_size,
|
| 350 |
-
overlap_ratio=overlap_ratio, num_heads=num_heads, qkv_bias=qkv_bias,
|
| 351 |
-
qk_scale=qk_scale, mlp_ratio=mlp_ratio, norm_layer=norm_layer)
|
| 352 |
-
|
| 353 |
-
# patch merging layer
|
| 354 |
-
if downsample is not None:
|
| 355 |
-
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
| 356 |
-
else:
|
| 357 |
-
self.downsample = None
|
| 358 |
-
|
| 359 |
-
def forward(self, x, x_size, params):
|
| 360 |
-
for blk in self.blocks:
|
| 361 |
-
x = blk(x, x_size, params['rpi_sa'], params['attn_mask'])
|
| 362 |
-
|
| 363 |
-
x = self.overlap_attn(x, x_size, params['rpi_oca'])
|
| 364 |
-
|
| 365 |
-
if self.downsample is not None:
|
| 366 |
-
x = self.downsample(x)
|
| 367 |
-
return x
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
class RHAG(nn.Module):
|
| 371 |
-
def __init__(self, dim, input_resolution, depth, num_heads, window_size, compress_ratio,
|
| 372 |
-
squeeze_factor, conv_scale, overlap_ratio, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
| 373 |
-
drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None,
|
| 374 |
-
use_checkpoint=False, img_size=224, patch_size=4, resi_connection='1conv'):
|
| 375 |
-
super(RHAG, self).__init__()
|
| 376 |
-
|
| 377 |
-
self.dim = dim
|
| 378 |
-
self.input_resolution = input_resolution
|
| 379 |
-
|
| 380 |
-
self.residual_group = AttenBlocks(
|
| 381 |
-
dim=dim, input_resolution=input_resolution, depth=depth, num_heads=num_heads,
|
| 382 |
-
window_size=window_size, compress_ratio=compress_ratio, squeeze_factor=squeeze_factor,
|
| 383 |
-
conv_scale=conv_scale, overlap_ratio=overlap_ratio, mlp_ratio=mlp_ratio,
|
| 384 |
-
qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop,
|
| 385 |
-
drop_path=drop_path, norm_layer=norm_layer, downsample=downsample,
|
| 386 |
-
use_checkpoint=use_checkpoint)
|
| 387 |
-
|
| 388 |
-
if resi_connection == '1conv':
|
| 389 |
-
self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
|
| 390 |
-
elif resi_connection == 'identity':
|
| 391 |
-
self.conv = nn.Identity()
|
| 392 |
-
|
| 393 |
-
self.patch_embed = PatchEmbed(
|
| 394 |
-
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)
|
| 395 |
-
|
| 396 |
-
self.patch_unembed = PatchUnEmbed(
|
| 397 |
-
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)
|
| 398 |
-
|
| 399 |
-
def forward(self, x, x_size, params):
|
| 400 |
-
return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size, params), x_size))) + x
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
class PatchEmbed(nn.Module):
|
| 404 |
-
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
| 405 |
-
super().__init__()
|
| 406 |
-
img_size = to_2tuple(img_size)
|
| 407 |
-
patch_size = to_2tuple(patch_size)
|
| 408 |
-
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
| 409 |
-
self.img_size = img_size
|
| 410 |
-
self.patch_size = patch_size
|
| 411 |
-
self.patches_resolution = patches_resolution
|
| 412 |
-
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
| 413 |
-
|
| 414 |
-
self.in_chans = in_chans
|
| 415 |
-
self.embed_dim = embed_dim
|
| 416 |
-
|
| 417 |
-
if norm_layer is not None:
|
| 418 |
-
self.norm = norm_layer(embed_dim)
|
| 419 |
-
else:
|
| 420 |
-
self.norm = None
|
| 421 |
-
|
| 422 |
-
def forward(self, x):
|
| 423 |
-
x = x.flatten(2).transpose(1, 2)
|
| 424 |
-
if self.norm is not None:
|
| 425 |
-
x = self.norm(x)
|
| 426 |
-
return x
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
class PatchUnEmbed(nn.Module):
|
| 430 |
-
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
| 431 |
-
super().__init__()
|
| 432 |
-
img_size = to_2tuple(img_size)
|
| 433 |
-
patch_size = to_2tuple(patch_size)
|
| 434 |
-
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
| 435 |
-
self.img_size = img_size
|
| 436 |
-
self.patch_size = patch_size
|
| 437 |
-
self.patches_resolution = patches_resolution
|
| 438 |
-
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
| 439 |
-
|
| 440 |
-
self.in_chans = in_chans
|
| 441 |
-
self.embed_dim = embed_dim
|
| 442 |
-
|
| 443 |
-
def forward(self, x, x_size):
|
| 444 |
-
x = x.transpose(1, 2).contiguous().view(x.shape[0], self.embed_dim, x_size[0], x_size[1])
|
| 445 |
-
return x
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
class Upsample(nn.Sequential):
|
| 449 |
-
def __init__(self, scale, num_feat):
|
| 450 |
-
m = []
|
| 451 |
-
if (scale & (scale - 1)) == 0:
|
| 452 |
-
for _ in range(int(math.log(scale, 2))):
|
| 453 |
-
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
| 454 |
-
m.append(nn.PixelShuffle(2))
|
| 455 |
-
elif scale == 3:
|
| 456 |
-
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
| 457 |
-
m.append(nn.PixelShuffle(3))
|
| 458 |
-
else:
|
| 459 |
-
raise ValueError(f'scale {scale} is not supported. Supported scales: 2^n and 3.')
|
| 460 |
-
super(Upsample, self).__init__(*m)
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
class HAT(nn.Module):
|
| 464 |
-
def __init__(self, img_size=64, patch_size=1, in_chans=3, embed_dim=96, depths=(6, 6, 6, 6),
|
| 465 |
-
num_heads=(6, 6, 6, 6), window_size=7, compress_ratio=3, squeeze_factor=30,
|
| 466 |
-
conv_scale=0.01, overlap_ratio=0.5, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
| 467 |
-
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm,
|
| 468 |
-
ape=False, patch_norm=True, use_checkpoint=False, upscale=2, img_range=1.,
|
| 469 |
-
upsampler='', resi_connection='1conv', **kwargs):
|
| 470 |
-
super(HAT, self).__init__()
|
| 471 |
-
|
| 472 |
-
self.window_size = window_size
|
| 473 |
-
self.shift_size = window_size // 2
|
| 474 |
-
self.overlap_ratio = overlap_ratio
|
| 475 |
-
|
| 476 |
-
num_in_ch = in_chans
|
| 477 |
-
num_out_ch = in_chans
|
| 478 |
-
num_feat = 64
|
| 479 |
-
self.img_range = img_range
|
| 480 |
-
if in_chans == 3:
|
| 481 |
-
rgb_mean = (0.4488, 0.4371, 0.4040)
|
| 482 |
-
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
|
| 483 |
-
else:
|
| 484 |
-
self.mean = torch.zeros(1, 1, 1, 1)
|
| 485 |
-
self.upscale = upscale
|
| 486 |
-
self.upsampler = upsampler
|
| 487 |
-
|
| 488 |
-
# relative position index
|
| 489 |
-
relative_position_index_SA = self.calculate_rpi_sa()
|
| 490 |
-
relative_position_index_OCA = self.calculate_rpi_oca()
|
| 491 |
-
self.register_buffer('relative_position_index_SA', relative_position_index_SA)
|
| 492 |
-
self.register_buffer('relative_position_index_OCA', relative_position_index_OCA)
|
| 493 |
-
|
| 494 |
-
# shallow feature extraction
|
| 495 |
-
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
|
| 496 |
-
|
| 497 |
-
# deep feature extraction
|
| 498 |
-
self.num_layers = len(depths)
|
| 499 |
-
self.embed_dim = embed_dim
|
| 500 |
-
self.ape = ape
|
| 501 |
-
self.patch_norm = patch_norm
|
| 502 |
-
self.num_features = embed_dim
|
| 503 |
-
self.mlp_ratio = mlp_ratio
|
| 504 |
-
|
| 505 |
-
# split image into non-overlapping patches
|
| 506 |
-
self.patch_embed = PatchEmbed(
|
| 507 |
-
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
| 508 |
-
norm_layer=norm_layer if self.patch_norm else None)
|
| 509 |
-
num_patches = self.patch_embed.num_patches
|
| 510 |
-
patches_resolution = self.patch_embed.patches_resolution
|
| 511 |
-
self.patches_resolution = patches_resolution
|
| 512 |
-
|
| 513 |
-
# merge non-overlapping patches into image
|
| 514 |
-
self.patch_unembed = PatchUnEmbed(
|
| 515 |
-
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
| 516 |
-
norm_layer=norm_layer if self.patch_norm else None)
|
| 517 |
-
|
| 518 |
-
# absolute position embedding
|
| 519 |
-
if self.ape:
|
| 520 |
-
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
| 521 |
-
trunc_normal_(self.absolute_pos_embed, std=.02)
|
| 522 |
-
|
| 523 |
-
self.pos_drop = nn.Dropout(p=drop_rate)
|
| 524 |
-
|
| 525 |
-
# stochastic depth
|
| 526 |
-
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
| 527 |
-
|
| 528 |
-
# build Residual Hybrid Attention Groups (RHAG)
|
| 529 |
-
self.layers = nn.ModuleList()
|
| 530 |
-
for i_layer in range(self.num_layers):
|
| 531 |
-
layer = RHAG(
|
| 532 |
-
dim=embed_dim,
|
| 533 |
-
input_resolution=(patches_resolution[0], patches_resolution[1]),
|
| 534 |
-
depth=depths[i_layer],
|
| 535 |
-
num_heads=num_heads[i_layer],
|
| 536 |
-
window_size=window_size,
|
| 537 |
-
compress_ratio=compress_ratio,
|
| 538 |
-
squeeze_factor=squeeze_factor,
|
| 539 |
-
conv_scale=conv_scale,
|
| 540 |
-
overlap_ratio=overlap_ratio,
|
| 541 |
-
mlp_ratio=self.mlp_ratio,
|
| 542 |
-
qkv_bias=qkv_bias,
|
| 543 |
-
qk_scale=qk_scale,
|
| 544 |
-
drop=drop_rate,
|
| 545 |
-
attn_drop=attn_drop_rate,
|
| 546 |
-
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
