FaR-FT-PE / src /dlora.py
Antuke's picture
adding missing dependency dlora
ac8620f
# --------------------------------------------------------
# MTLoRA
# GitHub: https://github.com/scale-lab/MTLoRA
# Built upon Microsoft LoRA (https://github.com/microsoft/LoRA)
#
# Original file:
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License
#
# Adapted file:
# Copyright (c) 2024 SCALE Lab, Brown University
# Licensed under the MIT License (see LICENSE for details)
# --------------------------------------------------------
r"""
Low Ranking Adaptation for LLMs scheme.
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”† h โ”†
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
โ–ฒ
|
+
/ \
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ•ญโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ Matrix initialization:
โ”† โ”† \ B / B = 0
โ”† pretrained โ”† \ r*d / A = N(0, sigma^2)
โ”† weights โ”† โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ
โ”† โ”† | r | r - rank
โ”† W e R^(d*d) โ”† | โ—€โ”€โ”€โ”€โ”€โ”€โ–ถ |
โ”† โ”† โ•ญโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ / A \
โ–ฒ / d*r \
\ โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ
\ โ–ฒ
\ /
\ /
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”† x โ”†
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
With LoRA (Low Ranking Adaptation: https://arxiv.org/abs/2106.09685) instead of learning weights of size d*d,
we can freeze the pretrained weights and instead learn two matrices of size d*r and r*d (they will store weight updates
for the pretrained weights): the number of parameters in this case will be reduced drastically (depending on the rank of
course) yet after multiplication of matrices d*r and r*d we will get a matrix d*d which we can sum with frozen
pretrained weights and thus fine-tune the model.
The goal of this approach is to move weight updates into a separate matrix which is decomposed with
two matrices of a lower rank.
"""
import math
from typing import Any, Dict, Tuple, Union, Mapping
import torch
import torch.nn as nn
from torch.nn import functional as F
class LoRALayer(nn.Module):
def __init__(self, r: int, lora_alpha: int, lora_dropout: float):
"""Store LoRA specific attributes in a class.
Args:
r: rank of the weight update matrices. To make sense of using LoRA the rank should be smaller than the rank of
the weights of the model. The rank can be as low as 1: https://arxiv.org/pdf/2106.09685.pdf (section 7.2)
lora_alpha: alpha is needed for scaling updates as alpha/r
"This scaling helps to reduce the need to retune hyperparameters when we vary r"
https://arxiv.org/pdf/2106.09685.pdf (section 4.1)
lora_dropout: dropout that is applied on the input in the LoRA branch (before multiplying by matrix A)
"""
super().__init__()
assert r >= 0
self.r = r
self.lora_alpha = lora_alpha
# Optional dropout
if lora_dropout > 0.0:
self.lora_dropout = nn.Dropout(p=lora_dropout)
else:
self.lora_dropout = lambda x: x
# Mark the weight as unmerged
self.merged = False
class LoRALinear(LoRALayer):
# LoRA implemented in a dense layer
def __init__(
self,
# โ†“ this part is for pretrained weights
in_features: int,
out_features: int,
# โ†“ the remaining part is for LoRA
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.0,
tasks=None,
**kwargs,
):
"""LoRA wrapper around linear class.
This class has three weight matrices:
1. Pretrained weights are stored as `self.linear.weight`
2. LoRA A matrix as `self.lora_A`
3. LoRA B matrix as `self.lora_B`
Only LoRA's A and B matrices are updated, pretrained weights stay frozen.
Args:
in_features: number of input features of the pretrained weights
out_features: number of output features of the pretrained weights
r: rank of the weight update matrices. To make sense of using LoRA the rank should be smaller than the rank of
the weights of the model. The rank can be as low as 1: https://arxiv.org/pdf/2106.09685.pdf (section 7.2)
lora_alpha: alpha is needed for scaling updates as alpha/r
"This scaling helps to reduce the need to retune hyperparameters when we vary r"
https://arxiv.org/pdf/2106.09685.pdf (section 4.1)
lora_dropout: dropout that is applied on the input in the LoRA branch (before multiplying by matrix A)
"""
super().__init__(r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout)
self.linear = torch.nn.Linear(
in_features, out_features, **kwargs)
# Actual trainable parameters
if r > 0:
self.lora_A = nn.Parameter(
self.linear.weight.new_zeros((r, in_features)))
self.lora_B = nn.Parameter(
self.linear.weight.new_zeros((out_features, r)))
self.scaling = self.lora_alpha / self.r
self.reset_parameters()
def reset_parameters(self):
"""Reset all the weights, even including pretrained ones."""
