File size: 29,359 Bytes
841d16c
 
 
 
 
 
 
 
 
34e77ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
841d16c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34e77ba
 
 
841d16c
 
 
34e77ba
 
 
 
841d16c
 
 
 
 
 
 
 
 
 
34e77ba
841d16c
 
 
 
 
 
 
 
 
34e77ba
841d16c
 
34e77ba
 
 
841d16c
 
 
 
 
34e77ba
841d16c
 
 
 
 
34e77ba
 
 
841d16c
 
 
 
 
 
34e77ba
841d16c
 
 
 
 
 
 
34e77ba
 
 
841d16c
 
 
 
 
 
 
 
 
 
34e77ba
841d16c
 
 
34e77ba
841d16c
 
34e77ba
 
 
841d16c
 
 
 
 
34e77ba
 
 
841d16c
 
 
34e77ba
 
 
 
 
841d16c
34e77ba
841d16c
 
34e77ba
841d16c
 
34e77ba
841d16c
34e77ba
841d16c
34e77ba
841d16c
34e77ba
 
841d16c
34e77ba
 
 
841d16c
34e77ba
841d16c
34e77ba
841d16c
34e77ba
 
841d16c
34e77ba
 
 
841d16c
 
 
 
 
 
34e77ba
841d16c
 
 
 
 
34e77ba
 
 
841d16c
34e77ba
 
 
 
841d16c
34e77ba
 
841d16c
34e77ba
 
 
 
841d16c
 
 
34e77ba
841d16c
34e77ba
 
 
841d16c
 
 
34e77ba
841d16c
34e77ba
 
 
841d16c
34e77ba
 
 
841d16c
34e77ba
 
 
 
841d16c
34e77ba
 
 
 
 
 
841d16c
34e77ba
 
841d16c
34e77ba
 
 
 
841d16c
34e77ba
 
841d16c
34e77ba
 
 
 
841d16c
34e77ba
 
 
841d16c
 
34e77ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
841d16c
34e77ba
 
 
 
 
 
 
 
 
 
 
 
 
 
841d16c
 
 
34e77ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
841d16c
 
 
34e77ba
 
841d16c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34e77ba
841d16c
 
 
 
 
 
 
 
34e77ba
 
841d16c
 
 
 
 
 
 
 
 
 
34e77ba
841d16c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34e77ba
 
841d16c
 
 
 
 
 
 
 
 
34e77ba
841d16c
 
 
 
 
 
 
 
 
 
 
 
34e77ba
 
 
 
 
 
 
841d16c
 
34e77ba
841d16c
 
 
 
 
 
 
34e77ba
841d16c
 
 
 
 
 
 
34e77ba
841d16c
 
 
 
34e77ba
841d16c
 
34e77ba
841d16c
 
 
34e77ba
841d16c
 
34e77ba
841d16c
 
34e77ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
841d16c
 
 
34e77ba
841d16c
 
34e77ba
 
 
 
 
 
 
841d16c
 
 
 
 
 
 
34e77ba
841d16c
 
 
 
 
 
34e77ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
841d16c
 
 
 
 
 
 
 
 
 
34e77ba
 
 
 
841d16c
 
 
 
 
 
34e77ba
841d16c
 
 
 
 
 
 
 
 
 
34e77ba
 
 
841d16c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b9a561
6875170
 
 
 
 
 
 
8630d04
6875170
8630d04
7b9a561
 
 
8630d04
7b9a561
 
 
 
 
 
8630d04
7b9a561
 
 
c654a4b
7b9a561
 
c654a4b
7b9a561
8630d04
7b9a561
 
 
 
8630d04
7b9a561
841d16c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
import gradio as gr
import torch
import torch.nn as nn
import numpy as np
from PIL import Image
import math
from einops import rearrange


def to_2tuple(x):
    """Convert input to tuple of length 2."""
    if isinstance(x, (tuple, list)):
        return tuple(x)
    return (x, x)


def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
    """Truncated normal initialization."""
    def norm_cdf(x):
        return (1. + math.erf(x / math.sqrt(2.))) / 2.

