Antuke
commited on
Commit
·
576fd2d
1
Parent(s):
fbe756a
fix
Browse files- .gitattributes +37 -39
- app.py +59 -26
- requirements.txt +2 -1
.gitattributes
CHANGED
|
@@ -1,39 +1,37 @@
|
|
| 1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
utils/res10_300x300_ssd_iter_140000_fp16.caffemodel filter=lfs diff=lfs merge=lfs -text
|
| 39 |
-
core/vision_encoder/bpe_simple_vocab_16e6.txt.gz filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
utils/res10_300x300_ssd_iter_140000_fp16.caffemodel filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
core/vision_encoder/bpe_simple_vocab_16e6.txt.gz filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
app.py
CHANGED
|
@@ -11,7 +11,7 @@ from PIL import Image, ImageDraw, ImageFont
|
|
| 11 |
import base64
|
| 12 |
from io import BytesIO
|
| 13 |
import traceback # Import traceback at the top
|
| 14 |
-
|
| 15 |
from utils.face_detector import FaceDetector
|
| 16 |
|
| 17 |
# Class definitions
|
|
@@ -36,8 +36,9 @@ model = None
|
|
| 36 |
transform = None
|
| 37 |
detector = None
|
| 38 |
device = None
|
| 39 |
-
current_ckpt_dir = None
|
| 40 |
CHECKPOINTS_DIR = './checkpoints/'
|
|
|
|
| 41 |
|
| 42 |
def scan_checkpoints(ckpt_dir):
|
| 43 |
"""Scans a directory for .pt or .pth files."""
|
|
@@ -49,6 +50,7 @@ def scan_checkpoints(ckpt_dir):
|
|
| 49 |
ckpt_files = [
|
| 50 |
os.path.join(ckpt_dir, f)
|
| 51 |
for f in sorted(os.listdir(ckpt_dir))
|
|
|
|
| 52 |
]
|
| 53 |
except Exception as e:
|
| 54 |
print(f"Error scanning checkpoint directory {ckpt_dir}: {e}")
|
|
@@ -78,33 +80,41 @@ def load_model(device,ckpt_dir='./checkpoints/mtlora.pt', pe_vision_config="PE-C
|
|
| 78 |
model.load_model(filepath=ckpt_dir,map_location=device)
|
| 79 |
return model,transform
|
| 80 |
|
| 81 |
-
def load_model_and_update_status(
|
| 82 |
"""
|
| 83 |
-
Wrapper function to load a model and return a status
|
| 84 |
-
|
| 85 |
"""
|
| 86 |
global model, current_ckpt_dir
|
| 87 |
|
| 88 |
-
if
|
| 89 |
return "No checkpoint selected."
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
|
|
|
| 93 |
print(status)
|
| 94 |
return status
|
| 95 |
|
| 96 |
-
gr.Info(f"Loading model: {os.path.basename(
|
| 97 |
try:
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
gr.Info("Model loaded successfully!")
|
| 102 |
print(status)
|
| 103 |
return status
|
|
|
|
| 104 |
except Exception as e:
|
| 105 |
-
status = f"Failed to load {os.path.basename(ckpt_dir)}: {str(e)}"
|
| 106 |
-
print(status)
|
| 107 |
traceback.print_exc()
|
|
|
|
|
|
|
|
|
|
| 108 |
return status
|
| 109 |
|
| 110 |
def predict(model, image):
|
|
@@ -182,10 +192,10 @@ def init_model(ckpt_dir="./checkpoints/mtlora.pt", detection_confidence=0.5):
|
|
| 182 |
|
| 183 |
# Verify model weights exist
|
| 184 |
if not os.path.exists(ckpt_dir):
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
print(f"Model weights found: {ckpt_dir}")
|
| 190 |
|
| 191 |
# Load the perception encoder
|
|
@@ -214,7 +224,11 @@ def process_image(image, selected_checkpoint_path):
|
|
| 214 |
return None, "<p style='color: red;'>Please upload an image</p>"
|
| 215 |
|
| 216 |
# Ensure model is initialized
|
|
|
|
|
|
|
|
|
|
| 217 |
if model is None or selected_checkpoint_path != current_ckpt_dir:
|
|
|
|
| 218 |
status = load_model_and_update_status(selected_checkpoint_path)
|
| 219 |
if "Failed" in status or "Error" in status:
|
| 220 |
return image, f"<p style'color: red;'>Model Error: {status}</p>"
|
|
@@ -621,8 +635,8 @@ def create_interface(checkpoint_list, default_checkpoint, initial_status):