if hasattr(self, "lora_A"):
# initialize A the same way as the default for nn.Linear and B to zero
# Wondering why 'a' is equal to math.sqrt(5)?: https://github.com/pytorch/pytorch/issues/15314
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
nn.init.zeros_(self.lora_B)
def merge(self):
"""Merges the LoRA weights into the full-rank weights (W = W + delta_W)."""
if self.r > 0 and not self.merged:
# Merge the weights and mark it
self.linear.weight.data += (self.lora_B @
self.lora_A) * self.scaling
self.merged = True
def forward(self, x: torch.Tensor):
# if weights are merged or rank is less or equal to zero (LoRA is disabled) - it's only a regular nn.Linear forward pass;
# otherwise in addition do the forward pass with LoRA weights and add it's output to the output from pretrained weights
pretrained = self.linear(x)
if self.r == 0 or self.merged:
return pretrained
lora = (self.lora_dropout(x) @ self.lora_A.transpose(0, 1)
@ self.lora_B.transpose(0, 1)) * self.scaling
return pretrained + lora
class MTLoRALinear(LoRALayer):
# LoRA implemented in a dense layer
def __init__(
self,
# โ†“ this part is for pretrained weights
in_features: int,
out_features: int,
# โ†“ the remaining part is for LoRA
r: Union[int, Mapping[str, int]] = 0,
lora_shared_scale: float = 1.0,
lora_task_scale: float = 1.0,
lora_dropout: float = 0.0,
tasks=None,
trainable_scale_shared=False,
trainable_scale_per_task=False,
shared_mode: str = 'matrix',
**kwargs,
):
assert shared_mode in ['matrix', 'matrixv2',
'add', 'addition', 'lora_only']
if shared_mode == 'add':
shared_mode = 'addition'
if shared_mode == 'lora_only':
tasks = None
has_tasks = tasks is not None
if not has_tasks:
if shared_mode not in ['matrix']:
shared_mode = 'matrix'
if isinstance(r, int):
r = {'shared': r}
super().__init__(
r=r['shared'], lora_alpha=lora_shared_scale, lora_dropout=lora_dropout)
self.linear = torch.nn.Linear(
in_features, out_features, **kwargs)
self.tasks = tasks
self.shared_mode = shared_mode
if r['shared'] > 0:
if has_tasks:
self.lora_tasks_A = nn.ParameterDict({
task: nn.Parameter(
self.linear.weight.new_zeros((r[task], in_features)))
for task in tasks
})
self.lora_tasks_B = nn.ParameterDict({
task: nn.Parameter(
self.linear.weight.new_zeros((out_features, r[task])))
for task in tasks
})
if trainable_scale_per_task:
self.lora_task_scale = nn.ParameterDict({
task: nn.Parameter(torch.FloatTensor(
[lora_task_scale]))
for task in tasks
})
else:
self.lora_task_scale = {task: lora_task_scale[task]
for task in tasks}
if self.shared_mode == 'addition':
assert has_tasks
self.lora_norm = nn.LayerNorm(out_features)
elif self.shared_mode == 'matrix' or self.shared_mode == 'matrixv2':
self.lora_shared_A = nn.Parameter(
self.linear.weight.new_zeros((r['shared'], in_features)))
self.lora_shared_B = nn.Parameter(
self.linear.weight.new_zeros((out_features, r['shared'])))
else:
raise NotImplementedError
if trainable_scale_shared:
self.lora_shared_scale = nn.Parameter(
torch.FloatTensor([lora_shared_scale]))
else:
self.lora_shared_scale = lora_shared_scale
self.reset_parameters()
def reset_parameters(self):
"""Reset all the weights, even including pretrained ones."""