    with torch.no_grad():
        l = norm_cdf((a - mean) / std)
        u = norm_cdf((b - mean) / std)
        tensor.uniform_(2 * l - 1, 2 * u - 1)
        tensor.erfinv_()
        tensor.mul_(std * math.sqrt(2.))
        tensor.add_(mean)
        tensor.clamp_(min=a, max=b)
        return tensor


def drop_path(x, drop_prob: float = 0., training: bool = False):
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0], ) + (1, ) * (x.ndim - 1)
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)


class ChannelAttention(nn.Module):
    def __init__(self, num_feat, squeeze_factor=16):
        super(ChannelAttention, self).__init__()
        self.attention = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(num_feat, num_feat // squeeze_factor, 1, padding=0),
            nn.ReLU(inplace=True),
            nn.Conv2d(num_feat // squeeze_factor, num_feat, 1, padding=0),
            nn.Sigmoid())

    def forward(self, x):
        y = self.attention(x)
        return x * y


class CAB(nn.Module):
    def __init__(self, num_feat, compress_ratio=3, squeeze_factor=30):
        super(CAB, self).__init__()
        self.cab = nn.Sequential(
            nn.Conv2d(num_feat, num_feat // compress_ratio, 3, 1, 1),
            nn.GELU(),
            nn.Conv2d(num_feat // compress_ratio, num_feat, 3, 1, 1),
            ChannelAttention(num_feat, squeeze_factor)
        )

    def forward(self, x):
        return self.cab(x)


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


def window_partition(x, window_size):
    b, h, w, c = x.shape
    x = x.view(b, h // window_size, window_size, w // window_size, window_size, c)
    windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, c)
    return windows


def window_reverse(windows, window_size, h, w):
    b = int(windows.shape[0] / (h * w / window_size / window_size))
    x = windows.view(b, h // window_size, w // window_size, window_size, window_size, -1)
    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(b, h, w, -1)
    return x


class WindowAttention(nn.Module):
    def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.dim = dim
        self.window_size = window_size
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim**-0.5

        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, rpi, mask=None):
        b_, n, c = x.shape
        qkv = self.qkv(x).reshape(b_, n, 3, self.num_heads, c // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[rpi.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            nw = mask.shape[0]
            attn = attn.view(b_ // nw, nw, self.num_heads, n, n) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, n, n)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(b_, n, c)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class HAB(nn.Module):
    def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
                 compress_ratio=3, squeeze_factor=30, conv_scale=0.01, mlp_ratio=4.,
                 qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        if min(self.input_resolution) <= self.window_size:
            self.shift_size = 0
            self.window_size = min(self.input_resolution)
        assert 0 <= self.shift_size < self.window_size, 'shift_size must in 0-window_size'

        self.norm1 = norm_layer(dim)
        self.attn = WindowAttention(
            dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
            qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)

        self.conv_scale = conv_scale
        self.conv_block = CAB(num_feat=dim, compress_ratio=compress_ratio, squeeze_factor=squeeze_factor)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x, x_size, rpi_sa, attn_mask):
        h, w = x_size
        b, _, c = x.shape

        shortcut = x
        x = self.norm1(x)
        x = x.view(b, h, w, c)

        # Conv_X
        conv_x = self.conv_block(x.permute(0, 3, 1, 2))
        conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(b, h * w, c)

        # cyclic shift
        if self.shift_size > 0:
            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
            attn_mask = attn_mask
        else:
            shifted_x = x
            attn_mask = None

        # partition windows
        x_windows = window_partition(shifted_x, self.window_size)
        x_windows = x_windows.view(-1, self.window_size * self.window_size, c)

        # W-MSA/SW-MSA
        attn_windows = self.attn(x_windows, rpi=rpi_sa, mask=attn_mask)

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, c)
        shifted_x = window_reverse(attn_windows, self.window_size, h, w)

        # reverse cyclic shift
        if self.shift_size > 0:
            attn_x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            attn_x = shifted_x
        attn_x = attn_x.view(b, h * w, c)

