|
|
import gradio as gr |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import numpy as np |
|
|
from PIL import Image |
|
|
import cv2 |
|
|
import math |
|
|
from einops import rearrange |
|
|
|
|
|
|
|
|
def to_2tuple(x): |
|
|
"""Convert input to tuple of length 2.""" |
|
|
if isinstance(x, (tuple, list)): |
|
|
return tuple(x) |
|
|
return (x, x) |
|
|
|
|
|
|
|
|
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): |
|
|
"""Truncated normal initialization.""" |
|
|
def norm_cdf(x): |
|
|
return (1. + math.erf(x / math.sqrt(2.))) / 2. |
|
|
|
|
|
with torch.no_grad(): |
|
|
l = norm_cdf((a - mean) / std) |
|
|
u = norm_cdf((b - mean) / std) |
|
|
tensor.uniform_(2 * l - 1, 2 * u - 1) |
|
|
tensor.erfinv_() |
|
|
tensor.mul_(std * math.sqrt(2.)) |
|
|
tensor.add_(mean) |
|
|
tensor.clamp_(min=a, max=b) |
|
|
return tensor |
|
|
|
|
|
|
|
|
def drop_path(x, drop_prob: float = 0., training: bool = False): |
|
|
if drop_prob == 0. or not training: |
|
|
return x |
|
|
keep_prob = 1 - drop_prob |
|
|
shape = (x.shape[0], ) + (1, ) * (x.ndim - 1) |
|
|
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) |
|
|
random_tensor.floor_() |
|
|
output = x.div(keep_prob) * random_tensor |
|
|
return output |
|
|
|
|
|
|
|
|
class DropPath(nn.Module): |
|
|
def __init__(self, drop_prob=None): |
|
|
super(DropPath, self).__init__() |
|
|
self.drop_prob = drop_prob |
|
|
|
|
|
def forward(self, x): |
|
|
return drop_path(x, self.drop_prob, self.training) |
|
|
|
|
|
|
|
|
class ChannelAttention(nn.Module): |
|
|
def __init__(self, num_feat, squeeze_factor=16): |
|
|
super(ChannelAttention, self).__init__() |
|
|
self.attention = nn.Sequential( |
|
|
nn.AdaptiveAvgPool2d(1), |
|
|
nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0), |
|
|
nn.ReLU(inplace=True), |
|
|
nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0), |
|
|
nn.Sigmoid()) |
|
|
|
|
|
def forward(self, x): |
|
|
y = self.attention(x) |
|
|
return x * y |
|
|
|
|
|
|
|
|
class CAB(nn.Module): |
|
|
def __init__(self, num_feat, compress_ratio=3, squeeze_factor=30): |
|
|
super(CAB, self).__init__() |
|
|
self.cab = nn.Sequential( |
|
|
nn.Conv2d(num_feat, num_feat // compress_ratio, 3, 1, 1), |
|
|
nn.GELU(), |
|
|
nn.Conv2d(num_feat // compress_ratio, num_feat, 3, 1, 1), |
|
|
ChannelAttention(num_feat, squeeze_factor) |
|
|
) |
|
|
|
|
|
def forward(self, x): |
|
|
return self.cab(x) |
|
|
|
|
|
|
|
|
class Mlp(nn.Module): |
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
|
super().__init__() |
|
|
out_features = out_features or in_features |
|
|
hidden_features = hidden_features or in_features |
|
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
|
self.act = act_layer() |
|
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
|
self.drop = nn.Dropout(drop) |
|
|
|
|
|
def forward(self, x): |
|
|
x = self.fc1(x) |
|
|
x = self.act(x) |
|
|
x = self.drop(x) |
|
|
x = self.fc2(x) |
|
|
x = self.drop(x) |
|
|
return x |
|
|
|
|
|
|
|
|
def window_partition(x, window_size): |
|
|
B, H, W, C = x.shape |
|
|
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) |
|
|
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) |
|
|
return windows |
|
|
|
|
|
|
|
|
def window_reverse(windows, window_size, H, W): |
|
|
B = int(windows.shape[0] / (H * W / window_size / window_size)) |
|
|
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) |
|
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) |
|
|
return x |
|
|
|
|
|
|
|
|
class WindowAttention(nn.Module): |
|
|
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.window_size = window_size |
|
|
self.num_heads = num_heads |
|
|
head_dim = dim // num_heads |
|
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
|
|
self.relative_position_bias_table = nn.Parameter( |
|
|
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) |
|
|
|
|
|
coords_h = torch.arange(self.window_size[0]) |