if hasattr(self, "lora_shared_A"):
# initialize A the same way as the default for nn.Linear and B to zero
# Wondering why 'a' is equal to math.sqrt(5)?: https://github.com/pytorch/pytorch/issues/15314
nn.init.kaiming_uniform_(self.lora_shared_A, a=math.sqrt(5))
nn.init.zeros_(self.lora_shared_B)
if hasattr(self, "lora_tasks_A"):
for task in self.tasks:
nn.init.kaiming_uniform_(
self.lora_tasks_A[task], a=math.sqrt(5))
nn.init.zeros_(self.lora_tasks_B[task])
def merge(self):
"""Merges the LoRA weights into the full-rank weights (W = W + delta_W)."""
raise NotImplementedError
def forward(self, x: torch.Tensor, x_tasks: Dict[str, torch.Tensor] = None):
# TODO: handle merging
pretrained = self.linear(x)
if self.r == 0:
return pretrained, None
x = self.lora_dropout(x)
if self.shared_mode == 'matrix':
lora = (x @ self.lora_shared_A.transpose(0, 1)
@ self.lora_shared_B.transpose(0, 1)) * self.lora_shared_scale
lora_tasks = {
task: pretrained + (x_task_input @ self.lora_tasks_A[task].transpose(
0, 1) @ self.lora_tasks_B[task].transpose(0, 1) * self.lora_task_scale[task])
# Iterate over the items in the x_tasks dict that was PASSED IN
for task, x_task_input in x_tasks.items()
} if x_tasks is not None else None
elif self.shared_mode == 'matrixv2':
lora = (x @ self.lora_shared_A.transpose(0, 1)
@ self.lora_shared_B.transpose(0, 1)) * self.lora_shared_scale
lora_tasks = {
task: pretrained + lora + ((x if x_tasks is None else x_tasks[task]) @ self.lora_tasks_A[task].transpose(
0, 1) @ self.lora_tasks_B[task].transpose(0, 1) * self.lora_task_scale[task])
for task in self.tasks
} if self.tasks is not None else None
elif self.shared_mode == 'addition':
lora_tasks = {
task: pretrained + ((x if x_tasks is None else x_tasks[task]) @ self.lora_tasks_A[task].transpose(
0, 1) @ self.lora_tasks_B[task].transpose(0, 1) * self.lora_task_scale[task])
for task in self.tasks
} if self.tasks is not None else None
lora = self.lora_norm(torch.sum(torch.stack(
list(lora_tasks.values()), dim=0), dim=0))
return pretrained + lora, lora_tasks
class MTLoRAQKV(LoRALayer):
def __init__(
self,
# โ†“ this part is for pretrained weights
in_features: int,
out_features: int,
# โ†“ the remaining part is for LoRA
r: Union[int, Mapping[str, int]] = 0,
lora_shared_scale: float = 1.0,
lora_task_scale: float = 1.0,
lora_dropout: float = 0.0,
tasks=None,
trainable_scale_shared=False,
trainable_scale_per_task=False,
shared_mode: str = 'matrix',
**kwargs,
):
if isinstance(r, int):
r = {'shared': r}
super().__init__(r=r['shared'], lora_alpha=lora_shared_scale, lora_dropout=lora_dropout)
self.tasks = tasks
self.q = MTLoRALinear(in_features, out_features, r=r, lora_shared_scale=lora_shared_scale, lora_task_scale=lora_task_scale, lora_dropout=lora_dropout,
tasks=tasks, trainable_scale_shared=trainable_scale_shared, trainable_scale_per_task=trainable_scale_per_task, shared_mode=shared_mode, **kwargs)
self.k = MTLoRALinear(in_features, out_features, r=r, lora_shared_scale=lora_shared_scale, lora_task_scale=lora_task_scale, lora_dropout=lora_dropout,
tasks=tasks, trainable_scale_shared=trainable_scale_shared, trainable_scale_per_task=trainable_scale_per_task, shared_mode=shared_mode, **kwargs)
self.v = MTLoRALinear(in_features, out_features, r=r, lora_shared_scale=lora_shared_scale, lora_task_scale=lora_task_scale, lora_dropout=lora_dropout,
tasks=tasks, trainable_scale_shared=trainable_scale_shared, trainable_scale_per_task=trainable_scale_per_task, shared_mode=shared_mode, **kwargs)