|
|
| 621 |
with gr.Column(scale=3):
|
| 622 |
checkpoint_dropdown = gr.Dropdown(
|
| 623 |
label="Select Model Checkpoint",
|
| 624 |
-
choices=checkpoint_list,
|
| 625 |
-
value=default_checkpoint,
|
| 626 |
)
|
| 627 |
with gr.Column(scale=2):
|
| 628 |
model_status_text = gr.Textbox(
|
|
@@ -710,13 +724,13 @@ def create_interface(checkpoint_list, default_checkpoint, initial_status):
|
|
| 710 |
# Event handlers
|
| 711 |
analyze_btn.click(
|
| 712 |
fn=process_image,
|
| 713 |
-
inputs=[input_image, checkpoint_dropdown], # Pass dropdown value
|
| 714 |
outputs=[output_image, output_html]
|
| 715 |
)
|
| 716 |
|
| 717 |
checkpoint_dropdown.change(
|
| 718 |
fn=load_model_and_update_status,
|
| 719 |
-
inputs=[checkpoint_dropdown],
|
| 720 |
outputs=[model_status_text]
|
| 721 |
)
|
| 722 |
|
|
@@ -725,12 +739,29 @@ def create_interface(checkpoint_list, default_checkpoint, initial_status):
|
|
| 725 |
|
| 726 |
# === Main Application Startup ===
|
| 727 |
|
| 728 |
-
# Initialize for Hugging Face Spaces (module-level)
|
| 729 |
print("="*60)
|
| 730 |
print("VLM SOFT BIOMETRICS - GRADIO INTERFACE")
|
| 731 |
print("="*60)
|
| 732 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 733 |
# --- 1. Scan for models first ---
|
|
|
|
| 734 |
checkpoint_list, default_checkpoint = scan_checkpoints(CHECKPOINTS_DIR)
|
| 735 |
|
| 736 |
if not checkpoint_list:
|
|
@@ -744,6 +775,7 @@ initial_status_msg = "No default model found. Please select one."
|
|
| 744 |
if default_checkpoint:
|
| 745 |
print(f"\nInitializing default model: {default_checkpoint}")
|
| 746 |
# This will load the model AND set current_ckpt_dir
|
|
|
|
| 747 |
initial_status_msg = load_model_and_update_status(default_checkpoint)
|
| 748 |
print(initial_status_msg)
|
| 749 |
else:
|
|
@@ -760,8 +792,9 @@ if __name__ == "__main__":
|
|
| 760 |
import argparse
|
| 761 |
|
| 762 |
parser = argparse.ArgumentParser(description="VLM Soft Biometrics - Gradio Interface")
|
|
|
|
| 763 |
parser.add_argument("--ckpt_dir", type=str, default="./checkpoints/",
|
| 764 |
-
help="Path to the checkpoint directory (
|
| 765 |
parser.add_argument("--detection_confidence", type=float, default=0.5,
|
| 766 |
help="Confidence threshold for face detection")
|
| 767 |
parser.add_argument("--port", type=int, default=7860,
|
|
@@ -772,9 +805,9 @@ if __name__ == "__main__":
|
|
| 772 |
help="Server name/IP to bind to")
|
| 773 |
args = parser.parse_args()
|
| 774 |
|
| 775 |
-
# Update global config if args are provided
|
| 776 |
CHECKPOINTS_DIR = args.ckpt_dir
|
| 777 |
-
# Note: detection_confidence is passed to init_model, so it's handled.
|
| 778 |
|
| 779 |
print(f"\nLaunching server on {args.server_name}:{args.port}")
|
| 780 |
print(f"Monitoring checkpoint directory: {CHECKPOINTS_DIR}")
|
|
|
|
| 11 |
import base64
|
| 12 |
from io import BytesIO
|
| 13 |
import traceback # Import traceback at the top
|
| 14 |
+
from huggingface_hub import snapshot_download # Use snapshot_download for startup
|
| 15 |
from utils.face_detector import FaceDetector
|
| 16 |
|
| 17 |
# Class definitions
|
|
|
|
| 36 |
transform = None
|
| 37 |
detector = None
|
| 38 |
device = None
|
| 39 |
+
current_ckpt_dir = None # This will now store the full path to the loaded model
|
| 40 |
CHECKPOINTS_DIR = './checkpoints/'
|
| 41 |
+
MODEL_REPO_ID = "Antuke/FaR-FT-PE"
|
| 42 |
|
| 43 |
def scan_checkpoints(ckpt_dir):
|
| 44 |
"""Scans a directory for .pt or .pth files."""
