File size: 36,644 Bytes
c69c4af 0d814f5 c69c4af 972535f c69c4af 972535f c69c4af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 |
from einops import rearrange
from torch.nn import functional as F
from dotenv import load_dotenv
import os
import sys
from core.vision_encoder.pe import SelfAttention, AttentionPooling
import torch.nn as nn
from typing import Dict, List
from utils.task_config import Task
import torch
from typing import Optional, Union, Mapping,OrderedDict
from src.dlora import *
from peft import PeftModel, get_peft_model, LoraConfig
DROPOUT_P = 0.5
class MTLModel(nn.Module):
def __init__(self, backbone, tasks: List[Task], device,
rank: int = 64,
use_lora: bool = True,
truncate_idx: int = 22,
last_lora_layers: int = -99,
lora_dropout: float = 0.5,
use_mtl_lora :bool = False,
use_deep_head:bool = False,
use_batch_norm:bool = True,
use_mtl_attn_pool: bool = True,
use_dora:bool = True,
):
super().__init__()
self.use_mtl_attn_pool=use_mtl_attn_pool
self.tasks = tasks
self.use_mtl_lora = use_mtl_lora
self.use_deep_head= use_deep_head
self.use_lora = use_lora
self.use_mtlora = use_mtl_lora
output_dim = backbone.output_dim
# log_vars is for uncertainty weighting
self.log_vars = nn.Parameter(torch.zeros(len(tasks)))
task_names = [task.name for task in tasks]
self.backbone = backbone
width = backbone.width
heads = backbone.heads
rope = backbone.rope
if self.use_mtl_lora:
# save last residual attention block, as we need the weights values to seed the new mtl version
orig_last_block = backbone.transformer.resblocks[-1]
self.ln_post = backbone.ln_post
# save the attention pooling, as we need the weights values to seed the task specifics attention pooling layers
orig_attn_pool = backbone.attn_pool.to(device)
self.backbone.truncate(layer_idx=truncate_idx) # 23th block becomes the last (the idx is 22)
# mtl block that produces t-task specific features maps, plus a shared one
self.mtl_layer = MTLoRAResidualAttentionBlock(
d_model=width,
n_head=heads,
rope=rope,
r={'shared': rank, **{name: rank for name in task_names}},
tasks=task_names,
shared_mode='matrix' ,
lora_shared_scale=0.0 # We do not use the shared matrix, so we set it's scale to 0
)
self.mtl_layer.load_from_original_block(orig_last_block)
print("MTL-LoRA final block created and initialized from pretrained weights.")
if self.use_mtl_attn_pool:
self.attn_pool = MTLoRAAttentionPooling(
embed_dim=width,
num_heads=8,
tasks=task_names,
r={'shared': rank, **{name: rank for name in task_names}},
lora_dropout=lora_dropout,
lora_task_scale=1.0,
lora_shared_scale=0.0
)
self.attn_pool.load_from_original(orig_attn_pool)
else:
self.task_specific_attn_pool = nn.ModuleDict({
task.name: AttentionPooling(embed_dim=width, num_heads=8)
for task in self.tasks
})
for task in self.tasks:
self.task_specific_attn_pool[task.name].load_state_dict(orig_attn_pool.state_dict())
print("Task-specific Attention Pooling layers created and initialized.")
del self.backbone.attn_pool
if use_lora:
# You can modify this list if you want to target only attention layers or mlp layers
target_layers = ["attn.in_proj", "attn.out_proj", "mlp.c_fc", "mlp.c_proj"]
target_modules = []
for name, param in self.backbone.named_modules():
if not isinstance(param, nn.Linear):
continue
is_target_layer = any(s in name for s in target_layers)
if is_target_layer:
if "attn_pool" in name:
target_modules.append(name)
elif "transformer.resblocks" in name:
layer_idx = int(name.split('.')[2])
if layer_idx >= last_lora_layers:
target_modules.append(name)
lora_config = LoraConfig(
r=rank,
lora_alpha=rank,
target_modules= target_modules,
use_dora=use_dora,
lora_dropout=lora_dropout,
bias = "none"
)
self.backbone = get_peft_model(self.backbone,lora_config)
print("PEFT LoRA module added")
if self.use_deep_head == False:
self.prediction_layers = nn.ModuleDict({
task.name: nn.Sequential(
nn.BatchNorm1d(backbone.output_dim) if use_batch_norm else nn.Identity(),
nn.Dropout(p=DROPOUT_P),
nn.Linear( backbone.output_dim, len(task.class_labels))
)
for task in self.tasks
})
print("Task-specific prediction heads created.")