def reset_parameters(self):
self.q.reset_parameters()
self.k.reset_parameters()
self.v.reset_parameters()
def merge(self):
raise NotImplementedError
def forward(self, x: torch.Tensor, x_tasks: Dict[str, torch.Tensor] = None):
return (torch.cat([self.q(x, x_tasks)[0], self.k(x, x_tasks)[0], self.v(x, x_tasks)[0]], dim=-1),
{task: torch.cat([self.q(x, x_tasks)[1][task], self.k(x, x_tasks)[1][task], self.v(x, x_tasks)[1][task]], dim=-1) for task in self.tasks} if self.tasks is not None else None)
class LoRAQKVLinear(LoRALinear):
# LoRA implemented in a dense layer
def __init__(
self,
# โ†“ this part is for pretrained weights
in_features: int,
out_features: int,
# โ†“ the remaining part is for LoRA
n_head: int,
n_query_groups: int,
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.0,
enable_lora: Union[bool, Tuple[bool, bool, bool]] = False,
**kwargs,
):
"""LoRA wrapper around linear class that is used for calculation of q, k and v matrices.
This class has three weight matrices:
1. Pretrained weights are stored as `self.linear.weight`
2. LoRA A matrix as `self.lora_A`
3. LoRA B matrix as `self.lora_B`
Only LoRA's A and B matrices are updated, pretrained weights stay frozen.
Args:
in_features: number of input features of the pretrained weights
out_features: number of output features of the pretrained weights
n_head: number of attention heads
n_query_groups: number of query groups (see diagram in `lit_gpt/config.py`)
r: rank of the weight update matrices. To make sense of using LoRA the rank should be smaller than the rank of
the weights of the model. The rank can be as low as 1: https://arxiv.org/pdf/2106.09685.pdf (section 7.2)
lora_alpha: alpha is needed for scaling updates as alpha/r
"This scaling helps to reduce the need to retune hyperparameters when we vary r"
https://arxiv.org/pdf/2106.09685.pdf (section 4.1)
lora_dropout: dropout that is applied on the input in the LoRA branch (before multiplying by matrix A)
enable_lora: MergeLinear class is for attention mechanism where qkv are calculated with a single weight matrix. If we
don't want to apply LoRA we can set it as False. For example if we want to apply LoRA only to `query`
and `value` but keep `key` without weight updates we should pass `[True, False, True]`
"""
super(LoRALinear, self).__init__(
r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout)
self.linear = torch.nn.Linear(in_features, out_features, **kwargs)
self.n_head = n_head
self.n_query_groups = n_query_groups
if isinstance(enable_lora, bool):
enable_lora = [enable_lora] * 3
assert len(enable_lora) == 3
self.enable_lora = enable_lora
# Actual trainable parameters
# To better understand initialization let's imagine that we have such parameters:
# โšฌ in_features: 128 (embeddings_size)
# โšฌ out_features: 384 (3 * embedding_size)
# โšฌ r: 2
# โšฌ enable_lora: [True, False, True]
if r > 0 and any(enable_lora):
self.lora_A = nn.Parameter(self.linear.weight.new_zeros(
(r * sum(enable_lora), in_features))) # (4, 128)
enable_q, enable_k, enable_v = enable_lora
self.kv_embd_size = self.linear.in_features // (
n_head // n_query_groups)
# qkv_shapes will be used to split a tensor with weights correctly
qkv_shapes = (
self.linear.in_features * enable_q,
self.kv_embd_size * enable_k,
self.kv_embd_size * enable_v,
)
self.qkv_shapes = [s for s in qkv_shapes if s]
self.lora_B = nn.Parameter(self.linear.weight.new_zeros(
sum(self.qkv_shapes), r)) # (256, 2))