|
|
|
|
| 50 |
ckpt_files = [
|
| 51 |
os.path.join(ckpt_dir, f)
|
| 52 |
for f in sorted(os.listdir(ckpt_dir))
|
| 53 |
+
if f.endswith(('.pt', '.pth')) # Ensure we only scan for model files
|
| 54 |
]
|
| 55 |
except Exception as e:
|
| 56 |
print(f"Error scanning checkpoint directory {ckpt_dir}: {e}")
|
|
|
|
| 80 |
model.load_model(filepath=ckpt_dir,map_location=device)
|
| 81 |
return model,transform
|
| 82 |
|
| 83 |
+
def load_model_and_update_status(model_filepath):
|
| 84 |
"""
|
| 85 |
+
Wrapper function to load a model *from a local file path* and return a status.
|
| 86 |
+
The file path is provided by the dropdown.
|
| 87 |
"""
|
| 88 |
global model, current_ckpt_dir
|
| 89 |
|
| 90 |
+
if model_filepath is None or model_filepath == "":
|
| 91 |
return "No checkpoint selected."
|
| 92 |
|
| 93 |
+
# Check if this model *filepath* is already loaded
|
| 94 |
+
if model is not None and model_filepath == current_ckpt_dir:
|
| 95 |
+
status = f"Model already loaded: {os.path.basename(model_filepath)}"
|
| 96 |
print(status)
|
| 97 |
return status
|
| 98 |
|
| 99 |
+
gr.Info(f"Loading model: {os.path.basename(model_filepath)}...")
|
| 100 |
try:
|
| 101 |
+
# --- This is the new logic ---
|
| 102 |
+
# The file is already local. Just initialize it.
|
| 103 |
+
# The 'model_filepath' *is* the ckpt_dir for init_model
|
| 104 |
+
init_model(ckpt_dir=model_filepath, detection_confidence=0.5)
|
| 105 |
+
# --- End of new logic ---
|
| 106 |
+
|
| 107 |
+
current_ckpt_dir = model_filepath # Set global path on successful load
|
| 108 |
+
status = f"Successfully loaded: {os.path.basename(model_filepath)}"
|
| 109 |
gr.Info("Model loaded successfully!")
|
| 110 |
print(status)
|
| 111 |
return status
|
| 112 |
+
|
| 113 |
except Exception as e:
|
|
|
|
|
|
|
| 114 |
traceback.print_exc()
|
| 115 |
+
status = f"Failed to load {os.path.basename(model_filepath)}: {e}"
|
| 116 |
+
gr.Info(f"Error: {status}")
|
| 117 |
+
print(f"ERROR: {status}")
|
| 118 |
return status
|
| 119 |
|
| 120 |
def predict(model, image):
|
|
|
|
| 192 |
|
| 193 |
# Verify model weights exist
|
| 194 |
if not os.path.exists(ckpt_dir):
|
| 195 |
+
error_msg = f"Model weights not found: {ckpt_dir}."
|
| 196 |
+
print(f"ERROR: {error_msg}")
|
| 197 |
+
raise FileNotFoundError(error_msg)
|
| 198 |
+
|
| 199 |
print(f"Model weights found: {ckpt_dir}")
|
| 200 |
|
| 201 |
# Load the perception encoder
|
|
|
|
| 224 |
return None, "<p style='color: red;'>Please upload an image</p>"