| 547 |
-
norm_layer=norm_layer,
|
| 548 |
-
downsample=None,
|
| 549 |
-
use_checkpoint=use_checkpoint,
|
| 550 |
-
img_size=img_size,
|
| 551 |
-
patch_size=patch_size,
|
| 552 |
-
resi_connection=resi_connection)
|
| 553 |
-
self.layers.append(layer)
|
| 554 |
-
self.norm = norm_layer(self.num_features)
|
| 555 |
-
|
| 556 |
-
# build the last conv layer in deep feature extraction
|
| 557 |
-
if resi_connection == '1conv':
|
| 558 |
-
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
|
| 559 |
-
elif resi_connection == 'identity':
|
| 560 |
-
self.conv_after_body = nn.Identity()
|
| 561 |
-
|
| 562 |
-
# high quality image reconstruction
|
| 563 |
-
if self.upsampler == 'pixelshuffle':
|
| 564 |
-
self.conv_before_upsample = nn.Sequential(
|
| 565 |
-
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True))
|
| 566 |
-
self.upsample = Upsample(upscale, num_feat)
|
| 567 |
-
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
| 568 |
-
|
| 569 |
-
self.apply(self._init_weights)
|
| 570 |
-
|
| 571 |
-
def _init_weights(self, m):
|
| 572 |
-
if isinstance(m, nn.Linear):
|
| 573 |
-
trunc_normal_(m.weight, std=.02)
|
| 574 |
-
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 575 |
-
nn.init.constant_(m.bias, 0)
|
| 576 |
-
elif isinstance(m, nn.LayerNorm):
|
| 577 |
-
nn.init.constant_(m.bias, 0)
|
| 578 |
-
nn.init.constant_(m.weight, 1.0)
|
| 579 |
-
|
| 580 |
-
def calculate_rpi_sa(self):
|
| 581 |
-
coords_h = torch.arange(self.window_size)
|
| 582 |
-
coords_w = torch.arange(self.window_size)
|
| 583 |
-
coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
|
| 584 |
-
coords_flatten = torch.flatten(coords, 1)
|
| 585 |
-
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
| 586 |
-
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
| 587 |
-
relative_coords[:, :, 0] += self.window_size - 1
|
| 588 |
-
relative_coords[:, :, 1] += self.window_size - 1
|
| 589 |
-
relative_coords[:, :, 0] *= 2 * self.window_size - 1
|
| 590 |
-
relative_position_index = relative_coords.sum(-1)
|
| 591 |
-
return relative_position_index
|
| 592 |
-
|
| 593 |
-
def calculate_rpi_oca(self):
|
| 594 |
-
window_size_ori = self.window_size
|
| 595 |
-
window_size_ext = self.window_size + int(self.overlap_ratio * self.window_size)
|
| 596 |
-
|
| 597 |
-
coords_h = torch.arange(window_size_ori)
|
| 598 |
-
coords_w = torch.arange(window_size_ori)
|
| 599 |
-
coords_ori = torch.stack(torch.meshgrid([coords_h, coords_w]))
|
| 600 |
-
coords_ori_flatten = torch.flatten(coords_ori, 1)
|
| 601 |
-
|
| 602 |
-
coords_h = torch.arange(window_size_ext)
|
| 603 |
-
coords_w = torch.arange(window_size_ext)
|
| 604 |
-
coords_ext = torch.stack(torch.meshgrid([coords_h, coords_w]))
|
| 605 |
-
coords_ext_flatten = torch.flatten(coords_ext, 1)
|
| 606 |
-
|
| 607 |
-
relative_coords = coords_ext_flatten[:, None, :] - coords_ori_flatten[:, :, None]
|
| 608 |
-
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
| 609 |
-
relative_coords[:, :, 0] += window_size_ori - window_size_ext + 1
|
| 610 |
-
relative_coords[:, :, 1] += window_size_ori - window_size_ext + 1
|
| 611 |
-
relative_coords[:, :, 0] *= window_size_ori + window_size_ext - 1
|
| 612 |
-
relative_position_index = relative_coords.sum(-1)
|
| 613 |
-
return relative_position_index
|
| 614 |
-
|
| 615 |
-
def calculate_mask(self, x_size):
|
| 616 |
-
h, w = x_size
|
| 617 |
-
img_mask = torch.zeros((1, h, w, 1))
|
| 618 |
-
h_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None))
|
| 619 |
-
w_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None))
|
| 620 |
-
cnt = 0
|
| 621 |
-
for h in h_slices:
|
| 622 |
-
for w in w_slices:
|
| 623 |
-
img_mask[:, h, w, :] = cnt
|
| 624 |
-
cnt += 1
|
| 625 |
-
|
| 626 |
-
mask_windows = window_partition(img_mask, self.window_size)
|
| 627 |
-
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
| 628 |
-
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
| 629 |
-
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
| 630 |
-
return attn_mask
|
| 631 |
-
|
| 632 |
-
@torch.jit.ignore
|
| 633 |
-
def no_weight_decay(self):
|
| 634 |
-
return {'absolute_pos_embed'}
|
| 635 |
-
|
| 636 |
-
@torch.jit.ignore
|
| 637 |
-
def no_weight_decay_keywords(self):
|
| 638 |
-
return {'relative_position_bias_table'}
|
| 639 |
-
|
| 640 |
-
def forward_features(self, x):
|
| 641 |
-
x_size = (x.shape[2], x.shape[3])
|
| 642 |
-
|
| 643 |
-
attn_mask = self.calculate_mask(x_size).to(x.device)
|
| 644 |
-
params = {'attn_mask': attn_mask, 'rpi_sa': self.relative_position_index_SA, 'rpi_oca': self.relative_position_index_OCA}
|
| 645 |
-
|
| 646 |
-
x = self.patch_embed(x)
|
| 647 |
-
if self.ape:
|
| 648 |
-
x = x + self.absolute_pos_embed
|
| 649 |
-
x = self.pos_drop(x)
|
| 650 |
-
|
| 651 |
-
for layer in self.layers:
|
| 652 |
-
x = layer(x, x_size, params)
|
| 653 |
-
|
| 654 |
-
x = self.norm(x)
|
| 655 |
-
x = self.patch_unembed(x, x_size)
|
| 656 |
-
return x
|
| 657 |
-
|
| 658 |
-
def forward(self, x):
|
| 659 |
-
self.mean = self.mean.type_as(x)
|
| 660 |
-
x = (x - self.mean) * self.img_range
|
| 661 |
-
|
| 662 |
-
if self.upsampler == 'pixelshuffle':
|
| 663 |
-
x = self.conv_first(x)
|
| 664 |
-
x = self.conv_after_body(self.forward_features(x)) + x
|
| 665 |
-
x = self.conv_before_upsample(x)
|
| 666 |
-
x = self.conv_last(self.upsample(x))
|
| 667 |
-
|
| 668 |
-
x = x / self.img_range + self.mean
|
| 669 |
-
return x
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
# Load the model
|
| 673 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 674 |
-
|
| 675 |
-
model = HAT(
|
| 676 |
-
upscale=4,
|
| 677 |
-
in_chans=3,
|
| 678 |
-
img_size=128,
|
| 679 |
-
window_size=16,
|
| 680 |
-
compress_ratio=3,
|
| 681 |
-
squeeze_factor=30,
|
| 682 |
-
conv_scale=0.01,
|
| 683 |
-
overlap_ratio=0.5,
|
| 684 |
-
img_range=1.,
|
| 685 |
-
depths=[6, 6, 6, 6, 6, 6],
|
| 686 |
-
embed_dim=180,
|
| 687 |
-
num_heads=[6, 6, 6, 6, 6, 6],
|
| 688 |
-
mlp_ratio=2,
|
| 689 |
-
upsampler='pixelshuffle',
|
| 690 |
-
resi_connection='1conv'
|
| 691 |
-
)
|
| 692 |
-
|
| 693 |
-
# Load the fine-tuned weights
|
| 694 |
-
checkpoint = torch.load(MODEL_CHECKPOINT, map_location=device)
|
| 695 |
-
# Try different checkpoint formats
|
| 696 |
-
state_dict = checkpoint.get('params_ema') or checkpoint.get('params') or checkpoint
|
| 697 |
-
model.load_state_dict(state_dict)
|
| 698 |
-
|
| 699 |
-
model.to(device)
|
| 700 |
-
model.eval()
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
def upscale_image(image):
|
| 704 |
-
# Convert PIL image to tensor
|
| 705 |
-
img_np = np.array(image).astype(np.float32) / 255.0
|
| 706 |
-
img_tensor = torch.from_numpy(img_np).permute(2, 0, 1).unsqueeze(0).to(device)
|
| 707 |
-
|
| 708 |
-
# Ensure the image dimensions are multiples of window_size
|
| 709 |
-
h, w = img_tensor.shape[2], img_tensor.shape[3]
|
| 710 |
-
|
| 711 |
-
# Pad if necessary
|
| 712 |
-
pad_h = (WINDOW_SIZE - h % WINDOW_SIZE) % WINDOW_SIZE
|
| 713 |
-
pad_w = (WINDOW_SIZE - w % WINDOW_SIZE) % WINDOW_SIZE
|
| 714 |
-
|
| 715 |
-
if pad_h > 0 or pad_w > 0:
|
| 716 |
-
img_tensor = torch.nn.functional.pad(img_tensor, (0, pad_w, 0, pad_h), mode='reflect')
|
| 717 |
-
|
| 718 |
-
with torch.no_grad():
|
| 719 |
-
output = model(img_tensor)
|
| 720 |
-
|
| 721 |
-
# Remove padding if it was added
|
| 722 |
-
if pad_h > 0 or pad_w > 0:
|
| 723 |
-
output = output[:, :, :h*UPSCALE_FACTOR, :w*UPSCALE_FACTOR]
|
| 724 |
-
|
| 725 |
-
# Convert back to PIL image
|
| 726 |
-
output_np = output.squeeze(0).permute(1, 2, 0).cpu().numpy()
|
| 727 |
-
output_np = np.clip(output_np * 255.0, 0, 255).astype(np.uint8)
|
| 728 |
-
|
| 729 |
-
return Image.fromarray(output_np)
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
# Get sample images
|
| 733 |
-
def get_sample_images():
|
| 734 |
-
sample_dir = "sample_images"
|
| 735 |
-
if os.path.exists(sample_dir):
|
| 736 |
-
image_files = glob.glob(os.path.join(sample_dir, "*.png")) + glob.glob(os.path.join(sample_dir, "*.jpg"))
|
| 737 |
-
return sorted(image_files)
|
| 738 |
-
return []
|
| 739 |
-
|
| 740 |
-
# Gradio interface using Blocks for better layout control
|
| 741 |
-
def validate_image_size(image):
|
| 742 |
-
"""Validate that the image is exactly the required size"""
|
| 743 |
-
if image is None:
|
| 744 |
-
return False, "No image provided"
|
| 745 |
-
|
| 746 |
-
width, height = image.size
|
| 747 |
-
req_width, req_height = REQUIRED_IMAGE_SIZE
|
| 748 |
-
if width != req_width or height != req_height:
|
| 749 |
-
return False, f"Image must be exactly {req_width}x{req_height} pixels. Your image is {width}x{height} pixels."