# Notes about shapes above
# - self.lora_A has shape (4, 128): 4 because rank is 2 and LoRA is applied only to two matrices;
# 128 is the input size of the x (embedding size). (4, 128) and not (128, 4) because later on in
# F.linear function weights are automatically transposed. In addition conv1d requires channels to
# be before seq length
# - self.lora_B has shape (256, 2): 256 because LoRA is applied only to two matrices, so the output is
# 128*2; 2 tells to have two channels per group for group convolution
# Scaling:
# This balances the pretrained model`s knowledge and the new task-specific adaptation
# https://lightning.ai/pages/community/tutorial/lora-llm/
# So, set alpha to 1.0 to fully add LoRA. If the LoRA seems to have too much effect (i.e., overfitted), set
# alpha to lower value. If the LoRA seems to have too little effect, set alpha to higher than 1.0. You can
# tune these values to your needs. This value can be even slightly greater than 1.0!
# https://github.com/cloneofsimo/lora
self.scaling = self.lora_alpha / self.r
# Compute the indices
# Indices are needed to properly pad weight updates with zeros. If we want to fine-tune queries and values,
# but not keys, then the weights update should be:
#
# [[ฮ”W,ฮ”W,ฮ”W, ..., 0,0,0, ..., ฮ”W,ฮ”W,ฮ”W,],
# [....................................],
# [ฮ”W,ฮ”W,ฮ”W, ..., 0,0,0, ..., ฮ”W,ฮ”W,ฮ”W,]]
# โ†‘ โ†‘ โ†‘
# ________________________________________
# | query | key | value |
# ----------------------------------------
self.lora_ind = []
if enable_q:
self.lora_ind.extend(range(0, self.linear.in_features))
if enable_k:
self.lora_ind.extend(
range(self.linear.in_features, self.linear.in_features + self.kv_embd_size))
if enable_v:
self.lora_ind.extend(
range(self.linear.in_features + self.kv_embd_size, self.linear.out_features))
self.reset_parameters()
def zero_pad(self, x: torch.Tensor) -> torch.Tensor:
"""Properly pad weight updates with zeros.
If, based on `self.enable_lora`, we want to fine-tune queries and values, but not keys,
then the weights update should be:
[[ฮ”W,ฮ”W,ฮ”W, ..., 0,0,0, ..., ฮ”W,ฮ”W,ฮ”W,],
[....................................],
[ฮ”W,ฮ”W,ฮ”W, ..., 0,0,0, ..., ฮ”W,ฮ”W,ฮ”W,]]
โ†‘ โ†‘ โ†‘
________________________________________
| query | key | value |
----------------------------------------
Args:
x: tensor with weights update that will be padded with zeros if necessary
Returns:
A tensor with weight updates and zeros for deselected q, k or v
"""
# we need to do zero padding only if LoRA is disabled for one of QKV matrices
if all(self.enable_lora):
return x
# Let's image that:
# โšฌ input x has shape (64, 64, 256): (batch_size, sequence_length, embeddings_size)
# โšฌ embeddings_size: 128
# โšฌ self.linear.out_features: 384 (3 * embeddings_size)
# โšฌ enable_lora: [True, False, True]
# Then x has embeddings_size of 256 (2 * 128 as enable_lora only for query and value, not keys) and expected
# embeddings_size is 384 (self.linear.out_features), so that means that we need to pad from 256 to 384 with zeros, but
# only for key updates (this is where self.lora_ind comes in handy)
# Note: double transpose (in the beginning and in the end) is basically a guard for two-dimensional tensors
# for example when we want to merge/unmerge LoRA weights and pretrained weights
x = x.transpose(0, 1)
result = x.new_zeros(
(*x.shape[:-1], self.linear.out_features)) # (64, 64, 384)
result = result.view(-1, self.linear.out_features) # (4096, 384)
result = result.index_copy(
1, torch.tensor(
self.lora_ind, device=result.device), x.reshape(-1, sum(self.qkv_shapes))
) # (4096, 256)
# (64, 64, 384)
return result.view((*x.shape[:-1], self.linear.out_features)).transpose(0, 1)
def conv1d(self, input: torch.Tensor, weight: torch.Tensor) -> torch.Tensor:
"""An extension of the `torch.nn.functional.conv1d` function with a logic specific to grouped queries.