else:
self.prediction_layers = nn.ModuleDict({
task.name: nn.Sequential(
nn.BatchNorm1d(backbone.output_dim) if use_batch_norm else nn.Identity(),
nn.Dropout(p=DROPOUT_P),
nn.Linear(backbone.output_dim, backbone.output_dim),
nn.GELU(),
nn.Linear(backbone.output_dim, len(task.class_labels)),
)
for task in self.tasks
})
print("Task-specific prediction deep-heads created.")
self.backbone.del_muda()
def enable_gradient_checkpointing(self):
"""Call this method after setting up parameter requires_grad"""
backbone_has_trainable = any(param.requires_grad for param in self.backbone.parameters())
if backbone_has_trainable:
self.backbone.set_grad_checkpointing()
print("Gradient checkpointing enabled for backbone (has trainable parameters)")
else:
print("Gradient checkpointing not enabled - backbone has no trainable parameters")
def forward(self, x: torch.Tensor):
if self.use_mtl_lora:
return self._forward_mtl_block(x)
else:
return self._forward_shared(x)
def _forward_shared(self, x: torch.Tensor):
logits = {}
#if self.attention_specific_pool == True:
# features = self.backbone.forward_features(x, norm=True, strip_cls_token=False)
# for task in self.tasks:
#
# pooled_feat = self.task_specific_attn_pool[task_name](features)
# pooled_feat = pooled_feat.squeeze(1)
# logits[task_name] = self.prediction_layers[task_name](pooled_feat)
#else:
features = self.backbone(x)
# print(features.shape)
for task in self.tasks:
logits[task.name] = self.prediction_layers[task.name](features)
return logits
def _forward_mtl_block(self, x: torch.Tensor, return_feat=False, feat_to_return="None"):
# Shared feature map from the backbone
# norm=False, because normalization is "trained" on the feature map of the output of the last ResidualAttentionBlock
# so we will normalize the task specific feature map, instead of the shared one
# strip_cls_token=False, because in the PE paper it has been shown to be beneficial to keep it
features = self.backbone.forward_features(x, norm=False, strip_cls_token=False)
# Equal for each task, as our mtl layer follows a task-agnostic layer
task_features_input = {task.name: features for task in self.tasks}
# Returns also a shared features map, that is discarded,
# task features is a dictionary, the key is task name, and the value is a tensor of shape (batch_size, n_tokens, d_model)
# rappresting the task specific features map
_, task_features = self.mtl_layer(features, x_tasks=task_features_input)
normalized_task_features = {
task.name: self.ln_post(task_features[task.name])
for task in self.tasks
}
if self.use_mtl_attn_pool:
pooled_features = self.attn_pool(normalized_task_features)
else:
pooled_features = {}
for task in self.tasks:
feat = normalized_task_features[task.name]
pooled_features[task.name] = self.task_specific_attn_pool[task.name](feat)
# this stuff is for pca/tsne visualization
if return_feat:
if feat_to_return == "Age":
return pooled_features['Age']
elif feat_to_return == "Emotion":
return pooled_features['Emotion']
elif feat_to_return == "Gender":
return pooled_features['Gender']
logits = {}
for task in self.tasks:
# Squeeze the pooling dimension (1)
pooled_feat = pooled_features[task.name].squeeze(1) # (batch, 1, d_model) -> (batch, d_model)
