Spaces:
Sleeping
Sleeping
Mauricio Guerta
commited on
Commit
·
c104dd9
1
Parent(s):
1152ac9
Ajuste tensor
Browse files- app.py +43 -24
- small-vehicles1.jpeg +0 -0
- zidane.jpg +0 -0
app.py
CHANGED
|
@@ -1,18 +1,24 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
| 3 |
import yolov7
|
| 4 |
|
| 5 |
|
| 6 |
# Images
|
| 7 |
-
torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
|
| 8 |
-
torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
def yolov7_inference(
|
| 11 |
image: gr.inputs.Image = None,
|
| 12 |
-
model_path: gr.inputs.Dropdown = None,
|
| 13 |
-
image_size: gr.inputs.Slider = 640,
|
| 14 |
-
conf_threshold: gr.inputs.Slider = 0.25,
|
| 15 |
-
iou_threshold: gr.inputs.Slider = 0.45,
|
| 16 |
):
|
| 17 |
"""
|
| 18 |
YOLOv7 inference function
|
|
@@ -30,35 +36,48 @@ def yolov7_inference(
|
|
| 30 |
model.conf = conf_threshold
|
| 31 |
model.iou = iou_threshold
|
| 32 |
results = model([image], size=image_size)
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
|
| 36 |
inputs = [
|
| 37 |
gr.inputs.Image(type="pil", label="Input Image"),
|
| 38 |
-
gr.inputs.Dropdown(
|
| 39 |
-
choices=[
|
| 40 |
-
"kadirnar/yolov7-tiny-v0.1",
|
| 41 |
-
"kadirnar/yolov7-v0.1",
|
| 42 |
-
],
|
| 43 |
-
default="kadirnar/yolov7-tiny-v0.1",
|
| 44 |
-
label="Model",
|
| 45 |
-
),
|
| 46 |
-
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
|
| 47 |
-
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
|
| 48 |
-
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
|
| 49 |
]
|
| 50 |
|
| 51 |
-
outputs = gr.outputs.Image(type="filepath", label="Output Image")
|
| 52 |
title = "Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors"
|
| 53 |
|
| 54 |
-
examples = [['small-vehicles1.jpeg'
|
| 55 |
demo_app = gr.Interface(
|
| 56 |
fn=yolov7_inference,
|
| 57 |
inputs=inputs,
|
| 58 |
-
outputs=
|
| 59 |
title=title,
|
| 60 |
examples=examples,
|
| 61 |
-
cache_examples=True,
|
| 62 |
-
theme='huggingface',
|
| 63 |
)
|
| 64 |
-
demo_app.launch(debug=True, enable_queue=True)
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
import json
|
| 4 |
import yolov7
|
| 5 |
|
| 6 |
|
| 7 |
# Images
|
| 8 |
+
#torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
|
| 9 |
+
#torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')
|
| 10 |
|
| 11 |
+
model_path = "kadirnar/yolov7-v0.1" #"kadirnar/yolov7-tiny-v0.1"
|
| 12 |
+
image_size = 640
|
| 13 |
+
conf_threshold = 0.25
|
| 14 |
+
iou_threshold = 0.45
|
| 15 |
+
|
| 16 |
def yolov7_inference(
|
| 17 |
image: gr.inputs.Image = None,
|
| 18 |
+
#model_path: gr.inputs.Dropdown = None,
|
| 19 |
+
#image_size: gr.inputs.Slider = 640,
|
| 20 |
+
#conf_threshold: gr.inputs.Slider = 0.25,
|
| 21 |
+
#iou_threshold: gr.inputs.Slider = 0.45,
|
| 22 |
):
|
| 23 |
"""
|
| 24 |
YOLOv7 inference function
|
|
|
|
| 36 |
model.conf = conf_threshold
|
| 37 |
model.iou = iou_threshold
|
| 38 |
results = model([image], size=image_size)
|
| 39 |
+
tensor = {
|
| 40 |
+
"tensorflow": [
|
| 41 |
+
]
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
if results.pred is not None:
|
| 45 |
+
for i, element in enumerate(results.pred[0]):
|
| 46 |
+
object = {}
|
| 47 |
+
#print (element[0])
|
| 48 |
+
itemclass = round(element[5].item())
|
| 49 |
+
object["classe"] = itemclass
|
| 50 |
+
object["nome"] = results.names[itemclass]
|
| 51 |
+
object["score"] = element[4].item()
|
| 52 |
+
object["x"] = element[0].item()
|
| 53 |
+
object["y"] = element[1].item()
|
| 54 |
+
object["w"] = element[2].item()
|
| 55 |
+
object["h"] = element[3].item()
|
| 56 |
+
tensor["tensorflow"].append(object)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
text = json.dumps(tensor)
|
| 61 |
+
#print (text)
|
| 62 |
+
return text #results.render()[0]
|
| 63 |
|
| 64 |
|
| 65 |
inputs = [
|
| 66 |
gr.inputs.Image(type="pil", label="Input Image"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
]
|
| 68 |
|
| 69 |
+
#outputs = gr.outputs.Image(type="filepath", label="Output Image")
|
| 70 |
title = "Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors"
|
| 71 |
|
| 72 |
+
examples = [['small-vehicles1.jpeg'], ['zidane.jpg']]
|
| 73 |
demo_app = gr.Interface(
|
| 74 |
fn=yolov7_inference,
|
| 75 |
inputs=inputs,
|
| 76 |
+
outputs=["text"],
|
| 77 |
title=title,
|
| 78 |
examples=examples,
|
| 79 |
+
#cache_examples=True,
|
| 80 |
+
#theme='huggingface',
|
| 81 |
)
|
| 82 |
+
#demo_app.launch(debug=True, server_name="192.168.0.153", server_port=8080, enable_queue=True)
|
| 83 |
+
demo_app.launch(debug=True, server_port=8083, enable_queue=True)
|
small-vehicles1.jpeg
ADDED
|
zidane.jpg
ADDED
|