If the number of heads is equal to the number of query groups - grouped queries are disabled
(see scheme in `lit_gpt/config.py:Config`). In this case the combined QKV matrix consists of equally sized
query, key and value parts, which means we can utilize `groups` argument from `conv1d`: with this argument the
input and weight matrices will be splitted in equally sized parts and applied separately (like having multiple
conv layers side by side).
Otherwise QKV matrix consists of unequally sized parts and thus we have to split input and weight matrices manually,
apply each part of the weight matrix to the corresponding input's part and concatenate the result.
Args:
input: input matrix of shape (B, C, T)
weight: weight matrix of shape (C_output, rank, 1).
"C_output" is defined as a sum of embedding sizes for each enabled LoRA layer (see init method of the class).
Returns:
A tensor with a shape (B, C_output, T)
"""
if self.n_head == self.n_query_groups:
# (B, C_output, T)
return F.conv1d(input, weight, groups=sum(self.enable_lora))
# Notation:
# โšฌ N: number of enabled LoRA layers (self.enable_lora)
# โšฌ C_output': embeddings size for each LoRA layer (not equal in size)
# โšฌ r: rank of all LoRA layers (equal in size)
input_splitted = input.chunk(
sum(self.enable_lora), dim=1) # N * (B, C // N, T)
weight_splitted = weight.split(
self.qkv_shapes) # N * (C_output', r, 1)
return torch.cat(
# (B, C_output', T)
[F.conv1d(a, b) for a, b in zip(input_splitted, weight_splitted)], dim=1
) # (B, C_output, T)
def merge(self):
"""Merges the LoRA weights into the full-rank weights (W = W + delta_W)."""
# Let's assume that:
# โšฌ self.linear.weight.data: (384, 128) or (3 * embedding_size, embedding_size)
# โšฌ self.lora_A.data: (4, 128)
# โšฌ self.lora_B.data: (256, 2)
if self.r > 0 and any(self.enable_lora) and not self.merged:
delta_w = self.conv1d(
self.lora_A.data.unsqueeze(0), # (4, 128) -> (1, 4, 128)
self.lora_B.data.unsqueeze(-1), # (256, 2) -> (256, 2, 1)
).squeeze(
0
) # (1, 4, 128) @ (256, 2, 1) -> (1, 256, 128) -> (256, 128)
# W = W + delta_W (merge)
# (256, 128) after zero_pad (384, 128)
self.linear.weight.data += self.zero_pad(delta_w * self.scaling)
self.merged = True
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Do the forward pass.
If LoRA's weights are merged with pretrained ones then it's a simple matrix multiplication.
If not, then multiply pretrained weights with input, apply LoRA on input and do summation.
Args:
x: input tensor of shape (batch_size, context_length, embedding_size)
Returns:
Output tensor of shape (batch_size, context_length, 3 * embedding_size)
"""
# Let's assume that:
# โšฌ x: (64, 64, 128) or (batch_size, context_length, embedding_size)
# โšฌ self.linear.weight: (384, 128) or (3 * embedding_size, embedding_size)
# โšฌ self.lora_A.data: (4, 128)
# โšฌ self.lora_B.data: (256, 2)
# if weights are merged or LoRA is disabled (r <= 0 or all `enable_lora` are False) - it's only a regular nn.Linear forward pass;
# otherwise in addition do the forward pass with LoRA weights and add it's output to the output from pretrained weights
pretrained = self.linear(x)
if self.r == 0 or not any(self.enable_lora) or self.merged:
return pretrained
# (64, 64, 128) @ (4, 128) -> (64, 64, 4)
after_A = F.linear(self.lora_dropout(x), self.lora_A)
# For F.conv1d:
# โšฌ input: input tensor of shape (mini-batch, in_channels, iW)
# โšฌ weight: filters of shape (out_channels, in_channels/groups, kW)
after_B = self.conv1d(
after_A.transpose(-2, -1), # (64, 64, 4) -> (64, 4, 64)
self.lora_B.unsqueeze(-1), # (256, 2) -> (256, 2, 1)
).transpose(
-2, -1
) # (64, 4, 64) @ (256, 2, 1) -> (64, 256, 64) -> (64, 64, 256)
# (64, 64, 256) after zero_pad (64, 64, 384)
lora = self.zero_pad(after_B) * self.scaling
return pretrained + lora
def mark_only_lora_as_trainable(model: nn.Module, bias: str = "none", freeze_patch_embed: bool = False, freeze_norm: bool = False, free_relative_bias: bool = False, freeze_downsample_reduction=False) -> None:
"""Freeze all modules except LoRA's and depending on 'bias' value unfreezes bias weights.