        # FFN
        x = shortcut + self.drop_path(attn_x) + conv_x * self.conv_scale
        x = x + self.drop_path(self.mlp(self.norm2(x)))

        return x


class OCAB(nn.Module):
    def __init__(self, dim, input_resolution, window_size, overlap_ratio, num_heads,
                 qkv_bias=True, qk_scale=None, mlp_ratio=2, norm_layer=nn.LayerNorm):
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.window_size = window_size
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim**-0.5
        self.overlap_win_size = int(window_size * overlap_ratio) + window_size

        self.norm1 = norm_layer(dim)
        self.qkv = nn.Linear(dim, dim * 3,  bias=qkv_bias)
        self.unfold = nn.Unfold(kernel_size=(self.overlap_win_size, self.overlap_win_size),
                               stride=window_size, padding=(self.overlap_win_size-window_size)//2)

        self.relative_position_bias_table = nn.Parameter(
            torch.zeros((window_size + self.overlap_win_size - 1) * (window_size + self.overlap_win_size - 1), num_heads))

        trunc_normal_(self.relative_position_bias_table, std=.02)
        self.softmax = nn.Softmax(dim=-1)

        self.proj = nn.Linear(dim,dim)

        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=nn.GELU)

    def forward(self, x, x_size, rpi):
        h, w = x_size
        b, _, c = x.shape

        shortcut = x
        x = self.norm1(x)
        x = x.view(b, h, w, c)

        qkv = self.qkv(x).reshape(b, h, w, 3, c).permute(3, 0, 4, 1, 2)
        q = qkv[0].permute(0, 2, 3, 1)
        kv = torch.cat((qkv[1], qkv[2]), dim=1)

        # partition windows
        q_windows = window_partition(q, self.window_size)
        q_windows = q_windows.view(-1, self.window_size * self.window_size, c)

        kv_windows = self.unfold(kv)
        kv_windows = rearrange(kv_windows, 'b (nc ch owh oww) nw -> nc (b nw) (owh oww) ch',
                              nc=2, ch=c, owh=self.overlap_win_size, oww=self.overlap_win_size).contiguous()
        k_windows, v_windows = kv_windows[0], kv_windows[1]

        b_, nq, _ = q_windows.shape
        _, n, _ = k_windows.shape
        d = self.dim // self.num_heads
        q = q_windows.reshape(b_, nq, self.num_heads, d).permute(0, 2, 1, 3)
        k = k_windows.reshape(b_, n, self.num_heads, d).permute(0, 2, 1, 3)
        v = v_windows.reshape(b_, n, self.num_heads, d).permute(0, 2, 1, 3)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        relative_position_bias = self.relative_position_bias_table[rpi.view(-1)].view(
            self.window_size * self.window_size, self.overlap_win_size * self.overlap_win_size, -1)
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
        attn = attn + relative_position_bias.unsqueeze(0)

        attn = self.softmax(attn)
        attn_windows = (attn @ v).transpose(1, 2).reshape(b_, nq, self.dim)

        # merge windows
        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, self.dim)
        x = window_reverse(attn_windows, self.window_size, h, w)
        x = x.view(b, h * w, self.dim)

        x = self.proj(x) + shortcut
        x = x + self.mlp(self.norm2(x))
        return x


class AttenBlocks(nn.Module):
    def __init__(self, dim, input_resolution, depth, num_heads, window_size, compress_ratio,
                 squeeze_factor, conv_scale, overlap_ratio, mlp_ratio=4., qkv_bias=True, qk_scale=None,
                 drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None,
                 use_checkpoint=False):
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.depth = depth
        self.use_checkpoint = use_checkpoint

        # build blocks
        self.blocks = nn.ModuleList([
            HAB(dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size,
                shift_size=0 if (i % 2 == 0) else window_size // 2, compress_ratio=compress_ratio,
                squeeze_factor=squeeze_factor, conv_scale=conv_scale, mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop,
                drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                norm_layer=norm_layer) for i in range(depth)
        ])

        # OCAB
        self.overlap_attn = OCAB(dim=dim, input_resolution=input_resolution, window_size=window_size,
                                overlap_ratio=overlap_ratio, num_heads=num_heads, qkv_bias=qkv_bias,
                                qk_scale=qk_scale, mlp_ratio=mlp_ratio, norm_layer=norm_layer)