|
| 750 |
-
|
| 751 |
-
return True, "Valid image size"
|
| 752 |
-
|
| 753 |
-
def upscale_and_display(image):
|
| 754 |
-
if image is None:
|
| 755 |
-
return None, "Please upload an image or select a sample image."
|
| 756 |
-
|
| 757 |
-
# Validate image size
|
| 758 |
-
is_valid, message = validate_image_size(image)
|
| 759 |
-
if not is_valid:
|
| 760 |
-
return None, f"❌ Error: {message}"
|
| 761 |
-
|
| 762 |
-
try:
|
| 763 |
-
# Get the super-resolution output
|
| 764 |
-
upscaled = upscale_image(image)
|
| 765 |
-
return upscaled, "✅ Image successfully enhanced!"
|
| 766 |
-
except Exception as e:
|
| 767 |
-
return None, f"❌ Error processing image: {str(e)}"
|
| 768 |
-
|
| 769 |
-
def select_sample_image(image_path):
|
| 770 |
-
if image_path:
|
| 771 |
-
return Image.open(image_path)
|
| 772 |
-
return None
|
| 773 |
-
|
| 774 |
-
def image_to_base64(image_path):
|
| 775 |
-
"""Convert image to base64 data URL for CSS background"""
|
| 776 |
-
img = Image.open(image_path)
|
| 777 |
-
img.thumbnail((120, 120), Image.Resampling.LANCZOS)
|
| 778 |
-
buffer = BytesIO()
|
| 779 |
-
img.save(buffer, format='PNG')
|
| 780 |
-
img_str = base64.b64encode(buffer.getvalue()).decode()
|
| 781 |
-
return f"data:image/png;base64,{img_str}"
|
| 782 |
-
|
| 783 |
-
# Generate CSS with base64 images
|
| 784 |
-
def generate_css():
|
| 785 |
-
base_css = """
|
| 786 |
-
/* Target only the image display area, not the whole component */
|
| 787 |
-
.image-container [data-testid="image"] {
|
| 788 |
-
height: 500px !important;
|
| 789 |
-
min-height: 500px !important;
|
| 790 |
-
}
|
| 791 |
-
|
| 792 |
-
/* Make images fill their containers */
|
| 793 |
-
.image-container img {
|
| 794 |
-
width: 500px !important;
|
| 795 |
-
height: 500px !important;
|
| 796 |
-
object-fit: contain !important;
|
| 797 |
-
object-position: center !important;
|
| 798 |
-
}
|
| 799 |
-
|
| 800 |
-
/* Sample image buttons with background images */
|
| 801 |
-
.sample-image-btn {
|
| 802 |
-
height: 120px !important;
|
| 803 |
-
width: 120px !important;
|
| 804 |
-
background-size: cover !important;
|
| 805 |
-
background-position: center !important;
|
| 806 |
-
border: 2px solid #ddd !important;
|
| 807 |
-
border-radius: 8px !important;
|
| 808 |
-
cursor: pointer !important;
|
| 809 |
-
transition: border-color 0.2s !important;
|
| 810 |
-
margin: 5px !important;
|
| 811 |
-
}
|
| 812 |
-
|
| 813 |
-
.sample-image-btn:hover {
|
| 814 |
-
border-color: #007acc !important;
|
| 815 |
-
}
|
| 816 |
"""
|
| 817 |
|
| 818 |
-
|
| 819 |
-
|
| 820 |
-
if sample_images:
|
| 821 |
-
for i, img_path in enumerate(sample_images):
|
| 822 |
-
try:
|
| 823 |
-
base64_img = image_to_base64(img_path)
|
| 824 |
-
base_css += f"#sample_btn_{i} {{ background-image: url('{base64_img}'); }}\n"
|
| 825 |
-
except Exception:
|
| 826 |
-
# Skip invalid images
|
| 827 |
-
continue
|
| 828 |
-
|
| 829 |
-
return base_css
|
| 830 |
-
|
| 831 |
-
css = generate_css()
|
| 832 |
-
|
| 833 |
-
with gr.Blocks(css=css, title="HATSAT - Super-Resolution for Satellite Images") as iface:
|
| 834 |
-
gr.Markdown("# HATSAT - Super-Resolution for Satellite Images")
|
| 835 |
-
gr.Markdown(f"Upload a satellite image or select a sample to enhance its resolution by {UPSCALE_FACTOR}x.")
|
| 836 |
-
gr.Markdown(f"⚠️ **Important**: Images must be exactly **{REQUIRED_IMAGE_SIZE[0]}x{REQUIRED_IMAGE_SIZE[1]} pixels** for the model to work properly.")
|
| 837 |
-
|
| 838 |
-
# Acknowledgments section
|
| 839 |
-
with gr.Accordion("Acknowledgments", open=False):
|
| 840 |
-
gr.Markdown("""
|
| 841 |
-
### Base Model: HAT (Hybrid Attention Transformer)
|
| 842 |
-
This model is a fine tuned version of **HAT**:
|
| 843 |
-
- **GitHub Repository**: [https://github.com/XPixelGroup/HAT](https://github.com/XPixelGroup/HAT)
|
| 844 |
-
- **Paper**: [Activating More Pixels in Image Super-Resolution Transformer](https://arxiv.org/abs/2205.04437)
|
| 845 |
-
- **Authors**: Xiangyu Chen, Xintao Wang, Jiantao Zhou, Yu Qiao, Chao Dong
|
| 846 |
-
|
| 847 |
-
### Training Dataset: SEN2NAIPv2
|
| 848 |
-
The model was fine-tuned using the **SEN2NAIPv2** dataset:
|
| 849 |
-
- **HuggingFace Dataset**: [https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2](https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2)
|
| 850 |
-
- **Description**: High-resolution satellite imagery dataset for super-resolution tasks
|
| 851 |
-
""")
|
| 852 |
-
|
| 853 |
-
# Sample images
|
| 854 |
-
sample_images = get_sample_images()
|
| 855 |
-
sample_buttons = []
|
| 856 |
-
if sample_images:
|
| 857 |
-
gr.Markdown("**Sample Images (click to select):**")
|
| 858 |
-
with gr.Row():
|
| 859 |
-
for i, img_path in enumerate(sample_images):
|
| 860 |
-
btn = gr.Button(
|
| 861 |
-
"",
|
| 862 |
-
elem_id=f"sample_btn_{i}",
|
| 863 |
-
elem_classes="sample-image-btn"
|
| 864 |
-
)
|
| 865 |
-
sample_buttons.append((btn, img_path))
|
| 866 |
-
|
| 867 |
-
with gr.Row():
|
| 868 |
-
input_image = gr.Image(
|
| 869 |
-
type="pil",
|
| 870 |
-
label=f"Input Image (must be {REQUIRED_IMAGE_SIZE[0]}x{REQUIRED_IMAGE_SIZE[1]} pixels)",
|
| 871 |
-
elem_classes="image-container",
|
| 872 |
-
sources=["upload"],
|
| 873 |
-
height=500,
|
| 874 |
-
width=500
|
| 875 |
-
)
|
| 876 |
-
|
| 877 |
-
output_image = gr.Image(
|
| 878 |
-
type="pil",
|
| 879 |
-
label=f"Enhanced Output ({UPSCALE_FACTOR}x)",
|
| 880 |
-
elem_classes="image-container",
|
| 881 |
-
interactive=False,
|
| 882 |
-
height=500,
|
| 883 |
-
width=500,
|
| 884 |
-
show_download_button=True
|
| 885 |
-
)
|
| 886 |
|
| 887 |
-
submit_btn = gr.Button("Enhance Image", variant="primary")
|
| 888 |
|
| 889 |
-
|
| 890 |
-
|
| 891 |
-
|
| 892 |
-
|
| 893 |
-
show_label=True
|
| 894 |
-
)
|
| 895 |
|
| 896 |
-
#
|
| 897 |
-
|
| 898 |
-
|
| 899 |
-
btn.click(fn=lambda path=img_path: select_sample_image(path), outputs=input_image)
|
| 900 |
|
| 901 |
-
submit_btn.click(fn=upscale_and_display, inputs=input_image, outputs=[output_image, status_message])
|
| 902 |
|
| 903 |
if __name__ == "__main__":
|
| 904 |
-
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
HATSAT - Super-Resolution for Satellite Images
|
| 3 |
+
Main application entry point.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
"""
|
| 5 |
|
| 6 |
+
from utils.model_utils import load_model
|
| 7 |
+
from interface.gradio_app import create_interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
|
|
|
| 9 |
|
| 10 |
+
def main():
|
| 11 |
+
"""Initialize and launch the HATSAT application."""