logits[task.name] = self.prediction_layers[task.name](pooled_feat)
return logits
def save_whole_model(self, filepath: str):
print(f"Saving model state_dict to {filepath}")
torch.save(self.state_dict(), filepath)
def load_model(self, filepath:str,map_location='cuda'):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if self.use_lora or self.use_mtlora:
self.backbone.merge_and_unload()
self.to(device)
state_dict = torch.load(filepath, map_location=map_location)
self.load_state_dict(state_dict, strict=True)
def save_adapters_peft(self, save_directory: str):
print(f"Saving adapters to directory: {save_directory}")
os.makedirs(save_directory, exist_ok=True)
custom_layers_state_dict = {
'prediction_layers': self.prediction_layers.state_dict()
}
if self.use_lora:
self.backbone.save_pretrained(save_directory)
if self.use_mtlora:
custom_layers_state_dict['mtl_layer'] = self.mtl_layer.state_dict()
#custom_layers_state_dict['task_specific_attn_pooling'] = self.task_specific_attn_pool.state_dict()
custom_layers_state_dict['mtl_attn_pool'] = self.attn_pool.state_dict()
torch.save(custom_layers_state_dict, os.path.join(save_directory, 'custom_layers.pt'))
print("Successfully saved PEFT backbone and custom task heads.")
def load_heads(self, filepaths: List[str],device='cuda'):
for ckpt in filepaths:
checkpoint = torch.load(ckpt, map_location=device)
model_state_dict = self.state_dict()
if "prediction_layers" in checkpoint:
for loaded_key, value in checkpoint["prediction_layers"].items():
new_key = loaded_key
# Remap prefix: 'heads.emotion.' -> 'prediction_layers.Emotion.'
if new_key.startswith('heads.emotion.'):
new_key = new_key.replace('heads.emotion.', 'prediction_layers.Emotion.')
if new_key.startswith('heads.age.'):
new_key = new_key.replace('heads.age.', 'prediction_layers.Age.')
if new_key.startswith('heads.gender.'):
new_key = new_key.replace('heads.gender.', 'prediction_layers.Gender.')
# Remap final layer index for deep head: '.5.' -> '.4.'
if '.5.' in new_key:
new_key = new_key.replace('.5.', '.4.')
if new_key in model_state_dict:
if model_state_dict[new_key].shape == value.shape:
model_state_dict[new_key].copy_(value)
def load_adapters_peft(self, load_directory: str, custom_head_name:str = 'custom_layers.pt'):
print(f"Loading adapters from directory: {load_directory}")
if self.use_lora:
self.backbone = self.backbone.merge_and_unload()
self.backbone = PeftModel.from_pretrained(self.backbone, load_directory)
custom_layers_path = os.path.join(load_directory, custom_head_name)
if not os.path.exists(custom_layers_path):
raise FileNotFoundError(f"Custom task heads file not found at {custom_layers_path}")
checkpoint = torch.load(custom_layers_path, map_location=("cuda" if torch.cuda.is_available() else "cpu"))
self.prediction_layers.load_state_dict(checkpoint['prediction_layers'])
if self.use_mtlora:
try:
self.mtl_layer.load_state_dict(checkpoint['mtl_layer'][0])
except KeyError:
self.mtl_layer.load_state_dict(checkpoint['mtl_layer'])
self.attn_pool.load_state_dict(checkpoint['mtl_attn_pool'])
print("Successfully loaded PEFT backbone and custom task heads.")