        # patch merging layer
        if downsample is not None:
            self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
        else:
            self.downsample = None

    def forward(self, x, x_size, params):
        for blk in self.blocks:
            x = blk(x, x_size, params['rpi_sa'], params['attn_mask'])

        x = self.overlap_attn(x, x_size, params['rpi_oca'])

        if self.downsample is not None:
            x = self.downsample(x)
        return x


class RHAG(nn.Module):
    def __init__(self, dim, input_resolution, depth, num_heads, window_size, compress_ratio,
                 squeeze_factor, conv_scale, overlap_ratio, mlp_ratio=4., qkv_bias=True, qk_scale=None,
                 drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None,
                 use_checkpoint=False, img_size=224, patch_size=4, resi_connection='1conv'):
        super(RHAG, self).__init__()

        self.dim = dim
        self.input_resolution = input_resolution

        self.residual_group = AttenBlocks(
            dim=dim, input_resolution=input_resolution, depth=depth, num_heads=num_heads,
            window_size=window_size, compress_ratio=compress_ratio, squeeze_factor=squeeze_factor,
            conv_scale=conv_scale, overlap_ratio=overlap_ratio, mlp_ratio=mlp_ratio,
            qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop,
            drop_path=drop_path, norm_layer=norm_layer, downsample=downsample,
            use_checkpoint=use_checkpoint)

        if resi_connection == '1conv':
            self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
        elif resi_connection == 'identity':
            self.conv = nn.Identity()

        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)

        self.patch_unembed = PatchUnEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None)

    def forward(self, x, x_size, params):
        return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size, params), x_size))) + x


class PatchEmbed(nn.Module):
    def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = None

    def forward(self, x):
        x = x.flatten(2).transpose(1, 2)
        if self.norm is not None:
            x = self.norm(x)
        return x


class PatchUnEmbed(nn.Module):
    def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
        self.img_size = img_size
        self.patch_size = patch_size
        self.patches_resolution = patches_resolution
        self.num_patches = patches_resolution[0] * patches_resolution[1]

        self.in_chans = in_chans
        self.embed_dim = embed_dim

    def forward(self, x, x_size):
        x = x.transpose(1, 2).contiguous().view(x.shape[0], self.embed_dim, x_size[0], x_size[1])
        return x


class Upsample(nn.Sequential):
    def __init__(self, scale, num_feat):
        m = []
        if (scale & (scale - 1)) == 0:
            for _ in range(int(math.log(scale, 2))):
                m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
                m.append(nn.PixelShuffle(2))
        elif scale == 3:
            m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
            m.append(nn.PixelShuffle(3))
        else:
            raise ValueError(f'scale {scale} is not supported. Supported scales: 2^n and 3.')
        super(Upsample, self).__init__(*m)


class HAT(nn.Module):
    def __init__(self, img_size=64, patch_size=1, in_chans=3, embed_dim=96, depths=(6, 6, 6, 6),
                 num_heads=(6, 6, 6, 6), window_size=7, compress_ratio=3, squeeze_factor=30,
                 conv_scale=0.01, overlap_ratio=0.5, mlp_ratio=4., qkv_bias=True, qk_scale=None,
                 drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm,
                 ape=False, patch_norm=True, use_checkpoint=False, upscale=2, img_range=1.,
                 upsampler='', resi_connection='1conv', **kwargs):
        super(HAT, self).__init__()

        self.window_size = window_size
        self.shift_size = window_size // 2
        self.overlap_ratio = overlap_ratio

        num_in_ch = in_chans
        num_out_ch = in_chans
        num_feat = 64
        self.img_range = img_range
        if in_chans == 3:
            rgb_mean = (0.4488, 0.4371, 0.4040)
            self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
        else:
            self.mean = torch.zeros(1, 1, 1, 1)
        self.upscale = upscale
        self.upsampler = upsampler

        # relative position index
        relative_position_index_SA = self.calculate_rpi_sa()
        relative_position_index_OCA = self.calculate_rpi_oca()
        self.register_buffer('relative_position_index_SA', relative_position_index_SA)
        self.register_buffer('relative_position_index_OCA', relative_position_index_OCA)