|
|
coords_w = torch.arange(self.window_size[1]) |
|
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
|
coords_flatten = torch.flatten(coords, 1) |
|
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
|
relative_coords[:, :, 0] += self.window_size[0] - 1 |
|
|
relative_coords[:, :, 1] += self.window_size[1] - 1 |
|
|
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 |
|
|
relative_position_index = relative_coords.sum(-1) |
|
|
self.register_buffer("relative_position_index", relative_position_index) |
|
|
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
|
self.proj = nn.Linear(dim, dim) |
|
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
|
|
nn.init.trunc_normal_(self.relative_position_bias_table, std=.02) |
|
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
|
|
def forward(self, x, mask=None): |
|
|
B_, N, C = x.shape |
|
|
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
|
|
q = q * self.scale |
|
|
attn = (q @ k.transpose(-2, -1)) |
|
|
|
|
|
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( |
|
|
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) |
|
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() |
|
|
attn = attn + relative_position_bias.unsqueeze(0) |
|
|
|
|
|
if mask is not None: |
|
|
nW = mask.shape[0] |
|
|
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) |
|
|
attn = attn.view(-1, self.num_heads, N, N) |
|
|
attn = self.softmax(attn) |
|
|
else: |
|
|
attn = self.softmax(attn) |
|
|
|
|
|
attn = self.attn_drop(attn) |
|
|
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) |
|
|
x = self.proj(x) |
|
|
x = self.proj_drop(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class HAB(nn.Module): |
|
|
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, |
|
|
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., |
|
|
act_layer=nn.GELU, norm_layer=nn.LayerNorm, compress_ratio=3, squeeze_factor=30): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.input_resolution = input_resolution |
|
|
self.num_heads = num_heads |
|
|
self.window_size = window_size |
|
|
self.shift_size = shift_size |
|
|
self.mlp_ratio = mlp_ratio |
|
|
if min(self.input_resolution) <= self.window_size: |
|
|
self.shift_size = 0 |
|
|
self.window_size = min(self.input_resolution) |
|
|
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" |
|
|
|
|
|
self.norm1 = norm_layer(dim) |
|
|
self.attn = WindowAttention( |
|
|
dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, |
|
|
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) |
|
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
self.norm2 = norm_layer(dim) |
|
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
|
|
self.conv_scale = nn.Parameter(torch.ones(1)) |
|
|
self.conv_block = CAB(dim, compress_ratio, squeeze_factor) |
|
|
|
|
|
if self.shift_size > 0: |
|
|
H, W = self.input_resolution |
|
|
img_mask = torch.zeros((1, H, W, 1)) |
|
|
h_slices = (slice(0, -self.window_size), |
|
|
slice(-self.window_size, -self.shift_size), |
|
|
slice(-self.shift_size, None)) |
|
|
w_slices = (slice(0, -self.window_size), |
|
|
slice(-self.window_size, -self.shift_size), |
|
|
slice(-self.shift_size, None)) |
|
|
cnt = 0 |
|
|
for h in h_slices: |
|
|
for w in w_slices: |
|
|
img_mask[:, h, w, :] = cnt |
|
|
cnt += 1 |
|
|
|
|
|
mask_windows = window_partition(img_mask, self.window_size) |
|
|
mask_windows = mask_windows.view(-1, self.window_size * self.window_size) |
|
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) |
|
|
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) |
|
|
else: |
|
|
attn_mask = None |
|
|
|
|
|
self.register_buffer("attn_mask", attn_mask) |
|
|
|
|
|
def forward(self, x): |
|
|
H, W = self.input_resolution |
|
|
B, L, C = x.shape |
|
|
assert L == H * W, "input feature has wrong size" |
|
|
|
|
|
shortcut = x |
|
|
x = self.norm1(x) |
|
|