def save_trained(self, filepath: str):
trainable_param_names = {name for name, param in self.named_parameters() if param.requires_grad}
trainable_module_paths = {'.'.join(name.split('.')[:-1]) for name in trainable_param_names}
state_to_save = {}
full_state_dict = self.state_dict()
for key, value in full_state_dict.items():
if key in trainable_param_names:
state_to_save[key] = value
continue
current_module_path = '.'.join(key.split('.')[:-1])
if current_module_path in trainable_module_paths:
state_to_save[key] = value
print(f"Saving {len(state_to_save)} state entries (parameters and buffers) to {filepath}")
torch.save(state_to_save, filepath)
def load_trained_legacy(self, filepath: str, device='cuda'):
"""The training of some checkpoint where done with a different model class,
so there is the need of remapping the key names, so they match with this new model class"""
print(f"Loading trained states from structured checkpoint: {filepath}")
checkpoint = torch.load(filepath, map_location=device)
model_state_dict = self.state_dict()
loaded_keys_count = 0
skipped_keys = []
remapped_keys_examples = {}
if "backbone_state_dict" in checkpoint:
print("\n--- Processing Backbone Weights ---")
for loaded_key, value in checkpoint["backbone_state_dict"].items():
new_key = loaded_key
if new_key.startswith('strategy.backbone.'):
new_key = new_key.replace('strategy.backbone.', 'backbone.')
if 'attn.in_proj_weight' in new_key and 'attn.in_proj.weight' not in new_key:
new_key = new_key.replace('attn.in_proj_weight', 'attn.in_proj.weight')
if 'attn.in_proj_bias' in new_key and 'attn.in_proj.bias' not in new_key:
new_key = new_key.replace('attn.in_proj_bias', 'attn.in_proj.bias')
if new_key in model_state_dict:
if model_state_dict[new_key].shape == value.shape:
model_state_dict[new_key].copy_(value)
loaded_keys_count += 1
if loaded_key != new_key and len(remapped_keys_examples) < 5:
remapped_keys_examples[loaded_key] = new_key
else:
skipped_keys.append(f"{loaded_key} (Shape Mismatch: Model {model_state_dict[new_key].shape} vs Ckpt {value.shape})")
else:
skipped_keys.append(f"{loaded_key} (as {new_key}) -> Not found in model")
if "prediction_layers" in checkpoint:
print("\n--- Processing Prediction Head Weights ---")
for loaded_key, value in checkpoint["prediction_layers"].items():
new_key = loaded_key
if new_key.startswith('heads.emotion.'):
new_key = new_key.replace('heads.emotion.', 'prediction_layers.Emotion.')
if new_key.startswith('heads.age.'):
new_key = new_key.replace('heads.age.', 'prediction_layers.Age.')
if new_key.startswith('heads.gender.'):
new_key = new_key.replace('heads.gender.', 'prediction_layers.Gender.')
if '.5.' in new_key:
new_key = new_key.replace('.5.', '.4.')
# Validate, load, and update trackers
if new_key in model_state_dict:
if model_state_dict[new_key].shape == value.shape:
model_state_dict[new_key].copy_(value)
loaded_keys_count += 1
if loaded_key != new_key and len(remapped_keys_examples) < 10:
remapped_keys_examples[loaded_key] = new_key
else:
skipped_keys.append(f"{loaded_key} (Shape Mismatch: Model {model_state_dict[new_key].shape} vs Ckpt {value.shape})")
else:
skipped_keys.append(f"{loaded_key} (as {new_key}) -> Not found in model")
if "attn_pool" in checkpoint:
print("\n--- Processing Attention Pool Weights ---")
for loaded_key, value in checkpoint["attn_pool"].items():
# The attn_pool keys in the source file also have the 'strategy.backbone' prefix
new_key = loaded_key.replace('strategy.backbone.attn_pool.', 'backbone.attn_pool.')