        # shallow feature extraction
        self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)

        # deep feature extraction
        self.num_layers = len(depths)
        self.embed_dim = embed_dim
        self.ape = ape
        self.patch_norm = patch_norm
        self.num_features = embed_dim
        self.mlp_ratio = mlp_ratio

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)
        num_patches = self.patch_embed.num_patches
        patches_resolution = self.patch_embed.patches_resolution
        self.patches_resolution = patches_resolution

        # merge non-overlapping patches into image
        self.patch_unembed = PatchUnEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None)

        # absolute position embedding
        if self.ape:
            self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
            trunc_normal_(self.absolute_pos_embed, std=.02)

        self.pos_drop = nn.Dropout(p=drop_rate)

        # stochastic depth
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]

        # build Residual Hybrid Attention Groups (RHAG)
        self.layers = nn.ModuleList()
        for i_layer in range(self.num_layers):
            layer = RHAG(
                dim=embed_dim,
                input_resolution=(patches_resolution[0], patches_resolution[1]),
                depth=depths[i_layer],
                num_heads=num_heads[i_layer],
                window_size=window_size,
                compress_ratio=compress_ratio,
                squeeze_factor=squeeze_factor,
                conv_scale=conv_scale,
                overlap_ratio=overlap_ratio,
                mlp_ratio=self.mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
                norm_layer=norm_layer,
                downsample=None,
                use_checkpoint=use_checkpoint,
                img_size=img_size,
                patch_size=patch_size,
                resi_connection=resi_connection)
            self.layers.append(layer)
        self.norm = norm_layer(self.num_features)

        # build the last conv layer in deep feature extraction
        if resi_connection == '1conv':
            self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
        elif resi_connection == 'identity':
            self.conv_after_body = nn.Identity()

        # high quality image reconstruction
        if self.upsampler == 'pixelshuffle':
            self.conv_before_upsample = nn.Sequential(
                nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True))
            self.upsample = Upsample(upscale, num_feat)
            self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def calculate_rpi_sa(self):
        coords_h = torch.arange(self.window_size)
        coords_w = torch.arange(self.window_size)
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
        coords_flatten = torch.flatten(coords, 1)
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()
        relative_coords[:, :, 0] += self.window_size - 1
        relative_coords[:, :, 1] += self.window_size - 1
        relative_coords[:, :, 0] *= 2 * self.window_size - 1
        relative_position_index = relative_coords.sum(-1)
        return relative_position_index

    def calculate_rpi_oca(self):
        window_size_ori = self.window_size
        window_size_ext = self.window_size + int(self.overlap_ratio * self.window_size)

        coords_h = torch.arange(window_size_ori)
        coords_w = torch.arange(window_size_ori)
        coords_ori = torch.stack(torch.meshgrid([coords_h, coords_w]))
        coords_ori_flatten = torch.flatten(coords_ori, 1)

        coords_h = torch.arange(window_size_ext)
        coords_w = torch.arange(window_size_ext)
        coords_ext = torch.stack(torch.meshgrid([coords_h, coords_w]))
        coords_ext_flatten = torch.flatten(coords_ext, 1)

        relative_coords = coords_ext_flatten[:, None, :] - coords_ori_flatten[:, :, None]
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()
        relative_coords[:, :, 0] += window_size_ori - window_size_ext + 1
        relative_coords[:, :, 1] += window_size_ori - window_size_ext + 1
        relative_coords[:, :, 0] *= window_size_ori + window_size_ext - 1
        relative_position_index = relative_coords.sum(-1)
        return relative_position_index

    def calculate_mask(self, x_size):
        h, w = x_size
        img_mask = torch.zeros((1, h, w, 1))
        h_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None))
        w_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None))
        cnt = 0
        for h in h_slices:
            for w in w_slices:
                img_mask[:, h, w, :] = cnt
                cnt += 1

        mask_windows = window_partition(img_mask, self.window_size)
        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
        return attn_mask