x = x.view(B, H, W, C) |
|
|
|
|
|
if self.shift_size > 0: |
|
|
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) |
|
|
else: |
|
|
shifted_x = x |
|
|
|
|
|
x_windows = window_partition(shifted_x, self.window_size) |
|
|
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) |
|
|
|
|
|
attn_windows = self.attn(x_windows, mask=self.attn_mask) |
|
|
|
|
|
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) |
|
|
shifted_x = window_reverse(attn_windows, self.window_size, H, W) |
|
|
|
|
|
if self.shift_size > 0: |
|
|
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) |
|
|
else: |
|
|
x = shifted_x |
|
|
x = x.view(B, H * W, C) |
|
|
|
|
|
x = shortcut + self.drop_path(x) |
|
|
|
|
|
y = x |
|
|
x = self.norm2(x) |
|
|
x = self.mlp(x) |
|
|
x = y + self.drop_path(x) |
|
|
|
|
|
conv_x = self.conv_block(x.view(B, H, W, C).permute(0, 3, 1, 2)) |
|
|
conv_x = conv_x.permute(0, 2, 3, 1).view(B, H * W, C) |
|
|
|
|
|
x = x + self.conv_scale * conv_x |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
class OCAB(nn.Module): |
|
|
def __init__(self, dim, input_resolution, window_size, overlap_ratio, num_heads, |
|
|
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., |
|
|
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, compress_ratio=3, |
|
|
squeeze_factor=30): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.input_resolution = input_resolution |
|
|
self.window_size = window_size |
|
|
self.num_heads = num_heads |
|
|
self.shift_size = round(overlap_ratio * window_size) |
|
|
self.mlp_ratio = mlp_ratio |
|
|
|
|
|
if min(self.input_resolution) <= self.window_size: |
|
|
self.shift_size = 0 |
|
|
self.window_size = min(self.input_resolution) |
|
|
|
|
|
assert 0 <= self.shift_size, "shift_size >= 0 is required" |
|
|
|
|
|
self.norm1 = norm_layer(dim) |
|
|
self.attn = WindowAttention( |
|
|
dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, |
|
|
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) |
|
|
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
self.norm2 = norm_layer(dim) |
|
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
|
|
self.conv_scale = nn.Parameter(torch.ones(1)) |
|
|
self.conv_block = CAB(dim, compress_ratio, squeeze_factor) |
|
|
|
|
|
def forward(self, x): |
|
|
H, W = self.input_resolution |
|
|
B, L, C = x.shape |
|
|
assert L == H * W, "input feature has wrong size" |
|
|
|
|
|
shortcut = x |
|
|
x = self.norm1(x) |
|
|
x = x.view(B, H, W, C) |
|
|
|
|
|
pad_l = pad_t = 0 |
|
|
pad_r = (self.window_size - W % self.window_size) % self.window_size |
|
|
pad_b = (self.window_size - H % self.window_size) % self.window_size |
|
|
x = torch.nn.functional.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) |
|
|
_, Hp, Wp, _ = x.shape |
|
|
|
|
|
if self.shift_size > 0: |
|
|
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) |
|
|
else: |
|
|
shifted_x = x |
|
|
|
|
|
x_windows = window_partition(shifted_x, self.window_size) |
|
|
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) |
|
|
|
|
|
attn_windows = self.attn(x_windows, mask=None) |
|
|
|
|
|
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) |
|
|
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) |
|
|
|
|
|
if self.shift_size > 0: |
|
|
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) |
|
|
else: |
|
|
x = shifted_x |
|
|
|
|
|
if pad_r > 0 or pad_b > 0: |
|
|
x = x[:, :H, :W, :].contiguous() |
|
|
|
|
|
x = x.view(B, H * W, C) |
|
|
x = shortcut + self.drop_path(x) |
|
|
|
|
|
y = x |
|
|
x = self.norm2(x) |
|
|
x = self.mlp(x) |
|
|
x = y + self.drop_path(x) |
|
|
|
|
|
conv_x = self.conv_block(x.view(B, H, W, C).permute(0, 3, 1, 2)) |
|
|
conv_x = conv_x.permute(0, 2, 3, 1).view(B, H * W, C) |
|
|
|
|
|
x = x + self.conv_scale * conv_x |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
|
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): |
|
|