# Validate, load, and update trackers
if new_key in model_state_dict:
if model_state_dict[new_key].shape == value.shape:
model_state_dict[new_key].copy_(value)
loaded_keys_count += 1
if loaded_key != new_key and len(remapped_keys_examples) < 15:
remapped_keys_examples[loaded_key] = new_key
else:
skipped_keys.append(f"{loaded_key} (Shape Mismatch: Model {model_state_dict[new_key].shape} vs Ckpt {value.shape})")
else:
skipped_keys.append(f"{loaded_key} (as {new_key}) -> Not found in model")
if loaded_keys_count == 0:
print('LAODED 0')
self.load_state_dict(torch.load(filepath, map_location=device), strict=False)
class MTLoRAResidualAttentionBlock(nn.Module):
"""Adaptation of Perception Encoder ResidualAttentionBlock with MTLora, to produce t-task specific feature-maps and a shared feature map"""
def __init__(
self,
d_model: int,
n_head: int,
mlp_ratio: float = 4.0,
ls_init_value: float = None,
act_layer = nn.GELU,
norm_layer = nn.LayerNorm,
drop_path: float = 0.0,
rope: Optional[nn.Module] = None,
r: Union[int, Mapping[str, int]] = 0,
lora_shared_scale: float = 1.0,
lora_task_scale: float = 1.0,
lora_dropout: float = DROPOUT_P,
tasks=None,
trainable_scale_shared=False,
trainable_scale_per_task=False,
shared_mode: str = 'matrix',
):
super().__init__()
self.tasks = tasks
self.num_heads = n_head
self.head_dim = d_model // n_head
self.scale = self.head_dim ** -0.5
self.rope = rope
task_scales = {t: lora_task_scale for t in tasks}
# MultiTask Lora for QKV matrices
# (MTLoRAQKV does not actually compute attention, but returns the shared QKV matrices and the task-specific QKV matrices)
self.attn = MTLoRAQKV(
in_features=d_model,
out_features=d_model,
r=r, lora_shared_scale=lora_shared_scale, lora_task_scale=task_scales,
lora_dropout=lora_dropout, tasks=tasks, trainable_scale_shared=trainable_scale_shared,
trainable_scale_per_task=trainable_scale_per_task, shared_mode=shared_mode
)
# MultiTask Lora for projection matrices in mha
self.out_proj = MTLoRALinear(
in_features=d_model,
out_features=d_model,
r=r, lora_shared_scale=lora_shared_scale, lora_task_scale=task_scales,
lora_dropout=lora_dropout, tasks=tasks, trainable_scale_shared=trainable_scale_shared,
trainable_scale_per_task=trainable_scale_per_task, shared_mode=shared_mode
)
self.ls_1 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
self.ls_2 = LayerScale(d_model, ls_init_value) if ls_init_value is not None else nn.Identity()
self.ln_1 = norm_layer(d_model)
self.ln_2 = norm_layer(d_model)
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
# LoRA-enabled MLP
mlp_width = int(d_model * mlp_ratio)
self.mlp = nn.Sequential(
OrderedDict([
("c_fc", MTLoRALinear(
d_model, mlp_width, r=r, lora_shared_scale=lora_shared_scale,
lora_task_scale=task_scales, lora_dropout=lora_dropout, tasks=tasks,
trainable_scale_shared=trainable_scale_shared, trainable_scale_per_task=trainable_scale_per_task,
shared_mode=shared_mode
)),
("gelu", act_layer()),
("c_proj", MTLoRALinear(
mlp_width, d_model, r=r, lora_shared_scale=lora_shared_scale,
lora_task_scale=task_scales, lora_dropout=lora_dropout, tasks=tasks,
trainable_scale_shared=trainable_scale_shared, trainable_scale_per_task=trainable_scale_per_task,
shared_mode=shared_mode
)),
])
)
def _call_attn(
self,
x_shared: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
x_tasks: Optional[Dict[str, torch.Tensor]] = None,
):
# s is the number of patches/tokens, sequence length
proj, proj_tasks = self.attn(x_shared, x_tasks) # proj is (b s 3*d_model), proj_tasks is dict of (b s 3*d_model), one entry per task
def compute_attention(projection_tensor):
# Reshape Q, K, V
# projection_tensor is (b s 3*d_model), need to split and rearrange
_, s, _ = projection_tensor.shape
# output_features from MTLoRAQKV is d_model, so 3 * d_model
split_size = self.attn.q.linear.out_features # This should be d_model