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'absolute_pos_embed'}

    @torch.jit.ignore
    def no_weight_decay_keywords(self):
        return {'relative_position_bias_table'}

    def forward_features(self, x):
        x_size = (x.shape[2], x.shape[3])

        attn_mask = self.calculate_mask(x_size).to(x.device)
        params = {'attn_mask': attn_mask, 'rpi_sa': self.relative_position_index_SA, 'rpi_oca': self.relative_position_index_OCA}

        x = self.patch_embed(x)
        if self.ape:
            x = x + self.absolute_pos_embed
        x = self.pos_drop(x)

        for layer in self.layers:
            x = layer(x, x_size, params)

        x = self.norm(x)
        x = self.patch_unembed(x, x_size)
        return x

    def forward(self, x):
        self.mean = self.mean.type_as(x)
        x = (x - self.mean) * self.img_range

        if self.upsampler == 'pixelshuffle':
            x = self.conv_first(x)
            x = self.conv_after_body(self.forward_features(x)) + x
            x = self.conv_before_upsample(x)
            x = self.conv_last(self.upsample(x))

        x = x / self.img_range + self.mean
        return x


# Load the model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

model = HAT(
    upscale=4,
    in_chans=3,
    img_size=128,
    window_size=16,
    compress_ratio=3,
    squeeze_factor=30,
    conv_scale=0.01,
    overlap_ratio=0.5,
    img_range=1.,
    depths=[6, 6, 6, 6, 6, 6],
    embed_dim=180,
    num_heads=[6, 6, 6, 6, 6, 6],
    mlp_ratio=2,
    upsampler='pixelshuffle',
    resi_connection='1conv'
)

# Load the fine-tuned weights
checkpoint = torch.load('net_g_20000.pth', map_location=device)
if 'params_ema' in checkpoint:
    model.load_state_dict(checkpoint['params_ema'])
elif 'params' in checkpoint:
    model.load_state_dict(checkpoint['params'])
else:
    model.load_state_dict(checkpoint)

model.to(device)
model.eval()


def upscale_image(image):
    # Convert PIL image to tensor
    img_np = np.array(image).astype(np.float32) / 255.0
    img_tensor = torch.from_numpy(img_np).permute(2, 0, 1).unsqueeze(0).to(device)

    # Ensure the image dimensions are multiples of window_size
    h, w = img_tensor.shape[2], img_tensor.shape[3]

    # Pad if necessary
    pad_h = (16 - h % 16) % 16
    pad_w = (16 - w % 16) % 16

    if pad_h > 0 or pad_w > 0:
        img_tensor = torch.nn.functional.pad(img_tensor, (0, pad_w, 0, pad_h), mode='reflect')

    with torch.no_grad():
        output = model(img_tensor)

    # Remove padding if it was added
    if pad_h > 0 or pad_w > 0:
        output = output[:, :, :h*4, :w*4]

    # Convert back to PIL image
    output_np = output.squeeze(0).permute(1, 2, 0).cpu().numpy()
    output_np = np.clip(output_np * 255.0, 0, 255).astype(np.uint8)

    return Image.fromarray(output_np)


# Gradio interface using Blocks for better layout control
def upscale_and_resize_for_display(image):
    # Get the super-resolution output
    upscaled = upscale_image(image)

    # Resize the upscaled image to match input size for display comparison
    display_upscaled = upscaled.resize(image.size, Image.LANCZOS)

    return display_upscaled

# Custom CSS to ensure images display at exactly the same size
css = """
.image-container img {
    max-width: 100% !important;
    height: auto !important;
    object-fit: contain !important;
}
"""

with gr.Blocks(css=css, title="HAT Super-Resolution for Satellite Images") as iface:
    gr.Markdown("# HAT Super-Resolution for Satellite Images")
    gr.Markdown("Upload a satellite image to enhance its resolution by 4x using a fine-tuned HAT model. The output is resized to match the input size for easy comparison of quality improvements.")

    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil", label="Input Satellite Image", elem_classes="image-container")

        with gr.Column():
            output_image = gr.Image(type="pil", label="Enhanced Output (4x Super-Resolution)", elem_classes="image-container")

    submit_btn = gr.Button("Enhance Image", variant="primary")

    submit_btn.click(
        fn=upscale_and_resize_for_display,
        inputs=input_image,
        outputs=output_image
    )

if __name__ == "__main__":
    iface.launch()