|
| 225 |
|
| 226 |
# Ensure model is initialized
|
| 227 |
+
# This check is crucial. If the user changes the dropdown, it triggers
|
| 228 |
+
# load_model_and_update_status. If they just hit "Classify",
|
| 229 |
+
# this check ensures the selected model is loaded.
|
| 230 |
if model is None or selected_checkpoint_path != current_ckpt_dir:
|
| 231 |
+
print(f"Model mismatch or not loaded. Selected: {selected_checkpoint_path}, Current: {current_ckpt_dir}")
|
| 232 |
status = load_model_and_update_status(selected_checkpoint_path)
|
| 233 |
if "Failed" in status or "Error" in status:
|
| 234 |
return image, f"<p style'color: red;'>Model Error: {status}</p>"
|
|
|
|
| 635 |
with gr.Column(scale=3):
|
| 636 |
checkpoint_dropdown = gr.Dropdown(
|
| 637 |
label="Select Model Checkpoint",
|
| 638 |
+
choices=checkpoint_list, # This is now a list of (label, path) tuples
|
| 639 |
+
value=default_checkpoint, # This is the full path to the default
|
| 640 |
)
|
| 641 |
with gr.Column(scale=2):
|
| 642 |
model_status_text = gr.Textbox(
|
|
|
|
| 724 |
# Event handlers
|
| 725 |
analyze_btn.click(
|
| 726 |
fn=process_image,
|
| 727 |
+
inputs=[input_image, checkpoint_dropdown], # Pass dropdown value (which is the path)
|
| 728 |
outputs=[output_image, output_html]
|
| 729 |
)
|
| 730 |
|
| 731 |
checkpoint_dropdown.change(
|
| 732 |
fn=load_model_and_update_status,
|
| 733 |
+
inputs=[checkpoint_dropdown], # Pass dropdown value (which is the path)
|
| 734 |
outputs=[model_status_text]
|
| 735 |
)
|
| 736 |
|
|
|
|
| 739 |
|
| 740 |
# === Main Application Startup ===
|
| 741 |
|
|
|
|
| 742 |
print("="*60)
|
| 743 |
print("VLM SOFT BIOMETRICS - GRADIO INTERFACE")
|
| 744 |
print("="*60)
|
| 745 |
|
| 746 |
+
# --- NEW: Download models BEFORE scanning ---
|
| 747 |
+
print(f"Downloading model weights from {MODEL_REPO_ID} to {CHECKPOINTS_DIR}...")
|
| 748 |
+
os.makedirs(CHECKPOINTS_DIR, exist_ok=True)
|
| 749 |
+
try:
|
| 750 |
+
snapshot_download(
|
| 751 |
+
repo_id=MODEL_REPO_ID,
|
| 752 |
+
local_dir=CHECKPOINTS_DIR,
|
| 753 |
+
allow_patterns=["*.pt", "*.pth"], # Grabs all weight files
|
| 754 |
+
local_dir_use_symlinks=False,
|
| 755 |
+
)
|
| 756 |
+
print("Model download complete.")
|
| 757 |
+
except Exception as e:
|
| 758 |
+
print(f"CRITICAL: Failed to download models from Hub. {e}")
|
| 759 |
+
traceback.print_exc()
|
| 760 |
+
# --- End of NEW code ---
|
| 761 |
+
|
| 762 |
+
|
| 763 |
# --- 1. Scan for models first ---
|
| 764 |
+
# This will now find the files you just downloaded
|
| 765 |
checkpoint_list, default_checkpoint = scan_checkpoints(CHECKPOINTS_DIR)
|
| 766 |
|
| 767 |
if not checkpoint_list:
|
|
|
|
| 775 |
if default_checkpoint:
|
| 776 |
print(f"\nInitializing default model: {default_checkpoint}")
|
| 777 |
# This will load the model AND set current_ckpt_dir
|
| 778 |
+
# It now correctly uses the local file path
|
| 779 |
initial_status_msg = load_model_and_update_status(default_checkpoint)
|
| 780 |
print(initial_status_msg)
|
| 781 |
else:
|
|
|
|
| 792 |
import argparse
|
| 793 |
|
| 794 |
parser = argparse.ArgumentParser(description="VLM Soft Biometrics - Gradio Interface")
|
| 795 |
+
# ckpt_dir is now managed by the startup download, so this arg is less relevant
|
| 796 |
parser.add_argument("--ckpt_dir", type=str, default="./checkpoints/",
|
| 797 |
+
help="Path to the checkpoint directory (will be populated from HF Hub)")
|
| 798 |
parser.add_argument("--detection_confidence", type=float, default=0.5,
|
| 799 |
help="Confidence threshold for face detection")
|
| 800 |
parser.add_argument("--port", type=int, default=7860,
|
|
|
|
| 805 |
help="Server name/IP to bind to")
|
| 806 |
args = parser.parse_args()
|
| 807 |
|
| 808 |
+
# Update global config if args are provided
|
| 809 |
CHECKPOINTS_DIR = args.ckpt_dir
|
| 810 |
+
# Note: detection_confidence is passed to init_model during load, so it's handled.
|
| 811 |
|
| 812 |
print(f"\nLaunching server on {args.server_name}:{args.port}")
|
| 813 |
print(f"Monitoring checkpoint directory: {CHECKPOINTS_DIR}")
|
requirements.txt
CHANGED
|
@@ -8,4 +8,5 @@ peft
|
|
| 8 |
python-dotenv
|
| 9 |
tqdm
|
| 10 |
gradio
|
| 11 |
-
timm
|
|
|
|
|
|
| 8 |
python-dotenv
|
| 9 |
tqdm
|
| 10 |
gradio
|
| 11 |
+
timm
|
| 12 |
+
huggingface-hub
|