# Unflatten into (b s 3 d_model) then transpose to get (3 b s d_model)
q, k, v = projection_tensor.unflatten(-1, (3, split_size)).permute(2, 0, 1, 3).contiguous()
# Rearrange for multi-head attention (b h s d)
q = rearrange(q, "b s (h d) -> b h s d", h=self.num_heads)
k = rearrange(k, "b s (h d) -> b h s d", h=self.num_heads)
v = rearrange(v, "b s (h d) -> b h s d", h=self.num_heads)
if self.rope:
q, k = self.rope(q, k)
attn_output = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, scale=self.scale)
return rearrange(attn_output, "b h s d -> b s (h d)")
# Process shared path
attn_result = compute_attention(proj)
# Process task-specific paths
attn_tasks_results = {}
if proj_tasks:
for task, task_proj in proj_tasks.items():
attn_tasks_results[task] = compute_attention(task_proj)
# Apply output projection
# out_proj is an MTLoRALinear, so its forward expects (x, x_tasks)
shared_out, tasks_out = self.out_proj(attn_result, x_tasks=attn_tasks_results if attn_tasks_results else None)
return shared_out, tasks_out
def forward(
self,
x: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
x_tasks: Optional[Dict[str, torch.Tensor]] = None,
):
# Attention block
norm_x = self.ln_1(x)
norm_x_tasks = {task: self.ln_1(x_tasks[task]) for task in self.tasks} if x_tasks else None
attn_out, attn_tasks_out = self._call_attn(norm_x, attn_mask=attn_mask, x_tasks=norm_x_tasks)
x = x + self.drop_path1(self.ls_1(attn_out))
if attn_tasks_out and x_tasks:
for task in self.tasks:
x_tasks[task] = x_tasks[task] + self.drop_path1(self.ls_1(attn_tasks_out[task]))
# MLP block
norm_x = self.ln_2(x)
norm_x_tasks = {task: self.ln_2(x_tasks[task]) for task in self.tasks} if x_tasks else None
# The MTLoRALinear forward needs to be called directly for the sequential MLP
mlp_fc_out, mlp_fc_tasks_out = self.mlp.c_fc(norm_x, norm_x_tasks)
gelu_out = self.mlp.gelu(mlp_fc_out)
gelu_tasks_out = {task: self.mlp.gelu(mlp_fc_tasks_out[task]) for task in self.tasks} if mlp_fc_tasks_out else None
mlp_proj_out, mlp_proj_tasks_out = self.mlp.c_proj(gelu_out, gelu_tasks_out)
x = x + self.drop_path2(self.ls_2(mlp_proj_out))
if mlp_proj_tasks_out and x_tasks:
for task in self.tasks:
x_tasks[task] = x_tasks[task] + self.drop_path2(self.ls_2(mlp_proj_tasks_out[task]))
return x, x_tasks
def load_from_original_block(self, original_block):
"""
Initializes the weights of this block from a pre-trained ResidualAttentionBlock.
The LoRA-specific parameters are reset to their initial state.
"""
with torch.no_grad():
# Copy LayerNorm and LayerScale weights
self.ln_1.load_state_dict(original_block.ln_1.state_dict())
self.ln_2.load_state_dict(original_block.ln_2.state_dict())
self.ls_1.load_state_dict(original_block.ls_1.state_dict())
self.ls_2.load_state_dict(original_block.ls_2.state_dict())
# Copy MLP weights into the .linear attribute of the MTLoRALinear layers
self.mlp.c_fc.linear.load_state_dict(original_block.mlp.c_fc.state_dict())
self.mlp.c_proj.linear.load_state_dict(original_block.mlp.c_proj.state_dict())
# Copy Attention weights
# Both SelfAttention and nn.MultiheadAttention store QKV weights combined
if isinstance(original_block.attn, SelfAttention):
# Using migrate_weights ensures the Parameters are copied to the Linear layer first
# Then we can extract from the Linear layer
original_block.attn.migrate_weights() # Ensure weights are in .in_proj and .out_proj
# Split the combined weight and bias tensors into Q, K, V from .in_proj
qkv_weight = original_block.attn.in_proj.weight
qkv_bias = original_block.attn.in_proj.bias
q_w, k_w, v_w = qkv_weight.chunk(3)
q_b, k_b, v_b = qkv_bias.chunk(3)
# Load into the .linear attributes of the MTLoRAQKV module
self.attn.q.linear.weight.copy_(q_w)
self.attn.q.linear.bias.copy_(q_b)
self.attn.k.linear.weight.copy_(k_w)