|
| 12 |
+
# Load model and get device
|
| 13 |
+
model, device = load_model()
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
# Create and launch Gradio interface
|
| 16 |
+
iface = create_interface(model, device)
|
| 17 |
+
iface.launch()
|
|
|
|
| 18 |
|
|
|
|
| 19 |
|
| 20 |
if __name__ == "__main__":
|
| 21 |
+
main()
|
config.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Configuration constants for HATSAT application.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
# Model configuration
|
| 6 |
+
MODEL_CHECKPOINT = 'net_g_150000.pth'
|
| 7 |
+
REQUIRED_IMAGE_SIZE = (130, 130)
|
| 8 |
+
WINDOW_SIZE = 16
|
| 9 |
+
UPSCALE_FACTOR = 4
|
| 10 |
+
|
| 11 |
+
# Model architecture parameters
|
| 12 |
+
MODEL_CONFIG = {
|
| 13 |
+
'upscale': 4,
|
| 14 |
+
'in_chans': 3,
|
| 15 |
+
'img_size': 128,
|
| 16 |
+
'window_size': 16,
|
| 17 |
+
'compress_ratio': 3,
|
| 18 |
+
'squeeze_factor': 30,
|
| 19 |
+
'conv_scale': 0.01,
|
| 20 |
+
'overlap_ratio': 0.5,
|
| 21 |
+
'img_range': 1.,
|
| 22 |
+
'depths': [6, 6, 6, 6, 6, 6],
|
| 23 |
+
'embed_dim': 180,
|
| 24 |
+
'num_heads': [6, 6, 6, 6, 6, 6],
|
| 25 |
+
'mlp_ratio': 2,
|
| 26 |
+
'upsampler': 'pixelshuffle',
|
| 27 |
+
'resi_connection': '1conv'
|
| 28 |
+
}
|
interface/__init__.py
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Gradio interface components for HATSAT application.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from .gradio_app import create_interface
|
| 6 |
+
from .css_styles import generate_css, get_sample_images
|
| 7 |
+
|
| 8 |
+
__all__ = ['create_interface', 'generate_css', 'get_sample_images']
|
interface/css_styles.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
CSS styling and sample image utilities for Gradio interface.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
import glob
|
| 7 |
+
from utils.image_utils import image_to_base64
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def get_sample_images():
|
| 11 |
+
"""Get list of sample images."""
|
| 12 |
+
sample_dir = "sample_images"
|
| 13 |
+
if os.path.exists(sample_dir):
|
| 14 |
+
image_files = glob.glob(os.path.join(sample_dir, "*.png")) + glob.glob(os.path.join(sample_dir, "*.jpg"))
|
| 15 |
+
return sorted(image_files)
|
| 16 |
+
return []
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def generate_css():
|
| 20 |
+
"""Generate CSS with base64 images for sample buttons."""
|
| 21 |
+
base_css = """
|
| 22 |
+
/* Target only the image display area, not the whole component */
|
| 23 |
+
.image-container [data-testid="image"] {
|
| 24 |
+
height: 500px !important;
|
| 25 |
+
min-height: 500px !important;
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
/* Make images fill their containers */
|
| 29 |
+
.image-container img {
|
| 30 |
+
width: 500px !important;
|
| 31 |
+
height: 500px !important;
|
| 32 |
+
object-fit: contain !important;
|
| 33 |
+
object-position: center !important;
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
/* Sample image buttons with background images */
|
| 37 |
+
.sample-image-btn {
|
| 38 |
+
height: 120px !important;
|
| 39 |
+
width: 120px !important;
|
| 40 |
+
background-size: cover !important;
|
| 41 |
+
background-position: center !important;
|
| 42 |
+
border: 2px solid #ddd !important;
|
| 43 |
+
border-radius: 8px !important;
|
| 44 |
+
cursor: pointer !important;
|
| 45 |
+
transition: border-color 0.2s !important;
|
| 46 |
+
margin: 5px !important;
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
.sample-image-btn:hover {
|
| 50 |
+
border-color: #007acc !important;
|
| 51 |
+
}
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
# Add background images for each sample (only if samples exist)
|
| 55 |
+
sample_images = get_sample_images()
|
| 56 |
+
if sample_images:
|
| 57 |
+
for i, img_path in enumerate(sample_images):
|
| 58 |
+
try:
|
| 59 |
+
base64_img = image_to_base64(img_path)
|
| 60 |
+
base_css += f"#sample_btn_{i} {{ background-image: url('{base64_img}'); }}\n"
|
| 61 |
+
except Exception:
|
| 62 |
+
# Skip invalid images
|
| 63 |
+
continue
|
| 64 |
+
|
| 65 |
+
return base_css
|
interface/gradio_app.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Gradio interface for HATSAT application.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
from config import REQUIRED_IMAGE_SIZE, UPSCALE_FACTOR
|
| 9 |
+
from utils.image_utils import validate_image_size, upscale_image
|
| 10 |
+
from interface.css_styles import generate_css, get_sample_images
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def upscale_and_display(image, model, device):
|
| 14 |
+
"""Process image upload and return upscaled result."""
|
| 15 |
+
if image is None:
|
| 16 |
+
return None, "Please upload an image or select a sample image."
|
| 17 |
+
|
| 18 |
+
# Validate image size
|
| 19 |
+
is_valid, message = validate_image_size(image)
|
| 20 |
+
if not is_valid:
|
| 21 |
+
return None, f"❌ Error: {message}"
|
| 22 |
+
|
| 23 |
+
try:
|
| 24 |
+
# Get the super-resolution output
|
| 25 |
+
upscaled = upscale_image(image, model, device)
|
| 26 |
+
return upscaled, "✅ Image successfully enhanced!"
|
| 27 |
+
except Exception as e:
|
| 28 |
+
return None, f"❌ Error processing image: {str(e)}"
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def select_sample_image(image_path):
|
| 32 |
+
"""Load and return a sample image."""
|
| 33 |
+
if image_path:
|
| 34 |
+
return Image.open(image_path)
|
| 35 |
+
return None
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def create_interface(model, device):
|
| 39 |
+
"""Create and configure the Gradio interface."""
|
| 40 |
+
css = generate_css()
|
| 41 |
+
|
| 42 |
+
with gr.Blocks(css=css, title="HATSAT - Super-Resolution for Satellite Images") as iface:
|
| 43 |
+
gr.Markdown("# HATSAT - Super-Resolution for Satellite Images")
|
| 44 |
+
gr.Markdown(f"Upload a satellite image or select a sample to enhance its resolution by {UPSCALE_FACTOR}x.")
|
| 45 |
+
gr.Markdown(f"⚠️ **Important**: Images must be exactly **{REQUIRED_IMAGE_SIZE[0]}x{REQUIRED_IMAGE_SIZE[1]} pixels** for the model to work properly.")
|
| 46 |
+
|
| 47 |
+
# Acknowledgments section
|
| 48 |
+
with gr.Accordion("Acknowledgments", open=False):
|
| 49 |
+
gr.Markdown("""
|
| 50 |
+
### Base Model: HAT (Hybrid Attention Transformer)
|
| 51 |
+
This model is a fine tuned version of **HAT**:
|
| 52 |
+
- **GitHub Repository**: [https://github.com/XPixelGroup/HAT](https://github.com/XPixelGroup/HAT)
|
| 53 |
+
- **Paper**: [Activating More Pixels in Image Super-Resolution Transformer](https://arxiv.org/abs/2205.04437)
|
| 54 |
+
- **Authors**: Xiangyu Chen, Xintao Wang, Jiantao Zhou, Yu Qiao, Chao Dong
|
| 55 |
+
|
| 56 |
+
### Training Dataset: SEN2NAIPv2
|
| 57 |
+
The model was fine-tuned using the **SEN2NAIPv2** dataset:
|
| 58 |
+
- **HuggingFace Dataset**: [https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2](https://huggingface.co/datasets/tacofoundation/SEN2NAIPv2)
|
| 59 |
+
- **Description**: High-resolution satellite imagery dataset for super-resolution tasks
|
| 60 |
+
""")
|
| 61 |
+
|
| 62 |
+
# Sample images
|
| 63 |
+
sample_images = get_sample_images()
|
| 64 |
+
sample_buttons = []
|
| 65 |
+
if sample_images:
|
| 66 |
+
gr.Markdown("**Sample Images (click to select):**")
|
| 67 |
+
with gr.Row():
|
| 68 |
+
for i, img_path in enumerate(sample_images):
|
| 69 |
+
btn = gr.Button(
|
| 70 |
+
"",
|
| 71 |
+
elem_id=f"sample_btn_{i}",
|
| 72 |
+
elem_classes="sample-image-btn"
|
| 73 |
+
)
|
| 74 |
+
sample_buttons.append((btn, img_path))
|
| 75 |
+
|
| 76 |
+
with gr.Row():
|
| 77 |
+
input_image = gr.Image(
|
| 78 |
+
type="pil",
|
| 79 |
+
label=f"Input Image (must be {REQUIRED_IMAGE_SIZE[0]}x{REQUIRED_IMAGE_SIZE[1]} pixels)",
|
| 80 |
+
elem_classes="image-container",
|
| 81 |
+
sources=["upload"],
|
| 82 |
+
height=500,
|
| 83 |
+
width=500
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
output_image = gr.Image(
|
| 87 |
+
type="pil",
|
| 88 |
+
label=f"Enhanced Output ({UPSCALE_FACTOR}x)",
|
| 89 |
+
elem_classes="image-container",
|
| 90 |
+
interactive=False,
|
| 91 |
+
height=500,
|
| 92 |
+
width=500,
|
| 93 |
+
show_download_button=True
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
submit_btn = gr.Button("Enhance Image", variant="primary")
|
| 97 |
+
|
| 98 |
+
# Status message
|
| 99 |
+
status_message = gr.Textbox(
|
| 100 |
+
label="Status",
|
| 101 |
+
interactive=False,
|
| 102 |
+
show_label=True
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
# Event handlers
|
| 106 |
+
if sample_images:
|
| 107 |
+
for btn, img_path in sample_buttons:
|
| 108 |
+
btn.click(fn=lambda path=img_path: select_sample_image(path), outputs=input_image)
|
| 109 |
+
|
| 110 |
+
submit_btn.click(
|
| 111 |
+
fn=lambda img: upscale_and_display(img, model, device),
|
| 112 |
+
inputs=input_image,
|
| 113 |
+
outputs=[output_image, status_message]
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
return iface
|
model/__init__.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
HAT model architecture components.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from .hat_model import HAT
|
| 6 |
+
from .components import (
|
| 7 |
+
DropPath, ChannelAttention, CAB, Mlp,
|
| 8 |
+
WindowAttention, HAB, OCAB, AttenBlocks,
|
| 9 |
+
RHAG, PatchEmbed, PatchUnEmbed, Upsample
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
__all__ = [
|
| 13 |
+
'HAT', 'DropPath', 'ChannelAttention', 'CAB', 'Mlp',
|
| 14 |
+
'WindowAttention', 'HAB', 'OCAB', 'AttenBlocks',
|
| 15 |
+
'RHAG', 'PatchEmbed', 'PatchUnEmbed', 'Upsample'
|
| 16 |
+
]
|
model/components.py
ADDED
|
@@ -0,0 +1,451 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
HAT model components and building blocks.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import math
|
| 8 |
+
from einops import rearrange
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def to_2tuple(x):
|
| 12 |
+
"""Convert input to tuple of length 2."""