Args:
model: model with LoRA layers
bias:
``"none"``: all bias weights will be frozen,
``"lora_only"``: only bias weight for LoRA layers will be unfrozen,
``"all"``: all bias weights will be unfrozen.
Raises:
NotImplementedError: if `bias` not in ["none", "lora_only", "all"]
"""
def lora_filter(key): return "lora_" in key
def patch_embed_filter(
key): return not freeze_patch_embed and "patch_embed" in key
def norm_filter(key): return not freeze_norm and "norm" in key
def downsample_reduction_filter(
key): return not freeze_downsample_reduction and "downsample.reduction" in key
def relative_position_bias_filter(
key): return not free_relative_bias and "relative_position_bias_table" in key
def all_filters(key):
return lora_filter(key) or patch_embed_filter(key) or norm_filter(key) or downsample_reduction_filter(key) or relative_position_bias_filter(key)
print(f"LoRA bias mode: {bias}")
print(f"LoRA Freeze patch_embed: {freeze_patch_embed}")
print(f"LoRA Freeze norm: {freeze_norm}")
print(f"LoRA Freeze downsample_reduction: {freeze_downsample_reduction}")
print(f"LoRA Freeze relative_position_bias: {free_relative_bias}")
# freeze all layers except LoRA's
for n, p in model.named_parameters():
if not all_filters(n):
p.requires_grad = False
# depending on the `bias` value unfreeze bias weights
if bias == "none":
return
if bias == "all":
for n, p in model.named_parameters():
if "bias" in n:
p.requires_grad = True
elif bias == "lora_only":
for m in model.modules():
if isinstance(m, LoRALayer) and hasattr(m, "bias") and m.bias is not None:
m.bias.requires_grad = True
else:
raise NotImplementedError
def lora_filter(key: str, value: Any) -> bool:
return "lora_" in key
def merge_lora_weights(model) -> None:
"""Merge LoRA weights into the full-rank weights to speed up inference."""
for module in model.modules():
if isinstance(module, LoRALinear):
module.merge()
def map_old_state_dict_weights(state_dict: Dict, mapping: Mapping, prefix: str, split_qkv: bool = False) -> Dict:
unmatched_keys = []
for checkpoint_name, attribute_name in mapping.items():
full_checkpoint_name = prefix + checkpoint_name
if full_checkpoint_name in state_dict:
full_attribute_name = prefix + attribute_name
weights = state_dict.pop(
full_checkpoint_name)
last_four = ".".join(full_attribute_name.split(".")[-4:])
if split_qkv and last_four in ["attn.qkv.linear.weight", "attn.qkv.linear.bias"]:
w_q, w_k, w_v = torch.chunk(weights, chunks=3)
weight_bias = last_four.split(".")[-1]
full_attribute_name_without_suffix = ".".join(full_attribute_name.split(".")[
:-2])
state_dict[f"{full_attribute_name_without_suffix}.q.linear.{weight_bias}"] = w_q
state_dict[f"{full_attribute_name_without_suffix}.k.linear.{weight_bias}"] = w_k
state_dict[f"{full_attribute_name_without_suffix}.v.linear.{weight_bias}"] = w_v
else:
state_dict[full_attribute_name] = weights
else:
unmatched_keys.append(checkpoint_name)
if len(unmatched_keys) > 0:
print(
f"WARNING: The following keys from the checkpoint were not mapped: {unmatched_keys}")
return state_dict