self.attn.k.linear.bias.copy_(k_b)
self.attn.v.linear.weight.copy_(v_w)
self.attn.v.linear.bias.copy_(v_b)
# Load the output projection weights
self.out_proj.linear.load_state_dict(original_block.attn.out_proj.state_dict())
elif isinstance(original_block.attn, nn.MultiheadAttention):
self.attn.q.linear.weight.copy_(original_block.attn.in_proj_weight[:self.attn.q.linear.out_features, :])
self.attn.q.linear.bias.copy_(original_block.attn.in_proj_bias[:self.attn.q.linear.out_features])
self.attn.k.linear.weight.copy_(original_block.attn.in_proj_weight[self.attn.q.linear.out_features:2*self.attn.q.linear.out_features, :])
self.attn.k.linear.bias.copy_(original_block.attn.in_proj_bias[self.attn.q.linear.out_features:2*self.attn.q.linear.out_features])
self.attn.v.linear.weight.copy_(original_block.attn.in_proj_weight[2*self.attn.q.linear.out_features:3*self.attn.q.linear.out_features, :])
self.attn.v.linear.bias.copy_(original_block.attn.in_proj_bias[2*self.attn.q.linear.out_features:3*self.attn.q.linear.out_features])
self.out_proj.linear.weight.copy_(original_block.attn.out_proj.weight)
self.out_proj.linear.bias.copy_(original_block.attn.out_proj.bias)
else:
raise TypeError(f"Unsupported attention module type in original_block: {type(original_block.attn)}")
# After loading pretrained weights, re-initialize LoRA-specific parameters
# This ensures that at the start of finetuning, the LoRA adjustment is zero.
self.attn.reset_parameters()
self.out_proj.reset_parameters()
self.mlp.c_fc.reset_parameters()
self.mlp.c_proj.reset_parameters()
print("Successfully loaded weights from original ResidualAttentionBlock and reset LoRA parameters.")
class MTLoRAAttentionPooling(nn.Module):
"""
A MT-LoRA equivalent of the AttentionPooling transformer block.
This module replicates the full original architecture:
1. Task-specific probes for attention pooling.
2. MT-LoRA enabled Q/K/V and Output projections.
3. A LayerNorm layer.
4. An MLP block with MT-LoRA enabled linear layers.
5. A final residual connection, matching the original's structure.
"""
def __init__(
self,
embed_dim: int,
num_heads: int,
tasks: List[str],
r: Union[int, Mapping[str, int]] = 0,
lora_shared_scale: float = 1.0,
lora_task_scale: float = 1.0,
lora_dropout: float = 0.0,
mlp_ratio: int = 4,
act_layer = nn.GELU,
norm_layer = nn.LayerNorm,
):
super().__init__()
self.tasks = tasks
self.num_heads = num_heads
self.probe = nn.ParameterDict({
task: nn.Parameter(torch.randn(1, 1, embed_dim))
for task in tasks
})
task_scales = {t: lora_task_scale for t in tasks}
self.q_proj = MTLoRALinear(
embed_dim, embed_dim, r=r, lora_shared_scale=lora_shared_scale, lora_task_scale=task_scales,
lora_dropout=lora_dropout, tasks=tasks
)
self.k_proj = MTLoRALinear(
embed_dim, embed_dim, r=r, lora_shared_scale=lora_shared_scale, lora_task_scale=task_scales,
lora_dropout=lora_dropout, tasks=tasks
)
self.v_proj = MTLoRALinear(
embed_dim, embed_dim, r=r, lora_shared_scale=lora_shared_scale, lora_task_scale=task_scales,
lora_dropout=lora_dropout, tasks=tasks
)
self.out_proj = MTLoRALinear(
embed_dim, embed_dim, r=r, lora_shared_scale=lora_shared_scale, lora_task_scale=task_scales,
lora_dropout=lora_dropout, tasks=tasks
)
self.layernorm = norm_layer(embed_dim)
mlp_width = int(embed_dim * mlp_ratio)
self.mlp = nn.Sequential(
OrderedDict([
("c_fc", MTLoRALinear(
embed_dim, mlp_width, r=r, lora_shared_scale=lora_shared_scale,
lora_task_scale=task_scales, lora_dropout=lora_dropout, tasks=tasks
)),
("gelu", nn.GELU()),
("c_proj", MTLoRALinear(
mlp_width, embed_dim, r=r, lora_shared_scale=lora_shared_scale,
lora_task_scale=task_scales, lora_dropout=lora_dropout, tasks=tasks
)),
])
)
def load_from_original(self, original_pool: AttentionPooling):
"""Initializes all weights from the pretrained AttentionPooling block."""