|
| 13 |
+
if isinstance(x, (tuple, list)):
|
| 14 |
+
return tuple(x)
|
| 15 |
+
return (x, x)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
| 19 |
+
"""Truncated normal initialization."""
|
| 20 |
+
def norm_cdf(x):
|
| 21 |
+
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
| 22 |
+
|
| 23 |
+
with torch.no_grad():
|
| 24 |
+
l = norm_cdf((a - mean) / std)
|
| 25 |
+
u = norm_cdf((b - mean) / std)
|
| 26 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
| 27 |
+
tensor.erfinv_()
|
| 28 |
+
tensor.mul_(std * math.sqrt(2.))
|
| 29 |
+
tensor.add_(mean)
|
| 30 |
+
tensor.clamp_(min=a, max=b)
|
| 31 |
+
return tensor
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def drop_path(x, drop_prob: float = 0., training: bool = False):
|
| 35 |
+
if drop_prob == 0. or not training:
|
| 36 |
+
return x
|
| 37 |
+
keep_prob = 1 - drop_prob
|
| 38 |
+
shape = (x.shape[0], ) + (1, ) * (x.ndim - 1)
|
| 39 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
|
| 40 |
+
random_tensor.floor_()
|
| 41 |
+
output = x.div(keep_prob) * random_tensor
|
| 42 |
+
return output
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
class DropPath(nn.Module):
|
| 46 |
+
def __init__(self, drop_prob=None):
|
| 47 |
+
super(DropPath, self).__init__()
|
| 48 |
+
self.drop_prob = drop_prob
|
| 49 |
+
|
| 50 |
+
def forward(self, x):
|
| 51 |
+
return drop_path(x, self.drop_prob, self.training)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class ChannelAttention(nn.Module):
|
| 55 |
+
def __init__(self, num_feat, squeeze_factor=16):
|
| 56 |
+
super(ChannelAttention, self).__init__()
|
| 57 |
+
self.attention = nn.Sequential(
|
| 58 |
+
nn.AdaptiveAvgPool2d(1),
|
| 59 |
+
nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0),
|
| 60 |
+
nn.ReLU(inplace=True),
|
| 61 |
+
nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0),
|
| 62 |
+
nn.Sigmoid())
|
| 63 |
+
|
| 64 |
+
def forward(self, x):
|
| 65 |
+
y = self.attention(x)
|
| 66 |
+
return x * y
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
class CAB(nn.Module):
|
| 70 |
+
def __init__(self, num_feat, compress_ratio=3, squeeze_factor=30):
|
| 71 |
+
super(CAB, self).__init__()
|
| 72 |
+
self.cab = nn.Sequential(
|
| 73 |
+
nn.Conv2d(num_feat, num_feat // compress_ratio, 3, 1, 1),
|
| 74 |
+
nn.GELU(),
|
| 75 |
+
nn.Conv2d(num_feat // compress_ratio, num_feat, 3, 1, 1),
|
| 76 |
+
ChannelAttention(num_feat, squeeze_factor)
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
def forward(self, x):
|
| 80 |
+
return self.cab(x)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class Mlp(nn.Module):
|
| 84 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
| 85 |
+
super().__init__()
|
| 86 |
+
out_features = out_features or in_features
|
| 87 |
+
hidden_features = hidden_features or in_features
|
| 88 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
| 89 |
+
self.act = act_layer()
|
| 90 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
| 91 |
+
self.drop = nn.Dropout(drop)
|
| 92 |
+
|
| 93 |
+
def forward(self, x):
|
| 94 |
+
x = self.fc1(x)
|
| 95 |
+
x = self.act(x)
|
| 96 |
+
x = self.drop(x)
|
| 97 |
+
x = self.fc2(x)
|
| 98 |
+
x = self.drop(x)
|
| 99 |
+
return x
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def window_partition(x, window_size):
|
| 103 |
+
b, h, w, c = x.shape
|
| 104 |
+
x = x.view(b, h // window_size, window_size, w // window_size, window_size, c)
|
| 105 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, c)
|
| 106 |
+
return windows
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def window_reverse(windows, window_size, h, w):
|
| 110 |
+
b = int(windows.shape[0] / (h * w / window_size / window_size))
|
| 111 |
+
x = windows.view(b, h // window_size, w // window_size, window_size, window_size, -1)
|
| 112 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(b, h, w, -1)
|
| 113 |
+
return x
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
class WindowAttention(nn.Module):
|
| 117 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
| 118 |
+
super().__init__()
|
| 119 |
+
self.dim = dim
|
| 120 |
+
self.window_size = window_size
|
| 121 |
+
self.num_heads = num_heads
|
| 122 |
+
head_dim = dim // num_heads
|
| 123 |
+
self.scale = qk_scale or head_dim**-0.5
|
| 124 |
+
|
| 125 |
+
self.relative_position_bias_table = nn.Parameter(
|
| 126 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))
|
| 127 |
+
|
| 128 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 129 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 130 |
+
self.proj = nn.Linear(dim, dim)
|
| 131 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 132 |
+
|
| 133 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
| 134 |
+
self.softmax = nn.Softmax(dim=-1)
|
| 135 |
+
|
| 136 |
+
def forward(self, x, rpi, mask=None):
|
| 137 |
+
b_, n, c = x.shape
|
| 138 |
+
qkv = self.qkv(x).reshape(b_, n, 3, self.num_heads, c // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 139 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
| 140 |
+
|
| 141 |
+
q = q * self.scale
|
| 142 |
+
attn = (q @ k.transpose(-2, -1))
|
| 143 |
+
|
| 144 |
+
relative_position_bias = self.relative_position_bias_table[rpi.view(-1)].view(
|
| 145 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)
|
| 146 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
|
| 147 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
| 148 |
+
|
| 149 |
+
if mask is not None:
|
| 150 |
+
nw = mask.shape[0]
|
| 151 |
+
attn = attn.view(b_ // nw, nw, self.num_heads, n, n) + mask.unsqueeze(1).unsqueeze(0)
|
| 152 |
+
attn = attn.view(-1, self.num_heads, n, n)
|
| 153 |
+
attn = self.softmax(attn)
|
| 154 |
+
else:
|
| 155 |
+
attn = self.softmax(attn)
|
| 156 |
+
|
| 157 |
+
attn = self.attn_drop(attn)
|
| 158 |
+
|
| 159 |
+
x = (attn @ v).transpose(1, 2).reshape(b_, n, c)
|
| 160 |
+
x = self.proj(x)
|
| 161 |
+
x = self.proj_drop(x)
|
| 162 |
+
return x
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
class HAB(nn.Module):
|
| 166 |
+
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
|
| 167 |
+
compress_ratio=3, squeeze_factor=30, conv_scale=0.01, mlp_ratio=4.,
|
| 168 |
+
qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
| 169 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
| 170 |
+
super().__init__()
|
| 171 |
+
self.dim = dim
|
| 172 |
+
self.input_resolution = input_resolution
|
| 173 |
+
self.num_heads = num_heads
|
| 174 |
+
self.window_size = window_size
|
| 175 |
+
self.shift_size = shift_size
|
| 176 |
+
self.mlp_ratio = mlp_ratio
|
| 177 |
+
if min(self.input_resolution) <= self.window_size:
|
| 178 |
+
self.shift_size = 0
|
| 179 |
+
self.window_size = min(self.input_resolution)
|
| 180 |
+
assert 0 <= self.shift_size < self.window_size, 'shift_size must in 0-window_size'
|
| 181 |
+
|
| 182 |
+
self.norm1 = norm_layer(dim)
|
| 183 |
+
self.attn = WindowAttention(
|
| 184 |
+
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
| 185 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
| 186 |
+
|
| 187 |
+
self.conv_scale = conv_scale
|
| 188 |
+
self.conv_block = CAB(num_feat=dim, compress_ratio=compress_ratio, squeeze_factor=squeeze_factor)
|
| 189 |
+
|
| 190 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 191 |
+
self.norm2 = norm_layer(dim)
|
| 192 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 193 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
| 194 |
+
|
| 195 |
+
def forward(self, x, x_size, rpi_sa, attn_mask):
|
| 196 |
+
h, w = x_size
|
| 197 |
+
b, _, c = x.shape
|
| 198 |
+
|
| 199 |
+
shortcut = x
|
| 200 |
+
x = self.norm1(x)
|
| 201 |
+
x = x.view(b, h, w, c)
|
| 202 |
+
|
| 203 |
+
# Conv_X
|
| 204 |
+
conv_x = self.conv_block(x.permute(0, 3, 1, 2))
|
| 205 |
+
conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(b, h * w, c)
|
| 206 |
+
|
| 207 |
+
# cyclic shift
|
| 208 |
+
if self.shift_size > 0:
|
| 209 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
| 210 |
+
attn_mask = attn_mask
|
| 211 |
+
else:
|
| 212 |
+
shifted_x = x
|
| 213 |
+
attn_mask = None
|
| 214 |
+
|
| 215 |