super().__init__() |
|
|
img_size = (img_size, img_size) |
|
|
patch_size = (patch_size, patch_size) |
|
|
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] |
|
|
self.img_size = img_size |
|
|
self.patch_size = patch_size |
|
|
self.patches_resolution = patches_resolution |
|
|
self.num_patches = patches_resolution[0] * patches_resolution[1] |
|
|
|
|
|
self.in_chans = in_chans |
|
|
self.embed_dim = embed_dim |
|
|
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) |
|
|
if norm_layer is not None: |
|
|
self.norm = norm_layer(embed_dim) |
|
|
else: |
|
|
self.norm = None |
|
|
|
|
|
def forward(self, x): |
|
|
B, C, H, W = x.shape |
|
|
assert H == self.img_size[0] and W == self.img_size[1], \ |
|
|
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." |
|
|
x = self.proj(x).flatten(2).transpose(1, 2) |
|
|
if self.norm is not None: |
|
|
x = self.norm(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class PatchUnEmbed(nn.Module): |
|
|
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): |
|
|
super().__init__() |
|
|
img_size = (img_size, img_size) |
|
|
patch_size = (patch_size, patch_size) |
|
|
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] |
|
|
self.img_size = img_size |
|
|
self.patch_size = patch_size |
|
|
self.patches_resolution = patches_resolution |
|
|
self.num_patches = patches_resolution[0] * patches_resolution[1] |
|
|
|
|
|
self.in_chans = in_chans |
|
|
self.embed_dim = embed_dim |
|
|
|
|
|
def forward(self, x, x_size): |
|
|
H, W = x_size |
|
|
B, HW, C = x.shape |
|
|
x = x.transpose(1, 2).view(B, self.embed_dim, H, W) |
|
|
return x |
|
|
|
|
|
|
|
|
class RHAG(nn.Module): |
|
|
def __init__(self, dim, input_resolution, depth, num_heads, window_size, compress_ratio, |
|
|
squeeze_factor, conv_scale, overlap_ratio, mlp_ratio=4., qkv_bias=True, qk_scale=None, |
|
|
drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, |
|
|
use_checkpoint=False): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.input_resolution = input_resolution |
|
|
self.depth = depth |
|
|
self.use_checkpoint = use_checkpoint |
|
|
|
|
|
self.blocks_1 = nn.ModuleList([ |
|
|
HAB(dim=dim, input_resolution=input_resolution, |
|
|
num_heads=num_heads, window_size=window_size, |
|
|
shift_size=0 if (i % 2 == 0) else window_size // 2, |
|
|
mlp_ratio=mlp_ratio, |
|
|
qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
|
drop=drop, attn_drop=attn_drop, |
|
|
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, |
|
|
norm_layer=norm_layer, compress_ratio=compress_ratio, |
|
|
squeeze_factor=squeeze_factor) |
|
|
for i in range(depth // 2)]) |
|
|
|
|
|
self.blocks_2 = nn.ModuleList([ |
|
|
OCAB(dim=dim, input_resolution=input_resolution, |
|
|
window_size=window_size, overlap_ratio=overlap_ratio, |
|
|
num_heads=num_heads, mlp_ratio=mlp_ratio, |
|
|
qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
|
drop=drop, attn_drop=attn_drop, |
|
|
drop_path=drop_path[i + depth//2] if isinstance(drop_path, list) else drop_path, |
|
|
norm_layer=norm_layer, compress_ratio=compress_ratio, |
|
|
squeeze_factor=squeeze_factor) |
|
|
for i in range(depth // 2)]) |
|
|
|
|
|
self.conv = nn.Conv2d(dim, dim, 3, 1, 1) |
|
|
self.conv_scale = conv_scale |
|
|
|
|
|
if downsample is not None: |
|
|
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) |
|
|
else: |
|
|
self.downsample = None |
|
|
|
|
|
def forward(self, x, x_size): |
|
|
H, W = x_size |
|
|
res = x |
|
|
for blk in self.blocks_1: |
|
|
if self.use_checkpoint: |
|
|
x = torch.utils.checkpoint.checkpoint(blk, x) |
|
|
else: |
|
|
x = blk(x) |
|
|
for blk in self.blocks_2: |
|
|
if self.use_checkpoint: |
|
|
x = torch.utils.checkpoint.checkpoint(blk, x) |
|
|
else: |
|
|
x = blk(x) |
|
|
|
|
|
conv_x = self.conv(x.transpose(1, 2).view(-1, self.dim, H, W)).view(-1, self.dim, H * W).transpose(1, 2) |
|
|
x = res + x + conv_x * self.conv_scale |