with torch.no_grad():
original_attn = original_pool.attn
for task in self.tasks:
self.probe[task].copy_(original_pool.probe)
q_w, k_w, v_w = original_attn.in_proj_weight.chunk(3)
q_b, k_b, v_b = original_attn.in_proj_bias.chunk(3)
self.q_proj.linear.weight.copy_(q_w)
self.q_proj.linear.bias.copy_(q_b)
self.k_proj.linear.weight.copy_(k_w)
self.k_proj.linear.bias.copy_(k_b)
self.v_proj.linear.weight.copy_(v_w)
self.v_proj.linear.bias.copy_(v_b)
self.out_proj.linear.load_state_dict(original_attn.out_proj.state_dict())
self.layernorm.load_state_dict(original_pool.layernorm.state_dict())
self.mlp.c_fc.linear.load_state_dict(original_pool.mlp.c_fc.state_dict())
self.mlp.c_proj.linear.load_state_dict(original_pool.mlp.c_proj.state_dict())
self.q_proj.reset_parameters()
self.k_proj.reset_parameters()
self.v_proj.reset_parameters()
self.out_proj.reset_parameters()
self.mlp.c_fc.reset_parameters()
self.mlp.c_proj.reset_parameters()
print("Full MT-LoRA Attention Pooling block created and initialized from pretrained weights.")
def forward(self, x_tasks: Dict[str, torch.Tensor]):
"""
Forward pass that correctly handles unique inputs for each task.
In this version, K and V are calculated inside the loop based on
the task-specific input 'x', and the each task has it's unique probe.
"""
final_outputs = {}
for task, x in x_tasks.items():
B, N, C = x.shape
probe = self.probe[task].repeat(B, 1, 1)
_, q_task_dict = self.q_proj(probe, x_tasks={task: probe})
q = q_task_dict[task]
_, k_task_dict = self.k_proj(x, x_tasks={task: x})
k = k_task_dict[task]
_, v_task_dict = self.v_proj(x, x_tasks={task: x})
v = v_task_dict[task]
q = rearrange(q, 'b n (h d) -> b h n d', h=self.num_heads)
k = rearrange(k, 'b n (h d) -> b h n d', h=self.num_heads)
v = rearrange(v, 'b n (h d) -> b h n d', h=self.num_heads)
attn_out = F.scaled_dot_product_attention(q, k, v)
attn_out_rearranged = rearrange(attn_out, 'b h n d -> b n (h d)')
_, out_proj_dict = self.out_proj(attn_out_rearranged, x_tasks={task: attn_out_rearranged})
x_attn = out_proj_dict[task]
norm_attn = self.layernorm(x_attn)
_, fc_task_dict = self.mlp.c_fc(norm_attn, x_tasks={task: norm_attn})
gelu_out = self.mlp.gelu(fc_task_dict[task])
_, proj_task_dict = self.mlp.c_proj(gelu_out, x_tasks={task: gelu_out})
mlp_out = proj_task_dict[task]
final_outputs[task] = x_attn + mlp_out
return final_outputs
|