+
# partition windows
|
| 216 |
+
x_windows = window_partition(shifted_x, self.window_size)
|
| 217 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, c)
|
| 218 |
+
|
| 219 |
+
# W-MSA/SW-MSA
|
| 220 |
+
attn_windows = self.attn(x_windows, rpi=rpi_sa, mask=attn_mask)
|
| 221 |
+
|
| 222 |
+
# merge windows
|
| 223 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, c)
|
| 224 |
+
shifted_x = window_reverse(attn_windows, self.window_size, h, w)
|
| 225 |
+
|
| 226 |
+
# reverse cyclic shift
|
| 227 |
+
if self.shift_size > 0:
|
| 228 |
+
attn_x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
| 229 |
+
else:
|
| 230 |
+
attn_x = shifted_x
|
| 231 |
+
attn_x = attn_x.view(b, h * w, c)
|
| 232 |
+
|
| 233 |
+
# FFN
|
| 234 |
+
x = shortcut + self.drop_path(attn_x) + conv_x * self.conv_scale
|
| 235 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
| 236 |
+
|
| 237 |
+
return x
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
class OCAB(nn.Module):
|
| 241 |
+
def __init__(self, dim, input_resolution, window_size, overlap_ratio, num_heads,
|
| 242 |
+
qkv_bias=True, qk_scale=None, mlp_ratio=2, norm_layer=nn.LayerNorm):
|
| 243 |
+
super().__init__()
|
| 244 |
+
self.dim = dim
|
| 245 |
+
self.input_resolution = input_resolution
|
| 246 |
+
self.window_size = window_size
|
| 247 |
+
self.num_heads = num_heads
|
| 248 |
+
head_dim = dim // num_heads
|
| 249 |
+
self.scale = qk_scale or head_dim**-0.5
|
| 250 |
+
self.overlap_win_size = int(window_size * overlap_ratio) + window_size
|
| 251 |
+
|
| 252 |
+
self.norm1 = norm_layer(dim)
|
| 253 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 254 |
+
self.unfold = nn.Unfold(kernel_size=(self.overlap_win_size, self.overlap_win_size),
|
| 255 |
+
stride=window_size, padding=(self.overlap_win_size-window_size)//2)
|
| 256 |
+
|
| 257 |
+
self.relative_position_bias_table = nn.Parameter(
|
| 258 |
+
torch.zeros((window_size + self.overlap_win_size - 1) * (window_size + self.overlap_win_size - 1), num_heads))
|
| 259 |
+
|
| 260 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
| 261 |
+
self.softmax = nn.Softmax(dim=-1)
|
| 262 |
+
|
| 263 |
+
self.proj = nn.Linear(dim,dim)
|
| 264 |
+
|
| 265 |
+
self.norm2 = norm_layer(dim)
|
| 266 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 267 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=nn.GELU)
|
| 268 |
+
|
| 269 |
+
def forward(self, x, x_size, rpi):
|
| 270 |
+
h, w = x_size
|
| 271 |
+
b, _, c = x.shape
|
| 272 |
+
|
| 273 |
+
shortcut = x
|
| 274 |
+
x = self.norm1(x)
|
| 275 |
+
x = x.view(b, h, w, c)
|
| 276 |
+
|
| 277 |
+
qkv = self.qkv(x).reshape(b, h, w, 3, c).permute(3, 0, 4, 1, 2)
|
| 278 |
+
q = qkv[0].permute(0, 2, 3, 1)
|
| 279 |
+
kv = torch.cat((qkv[1], qkv[2]), dim=1)
|
| 280 |
+
|
| 281 |
+
# partition windows
|
| 282 |
+
q_windows = window_partition(q, self.window_size)
|
| 283 |
+
q_windows = q_windows.view(-1, self.window_size * self.window_size, c)
|
| 284 |
+
|
| 285 |
+
kv_windows = self.unfold(kv)
|
| 286 |
+
kv_windows = rearrange(kv_windows, 'b (nc ch owh oww) nw -> nc (b nw) (owh oww) ch',
|
| 287 |
+
nc=2, ch=c, owh=self.overlap_win_size, oww=self.overlap_win_size).contiguous()
|
| 288 |
+
k_windows, v_windows = kv_windows[0], kv_windows[1]
|
| 289 |
+
|
| 290 |
+
b_, nq, _ = q_windows.shape
|
| 291 |
+
_, n, _ = k_windows.shape
|
| 292 |
+
d = self.dim // self.num_heads
|
| 293 |
+
q = q_windows.reshape(b_, nq, self.num_heads, d).permute(0, 2, 1, 3)
|
| 294 |
+
k = k_windows.reshape(b_, n, self.num_heads, d).permute(0, 2, 1, 3)
|
| 295 |
+
v = v_windows.reshape(b_, n, self.num_heads, d).permute(0, 2, 1, 3)
|
| 296 |
+
|
| 297 |
+
q = q * self.scale
|
| 298 |
+
attn = (q @ k.transpose(-2, -1))
|
| 299 |
+
|
| 300 |
+
relative_position_bias = self.relative_position_bias_table[rpi.view(-1)].view(
|
| 301 |
+
self.window_size * self.window_size, self.overlap_win_size * self.overlap_win_size, -1)
|
| 302 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
|
| 303 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
| 304 |
+
|
| 305 |
+
attn = self.softmax(attn)
|
| 306 |
+
attn_windows = (attn @ v).transpose(1, 2).reshape(b_, nq, self.dim)
|
| 307 |
+
|
| 308 |
+
# merge windows
|
| 309 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, self.dim)
|
| 310 |
+
x = window_reverse(attn_windows, self.window_size, h, w)
|
| 311 |
+
x = x.view(b, h * w, self.dim)
|
| 312 |
+
|
| 313 |
+
x = self.proj(x) + shortcut
|
| 314 |
+
x = x + self.mlp(self.norm2(x))
|
| 315 |
+
return x
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
class AttenBlocks(nn.Module):
|
| 319 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size, compress_ratio,
|
| 320 |
+
squeeze_factor, conv_scale, overlap_ratio, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
| 321 |
+
drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None,
|
| 322 |
+
use_checkpoint=False):
|
| 323 |
+
super().__init__()
|
| 324 |
+
self.dim = dim
|
| 325 |
+
self.input_resolution = input_resolution
|
| 326 |
+
self.depth = depth
|
| 327 |
+
self.use_checkpoint = use_checkpoint
|
| 328 |
+
|
| 329 |
+
# build blocks
|
| 330 |
+
self.blocks = nn.ModuleList([
|
| 331 |
+
HAB(dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size,
|
| 332 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2, compress_ratio=compress_ratio,
|
| 333 |
+
squeeze_factor=squeeze_factor, conv_scale=conv_scale, mlp_ratio=mlp_ratio,
|
| 334 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop,
|
| 335 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
| 336 |
+
norm_layer=norm_layer) for i in range(depth)
|
| 337 |
+
])
|
| 338 |
+
|
| 339 |
+
# OCAB
|
| 340 |
+
self.overlap_attn = OCAB(dim=dim, input_resolution=input_resolution, window_size=window_size,
|
| 341 |
+
overlap_ratio=overlap_ratio, num_heads=num_heads, qkv_bias=qkv_bias,
|
| 342 |
+
qk_scale=qk_scale, mlp_ratio=mlp_ratio, norm_layer=norm_layer)
|
| 343 |
+
|
| 344 |
+
# patch merging layer
|
| 345 |
+
if downsample is not None:
|
| 346 |
+
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
| 347 |
+
else:
|
| 348 |
+
self.downsample = None
|
| 349 |
+
|
| 350 |
+
def forward(self, x, x_size, params):
|
| 351 |
+
for blk in self.blocks:
|
| 352 |
+
x = blk(x, x_size, params['rpi_sa'], params['attn_mask'])
|
| 353 |
+
|
| 354 |
+
x = self.overlap_attn(x, x_size, params['rpi_oca'])
|
| 355 |
+
|
| 356 |
+
if self.downsample is not None:
|
| 357 |
+
x = self.downsample(x)
|
| 358 |
+
return x
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
class RHAG(nn.Module):
|
| 362 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size, compress_ratio,
|
| 363 |
+
squeeze_factor, conv_scale, overlap_ratio, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
| 364 |
+
drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None,
|
| 365 |
+
use_checkpoint=False, img_size=224, patch_size=4, resi_connection='1conv'):
|
| 366 |
+
super(RHAG, self).__init__()
|
| 367 |
+
|
| 368 |
+
self.dim = dim
|
| 369 |
+
self.input_resolution = input_resolution
|
| 370 |
+
|
| 371 |
+
self.residual_group = AttenBlocks(
|
| 372 |
+
dim=dim, input_resolution=input_resolution, depth=depth, num_heads=num_heads,
|
| 373 |
+
window_size=window_size, compress_ratio=compress_ratio, squeeze_factor=squeeze_factor,
|
| 374 |
+
conv_scale=conv_scale, overlap_ratio=overlap_ratio, mlp_ratio=mlp_ratio,
|
| 375 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop,
|
| 376 |
+
drop_path=drop_path, norm_layer=norm_layer, downsample=downsample,
|
| 377 |
+
use_checkpoint=use_checkpoint)
|
| 378 |
+
|
| 379 |
+
if resi_connection == '1conv':
|
| 380 |
+
self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
|
| 381 |
+
elif resi_connection == 'identity':
|
| 382 |
+
self.conv = nn.Identity()
|
| 383 |
+
|
| 384 |
+
self.patch_embed = PatchEmbed(
|
| 385 |
+
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)
|
| 386 |
+
|
| 387 |
+
self.patch_unembed = PatchUnEmbed(
|
| 388 |
+
img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)
|
| 389 |
+
|
| 390 |
+
def forward(self, x, x_size, params):