|
|
|
|
|
if self.downsample is not None: |
|
|
x = self.downsample(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class Upsample(nn.Sequential): |
|
|
def __init__(self, scale, num_feat): |
|
|
m = [] |
|
|
if (scale & (scale - 1)) == 0: |
|
|
for _ in range(int(math.log(scale, 2))): |
|
|
m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) |
|
|
m.append(nn.PixelShuffle(2)) |
|
|
elif scale == 3: |
|
|
m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) |
|
|
m.append(nn.PixelShuffle(3)) |
|
|
else: |
|
|
raise ValueError(f'scale {scale} is not supported. Supported scales: 2^n and 3.') |
|
|
super(Upsample, self).__init__(*m) |
|
|
|
|
|
|
|
|
class HAT(nn.Module): |
|
|
def __init__(self, img_size=64, patch_size=1, in_chans=3, embed_dim=180, depths=[6, 6, 6, 6, 6, 6], |
|
|
num_heads=[6, 6, 6, 6, 6, 6], window_size=16, compress_ratio=3, squeeze_factor=30, |
|
|
conv_scale=0.01, overlap_ratio=0.5, mlp_ratio=4., qkv_bias=True, qk_scale=None, |
|
|
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, |
|
|
ape=False, patch_norm=True, use_checkpoint=False, upscale=2, img_range=1., |
|
|
upsampler='', resi_connection='1conv', **kwargs): |
|
|
super(HAT, self).__init__() |
|
|
|
|
|
self.window_size = window_size |
|
|
self.shift_size = window_size // 2 |
|
|
self.overlap_ratio = overlap_ratio |
|
|
num_in_ch = in_chans |
|
|
num_out_ch = in_chans |
|
|
num_feat = 64 |
|
|
self.img_range = img_range |
|
|
if in_chans == 3: |
|
|
rgb_mean = (0.4488, 0.4371, 0.4040) |
|
|
self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) |
|
|
else: |
|
|
self.mean = torch.zeros(1, 1, 1, 1) |
|
|
self.upscale = upscale |
|
|
self.upsampler = upsampler |
|
|
|
|
|
self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) |
|
|
|
|
|
self.num_layers = len(depths) |
|
|
self.embed_dim = embed_dim |
|
|
self.ape = ape |
|
|
self.patch_norm = patch_norm |
|
|
self.num_features = embed_dim |
|
|
self.mlp_ratio = mlp_ratio |
|
|
|
|
|
self.patch_embed = PatchEmbed( |
|
|
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim, |
|
|
norm_layer=norm_layer if self.patch_norm else None) |
|
|
num_patches = self.patch_embed.num_patches |
|
|
patches_resolution = self.patch_embed.patches_resolution |
|
|
self.patches_resolution = patches_resolution |
|
|
|
|
|
self.patch_unembed = PatchUnEmbed( |
|
|
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim, |
|
|
norm_layer=norm_layer if self.patch_norm else None) |
|
|
|
|
|
if self.ape: |
|
|
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) |
|
|
nn.init.trunc_normal_(self.absolute_pos_embed, std=.02) |
|
|
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
|
|
|
|
self.layers = nn.ModuleList() |
|
|
for i_layer in range(self.num_layers): |
|
|
layer = RHAG(dim=embed_dim, |
|
|
input_resolution=(patches_resolution[0], |
|
|
patches_resolution[1]), |
|
|
depth=depths[i_layer], |
|
|
num_heads=num_heads[i_layer], |
|
|
window_size=window_size, |
|
|
compress_ratio=compress_ratio, |
|
|
squeeze_factor=squeeze_factor, |
|
|
conv_scale=conv_scale, |
|
|
overlap_ratio=overlap_ratio, |
|
|
mlp_ratio=self.mlp_ratio, |
|
|
qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
|
drop=drop_rate, attn_drop=attn_drop_rate, |
|
|
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], |
|
|
norm_layer=norm_layer, |
|
|
downsample=None, |
|
|
use_checkpoint=use_checkpoint) |
|
|
self.layers.append(layer) |
|
|
self.norm = norm_layer(self.num_features) |
|
|
|
|
|
if resi_connection == '1conv': |
|
|
self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) |
|
|
elif resi_connection == '3conv': |
|
|
self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), |
|
|
nn.LeakyReLU(negative_slope=0.2, inplace=True), |
|
|
nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), |
|
|
nn.LeakyReLU(negative_slope=0.2, inplace=True), |
|
|
nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1)) |
|
|
|
|
|
if upsampler == 'pixelshuffle': |
|
|
self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1), |
|
|
nn.LeakyReLU(inplace=True)) |
|
|
self.upsample = Upsample(upscale, num_feat) |
|
|
self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) |
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
|
|
def _init_weights(self, m): |
|
|
if isinstance(m, nn.Linear): |
|
|
nn.init.trunc_normal_(m.weight, std=.02) |
|
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
|
nn.init.constant_(m.bias, 0) |
|
|
elif isinstance(m, nn.LayerNorm): |
|
|
nn.init.constant_(m.bias, 0) |
|
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
|
|
@torch.jit.ignore |
|
|
def no_weight_decay(self): |
|
|
return {'absolute_pos_embed'} |
|
|
|
|
|
@torch.jit.ignore |
|
|
def no_weight_decay_keywords(self): |
|
|
return {'relative_position_bias_table'} |
|
|
|
|
|
def forward_features(self, x): |
|
|
x_size = (x.shape[2], x.shape[3]) |
|
|
x = self.patch_embed(x) |
|
|
if self.ape: |
|
|
x = x + self.absolute_pos_embed |
|
|
x = self.pos_drop(x) |
|
|
|
|
|
for layer in self.layers: |
|
|
x = layer(x, x_size) |
|
|
|
|
|
x = self.norm(x) |
|
|
x = self.patch_unembed(x, x_size) |
|
|
|
|
|
return x |
|
|
|
|
|
def forward(self, x): |
|
|
self.mean = self.mean.type_as(x) |
|
|
x = (x - self.mean) * self.img_range |
|
|
|
|
|
x_first = self.conv_first(x) |
|
|
res = self.conv_after_body(self.forward_features(x_first)) + x_first |
|
|
if self.upsampler == 'pixelshuffle': |
|
|
x = self.conv_before_upsample(res) |
|
|
x = self.conv_last(self.upsample(x)) |
|
|
|
|
|
x = x / self.img_range + self.mean |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
model = HAT( |
|
|
upscale=4, |
|
|
in_chans=3, |
|
|
img_size=128, |
|
|
window_size=16, |
|
|
compress_ratio=3, |
|
|
squeeze_factor=30, |
|
|
conv_scale=0.01, |
|
|
overlap_ratio=0.5, |
|
|
img_range=1., |
|
|
depths=[6, 6, 6, 6, 6, 6], |
|
|
embed_dim=180, |
|
|
num_heads=[6, 6, 6, 6, 6, 6], |
|
|
mlp_ratio=2, |
|
|
upsampler='pixelshuffle', |
|
|
resi_connection='1conv' |
|
|
) |
|
|
|
|
|
|
|
|
checkpoint = torch.load('net_g_20000.pth', map_location=device) |
|
|
if 'params_ema' in checkpoint: |
|
|
model.load_state_dict(checkpoint['params_ema']) |
|
|
elif 'params' in checkpoint: |
|
|
model.load_state_dict(checkpoint['params']) |
|
|
else: |
|
|
model.load_state_dict(checkpoint) |
|
|
|
|
|
model.to(device) |
|
|
model.eval() |
|
|
|
|
|
|
|
|
def upscale_image(image): |
|
|
|
|
|
img_np = np.array(image).astype(np.float32) / 255.0 |
|
|
img_tensor = torch.from_numpy(img_np).permute(2, 0, 1).unsqueeze(0).to(device) |
|
|
|
|
|
|
|
|
h, w = img_tensor.shape[2], img_tensor.shape[3] |
|
|
|
|
|
|
|
|
pad_h = (16 - h % 16) % 16 |
|
|
pad_w = (16 - w % 16) % 16 |
|
|
|
|
|
if pad_h > 0 or pad_w > 0: |
|
|
img_tensor = torch.nn.functional.pad(img_tensor, (0, pad_w, 0, pad_h), mode='reflect') |
|
|
|
|
|
with torch.no_grad(): |
|
|
output = model(img_tensor) |
|
|
|
|
|
|
|
|
if pad_h > 0 or pad_w > 0: |
|
|
output = output[:, :, :h*4, :w*4] |
|
|
|
|
|
|
|
|
output_np = output.squeeze(0).permute(1, 2, 0).cpu().numpy() |
|
|
output_np = np.clip(output_np * 255.0, 0, 255).astype(np.uint8) |
|
|
|
|
|
return Image.fromarray(output_np) |
|
|
|
|
|
|
|
|
|
|
|
iface = gr.Interface( |
|
|
fn=upscale_image, |
|
|
inputs=gr.Image(type="pil", label="Input Satellite Image"), |
|
|
outputs=gr.Image(type="pil", label="Super-Resolution Output (4x)"), |
|
|
title="HAT Super-Resolution for Satellite Images", |
|
|
description="Upload a satellite image to enhance its resolution by 4x using a fine-tuned HAT model. This model has been specifically trained on satellite imagery to provide high-quality super-resolution results.", |
|
|
examples=None, |
|
|
cache_examples=False |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
iface.launch() |