|
| 391 |
+
return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size, params), x_size))) + x
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
class PatchEmbed(nn.Module):
|
| 395 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
| 396 |
+
super().__init__()
|
| 397 |
+
img_size = to_2tuple(img_size)
|
| 398 |
+
patch_size = to_2tuple(patch_size)
|
| 399 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
| 400 |
+
self.img_size = img_size
|
| 401 |
+
self.patch_size = patch_size
|
| 402 |
+
self.patches_resolution = patches_resolution
|
| 403 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
| 404 |
+
|
| 405 |
+
self.in_chans = in_chans
|
| 406 |
+
self.embed_dim = embed_dim
|
| 407 |
+
|
| 408 |
+
if norm_layer is not None:
|
| 409 |
+
self.norm = norm_layer(embed_dim)
|
| 410 |
+
else:
|
| 411 |
+
self.norm = None
|
| 412 |
+
|
| 413 |
+
def forward(self, x):
|
| 414 |
+
x = x.flatten(2).transpose(1, 2)
|
| 415 |
+
if self.norm is not None:
|
| 416 |
+
x = self.norm(x)
|
| 417 |
+
return x
|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
class PatchUnEmbed(nn.Module):
|
| 421 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
| 422 |
+
super().__init__()
|
| 423 |
+
img_size = to_2tuple(img_size)
|
| 424 |
+
patch_size = to_2tuple(patch_size)
|
| 425 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
| 426 |
+
self.img_size = img_size
|
| 427 |
+
self.patch_size = patch_size
|
| 428 |
+
self.patches_resolution = patches_resolution
|
| 429 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
| 430 |
+
|
| 431 |
+
self.in_chans = in_chans
|
| 432 |
+
self.embed_dim = embed_dim
|
| 433 |
+
|
| 434 |
+
def forward(self, x, x_size):
|
| 435 |
+
x = x.transpose(1, 2).contiguous().view(x.shape[0], self.embed_dim, x_size[0], x_size[1])
|
| 436 |
+
return x
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
class Upsample(nn.Sequential):
|
| 440 |
+
def __init__(self, scale, num_feat):
|
| 441 |
+
m = []
|
| 442 |
+
if (scale & (scale - 1)) == 0:
|
| 443 |
+
for _ in range(int(math.log(scale, 2))):
|
| 444 |
+
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
|
| 445 |
+
m.append(nn.PixelShuffle(2))
|
| 446 |
+
elif scale == 3:
|
| 447 |
+
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
|
| 448 |
+
m.append(nn.PixelShuffle(3))
|
| 449 |
+
else:
|
| 450 |
+
raise ValueError(f'scale {scale} is not supported. Supported scales: 2^n and 3.')
|
| 451 |
+
super(Upsample, self).__init__(*m)
|
model/hat_model.py
ADDED
|
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
HAT (Hybrid Attention Transformer) main model implementation.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import math
|
| 8 |
+
|
| 9 |
+
from .components import (
|
| 10 |
+
RHAG, PatchEmbed, PatchUnEmbed, Upsample,
|
| 11 |
+
trunc_normal_, window_partition, to_2tuple
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class HAT(nn.Module):
|
| 16 |
+
def __init__(self, img_size=64, patch_size=1, in_chans=3, embed_dim=96, depths=(6, 6, 6, 6),
|
| 17 |
+
num_heads=(6, 6, 6, 6), window_size=7, compress_ratio=3, squeeze_factor=30,
|
| 18 |
+
conv_scale=0.01, overlap_ratio=0.5, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
| 19 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm,
|
| 20 |
+
ape=False, patch_norm=True, use_checkpoint=False, upscale=2, img_range=1.,
|
| 21 |
+
upsampler='', resi_connection='1conv', **kwargs):
|
| 22 |
+
super(HAT, self).__init__()
|
| 23 |
+
|
| 24 |
+
self.window_size = window_size
|
| 25 |
+
self.shift_size = window_size // 2
|
| 26 |
+
self.overlap_ratio = overlap_ratio
|
| 27 |
+
|
| 28 |
+
num_in_ch = in_chans
|
| 29 |
+
num_out_ch = in_chans
|
| 30 |
+
num_feat = 64
|
| 31 |
+
self.img_range = img_range
|
| 32 |
+
if in_chans == 3:
|
| 33 |
+
rgb_mean = (0.4488, 0.4371, 0.4040)
|
| 34 |
+
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
|
| 35 |
+
else:
|
| 36 |
+
self.mean = torch.zeros(1, 1, 1, 1)
|
| 37 |
+
self.upscale = upscale
|
| 38 |
+
self.upsampler = upsampler
|
| 39 |
+
|
| 40 |
+
# relative position index
|
| 41 |
+
relative_position_index_SA = self.calculate_rpi_sa()
|
| 42 |
+
relative_position_index_OCA = self.calculate_rpi_oca()
|
| 43 |
+
self.register_buffer('relative_position_index_SA', relative_position_index_SA)
|
| 44 |
+
self.register_buffer('relative_position_index_OCA', relative_position_index_OCA)
|
| 45 |
+
|
| 46 |
+
# shallow feature extraction
|
| 47 |
+
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
|
| 48 |
+
|
| 49 |
+
# deep feature extraction
|
| 50 |
+
self.num_layers = len(depths)
|
| 51 |
+
self.embed_dim = embed_dim
|
| 52 |
+
self.ape = ape
|
| 53 |
+
self.patch_norm = patch_norm
|
| 54 |
+
self.num_features = embed_dim
|
| 55 |
+
self.mlp_ratio = mlp_ratio
|
| 56 |
+
|
| 57 |
+
# split image into non-overlapping patches
|
| 58 |
+
self.patch_embed = PatchEmbed(
|
| 59 |
+
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
| 60 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
| 61 |
+
num_patches = self.patch_embed.num_patches
|
| 62 |
+
patches_resolution = self.patch_embed.patches_resolution
|
| 63 |
+
self.patches_resolution = patches_resolution
|
| 64 |
+
|
| 65 |
+
# merge non-overlapping patches into image
|
| 66 |
+
self.patch_unembed = PatchUnEmbed(
|
| 67 |
+
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
| 68 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
| 69 |
+
|
| 70 |
+
# absolute position embedding
|
| 71 |
+
if self.ape:
|
| 72 |
+
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
| 73 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
| 74 |
+
|
| 75 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
| 76 |
+
|
| 77 |
+
# stochastic depth
|
| 78 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
| 79 |
+
|
| 80 |
+
# build Residual Hybrid Attention Groups (RHAG)
|
| 81 |
+
self.layers = nn.ModuleList()
|
| 82 |
+
for i_layer in range(self.num_layers):
|
| 83 |
+
layer = RHAG(
|
| 84 |
+
dim=embed_dim,
|
| 85 |
+
input_resolution=(patches_resolution[0], patches_resolution[1]),
|
| 86 |
+
depth=depths[i_layer],
|
| 87 |
+
num_heads=num_heads[i_layer],
|
| 88 |
+
window_size=window_size,
|
| 89 |
+
compress_ratio=compress_ratio,
|
| 90 |
+
squeeze_factor=squeeze_factor,
|
| 91 |
+
conv_scale=conv_scale,
|
| 92 |
+
overlap_ratio=overlap_ratio,
|
| 93 |
+
mlp_ratio=self.mlp_ratio,
|
| 94 |
+
qkv_bias=qkv_bias,
|
| 95 |
+
qk_scale=qk_scale,
|
| 96 |
+
drop=drop_rate,
|
| 97 |
+
attn_drop=attn_drop_rate,
|
| 98 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
| 99 |
+
norm_layer=norm_layer,
|
| 100 |
+
downsample=None,
|
| 101 |
+
use_checkpoint=use_checkpoint,
|
| 102 |
+
img_size=img_size,
|
| 103 |
+
patch_size=patch_size,
|
| 104 |
+
resi_connection=resi_connection)
|
| 105 |
+
self.layers.append(layer)
|
| 106 |
+
self.norm = norm_layer(self.num_features)
|
| 107 |
+
|
| 108 |
+
# build the last conv layer in deep feature extraction
|
| 109 |
+
if resi_connection == '1conv':
|
| 110 |
+
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
|
| 111 |
+
elif resi_connection == 'identity':
|
| 112 |
+
self.conv_after_body = nn.Identity()
|
| 113 |
+
|
| 114 |
+
# high quality image reconstruction
|
| 115 |
+
if self.upsampler == 'pixelshuffle':
|
| 116 |
+
self.conv_before_upsample = nn.Sequential(
|
| 117 |
+
nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True))
|
| 118 |
+
self.upsample = Upsample(upscale, num_feat)
|
| 119 |
+
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
|
| 120 |
+
|
| 121 |
+
self.apply(self._init_weights)
|
| 122 |
+
|
| 123 |
+
def _init_weights(self, m):
|
| 124 |
+
if isinstance(m, nn.Linear):
|
| 125 |
+
trunc_normal_(m.weight, std=.02)
|
| 126 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 127 |
+
nn.init.constant_(m.bias, 0)
|
| 128 |
+
elif isinstance(m, nn.LayerNorm):
|
| 129 |
+
nn.init.constant_(m.bias, 0)
|
| 130 |
+
nn.init.constant_(m.weight, 1.0)
|
| 131 |
+
|
| 132 |
+
def calculate_rpi_sa(self):
|
| 133 |
+
coords_h = torch.arange(self.window_size)
|
| 134 |
+
coords_w = torch.arange(self.window_size)
|
| 135 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
|
| 136 |
+
coords_flatten = torch.flatten(coords, 1)
|
| 137 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
| 138 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
| 139 |
+
relative_coords[:, :, 0] += self.window_size - 1
|
| 140 |
+
relative_coords[:, :, 1] += self.window_size - 1
|
| 141 |
+
relative_coords[:, :, 0] *= 2 * self.window_size - 1
|
| 142 |
+
relative_position_index = relative_coords.sum(-1)
|
| 143 |
+
return relative_position_index
|
| 144 |
+
|
| 145 |
+
def calculate_rpi_oca(self):
|
| 146 |
+
window_size_ori = self.window_size
|
| 147 |
+
window_size_ext = self.window_size + int(self.overlap_ratio * self.window_size)
|
| 148 |
+
|
| 149 |
+
coords_h = torch.arange(window_size_ori)
|
| 150 |
+
coords_w = torch.arange(window_size_ori)
|
| 151 |
+
coords_ori = torch.stack(torch.meshgrid([coords_h, coords_w]))
|
| 152 |
+
coords_ori_flatten = torch.flatten(coords_ori, 1)
|
| 153 |
+
|
| 154 |
+
coords_h = torch.arange(window_size_ext)
|
| 155 |
+
coords_w = torch.arange(window_size_ext)
|
| 156 |
+
coords_ext = torch.stack(torch.meshgrid([coords_h, coords_w]))
|
| 157 |
+
coords_ext_flatten = torch.flatten(coords_ext, 1)
|
| 158 |
+
|
| 159 |
+
relative_coords = coords_ext_flatten[:, None, :] - coords_ori_flatten[:, :, None]
|
| 160 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous()
|
| 161 |
+
relative_coords[:, :, 0] += window_size_ori - window_size_ext + 1
|
| 162 |
+
relative_coords[:, :, 1] += window_size_ori - window_size_ext + 1
|
| 163 |
+
relative_coords[:, :, 0] *= window_size_ori + window_size_ext - 1
|
| 164 |
+
relative_position_index = relative_coords.sum(-1)
|
| 165 |
+
return relative_position_index
|
| 166 |
+
|
| 167 |
+
def calculate_mask(self, x_size):
|
| 168 |
+
h, w = x_size
|
| 169 |
+
img_mask = torch.zeros((1, h, w, 1))
|
| 170 |
+
h_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None))
|
| 171 |
+
w_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None))
|
| 172 |
+
cnt = 0
|
| 173 |
+
for h in h_slices:
|
| 174 |
+
for w in w_slices:
|
| 175 |
+
img_mask[:, h, w, :] = cnt
|
| 176 |
+
cnt += 1
|
| 177 |
+
|
| 178 |
+
mask_windows = window_partition(img_mask, self.window_size)
|
| 179 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
| 180 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
| 181 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
| 182 |
+
return attn_mask
|
| 183 |
+
|
| 184 |
+
@torch.jit.ignore
|
| 185 |
+
def no_weight_decay(self):
|
| 186 |
+
return {'absolute_pos_embed'}
|
| 187 |
+
|
| 188 |
+
@torch.jit.ignore
|
| 189 |
+
def no_weight_decay_keywords(self):
|
| 190 |
+
return {'relative_position_bias_table'}
|
| 191 |
+
|
| 192 |
+
def forward_features(self, x):
|
| 193 |
+
x_size = (x.shape[2], x.shape[3])
|
| 194 |
+
|
| 195 |
+
attn_mask = self.calculate_mask(x_size).to(x.device)
|
| 196 |
+
params = {'attn_mask': attn_mask, 'rpi_sa': self.relative_position_index_SA, 'rpi_oca': self.relative_position_index_OCA}
|
| 197 |
+
|
| 198 |
+
x = self.patch_embed(x)
|
| 199 |
+
if self.ape:
|
| 200 |
+
x = x + self.absolute_pos_embed
|
| 201 |
+
x = self.pos_drop(x)
|
| 202 |
+
|
| 203 |
+
for layer in self.layers:
|
| 204 |
+
x = layer(x, x_size, params)
|
| 205 |
+
|
| 206 |
+
x = self.norm(x)
|
| 207 |
+
x = self.patch_unembed(x, x_size)
|
| 208 |
+
return x
|
| 209 |
+
|
| 210 |
+
def forward(self, x):
|
| 211 |
+
self.mean = self.mean.type_as(x)
|
| 212 |
+
x = (x - self.mean) * self.img_range
|
| 213 |
+
|
| 214 |
+
if self.upsampler == 'pixelshuffle':
|
| 215 |
+
x = self.conv_first(x)
|
| 216 |
+
x = self.conv_after_body(self.forward_features(x)) + x
|
| 217 |
+
x = self.conv_before_upsample(x)
|
| 218 |
+
x = self.conv_last(self.upsample(x))
|
| 219 |
+
|
| 220 |
+
x = x / self.img_range + self.mean
|
| 221 |
+
return x
|
utils/__init__.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Utility functions for HATSAT application.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from .image_utils import upscale_image, validate_image_size, image_to_base64
|
| 6 |
+
from .model_utils import load_model, get_device
|
| 7 |
+
|
| 8 |
+
__all__ = [
|
| 9 |
+
'upscale_image', 'validate_image_size', 'image_to_base64',
|
| 10 |
+
'load_model', 'get_device'
|
| 11 |
+
]
|
utils/image_utils.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Image processing utilities.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import numpy as np
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import base64
|
| 9 |
+
from io import BytesIO
|
| 10 |
+
|
| 11 |
+
from config import REQUIRED_IMAGE_SIZE, WINDOW_SIZE, UPSCALE_FACTOR
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def validate_image_size(image):
|
| 15 |
+
"""Validate that the image is exactly the required size."""
|
| 16 |
+
if image is None:
|
| 17 |
+
return False, "No image provided"
|
| 18 |
+
|
| 19 |
+
width, height = image.size
|
| 20 |
+
req_width, req_height = REQUIRED_IMAGE_SIZE
|
| 21 |
+
if width != req_width or height != req_height:
|
| 22 |
+
return False, f"Image must be exactly {req_width}x{req_height} pixels. Your image is {width}x{height} pixels."
|
| 23 |
+
|
| 24 |
+
return True, "Valid image size"
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def upscale_image(image, model, device):
|
| 28 |
+
"""Upscale an image using the HAT model."""
|
| 29 |
+
# Convert PIL image to tensor
|
| 30 |
+
img_np = np.array(image).astype(np.float32) / 255.0
|
| 31 |
+
img_tensor = torch.from_numpy(img_np).permute(2, 0, 1).unsqueeze(0).to(device)
|
| 32 |
+
|
| 33 |
+
# Ensure the image dimensions are multiples of window_size
|
| 34 |
+
h, w = img_tensor.shape[2], img_tensor.shape[3]
|
| 35 |
+
|
| 36 |
+
# Pad if necessary
|
| 37 |
+
pad_h = (WINDOW_SIZE - h % WINDOW_SIZE) % WINDOW_SIZE
|
| 38 |
+
pad_w = (WINDOW_SIZE - w % WINDOW_SIZE) % WINDOW_SIZE
|
| 39 |
+
|
| 40 |
+
if pad_h > 0 or pad_w > 0:
|
| 41 |
+
img_tensor = torch.nn.functional.pad(img_tensor, (0, pad_w, 0, pad_h), mode='reflect')
|
| 42 |
+
|
| 43 |
+
with torch.no_grad():
|
| 44 |
+
output = model(img_tensor)
|
| 45 |
+
|
| 46 |
+
# Remove padding if it was added
|
| 47 |
+
if pad_h > 0 or pad_w > 0:
|
| 48 |
+
output = output[:, :, :h*UPSCALE_FACTOR, :w*UPSCALE_FACTOR]
|
| 49 |
+
|
| 50 |
+
# Convert back to PIL image
|
| 51 |
+
output_np = output.squeeze(0).permute(1, 2, 0).cpu().numpy()
|
| 52 |
+
output_np = np.clip(output_np * 255.0, 0, 255).astype(np.uint8)
|
| 53 |
+
|
| 54 |
+
return Image.fromarray(output_np)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def image_to_base64(image_path):
|
| 58 |
+
"""Convert image to base64 data URL for CSS background."""
|
| 59 |
+
img = Image.open(image_path)
|
| 60 |
+
img.thumbnail((120, 120), Image.Resampling.LANCZOS)
|
| 61 |
+
buffer = BytesIO()
|
| 62 |
+
img.save(buffer, format='PNG')
|
| 63 |
+
img_str = base64.b64encode(buffer.getvalue()).decode()
|
| 64 |
+
return f"data:image/png;base64,{img_str}"
|
utils/model_utils.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Model loading and device utilities.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from model import HAT
|
| 7 |
+
from config import MODEL_CHECKPOINT, MODEL_CONFIG
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def get_device():
|
| 11 |
+
"""Get the appropriate device for model inference."""
|
| 12 |
+
return torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def load_model():
|
| 16 |
+
"""Load and initialize the HAT model with pre-trained weights."""
|
| 17 |
+
device = get_device()
|
| 18 |
+
|
| 19 |
+
# Initialize model
|
| 20 |
+
model = HAT(**MODEL_CONFIG)
|
| 21 |
+
|
| 22 |
+
# Load the fine-tuned weights
|
| 23 |
+
checkpoint = torch.load(MODEL_CHECKPOINT, map_location=device)
|
| 24 |
+
# Try different checkpoint formats
|
| 25 |
+
state_dict = checkpoint.get('params_ema') or checkpoint.get('params') or checkpoint
|
| 26 |
+
model.load_state_dict(state_dict)
|
| 27 |
+
|
| 28 |
+
model.to(device)
|
| 29 |
+
model.eval()
|
| 30 |
+
|
| 31 |
+
return model, device
|