Akashmj22122002's picture
Upload folder using huggingface_hub
b02e301 verified
raw
history blame
12.2 kB
import sys
import json
from openai import OpenAI
import gradio as gr
from typing import Dict, List
from pathlib import Path
sys.path.insert(0, str(Path(__file__).parent))
from helpers import load_all_documents, PushoverNotifier, get_config
from rag_system import RAGSystem
from evaluation import RAGEvaluator
class DigitalTwin:
def __init__(self):
self.config = get_config()
self.openai = OpenAI(api_key=self.config["openai_api_key"])
self.name = self.config["name"]
self.notifier = PushoverNotifier(self.config["pushover_user"], self.config["pushover_token"])
self.email_collected = False
self.user_email = None
self.user_name = None
print("Loading knowledge base...")
app_dir = Path(__file__).parent
self.documents = load_all_documents(str(app_dir / "me"))
if not self.documents:
raise ValueError("No documents loaded! Please add content to the me/ directory.")
if self.config["rag_enabled"]:
print("Initializing RAG system...")
data_dir = str(app_dir / "data")
self.rag_system = RAGSystem(self.openai, data_dir=data_dir)
self.rag_system.load_knowledge_base(
self.documents,
chunk_size=self.config["chunk_size"],
overlap=self.config["chunk_overlap"]
)
print("RAG system ready!")
else:
self.rag_system = None
self.evaluator = RAGEvaluator(self.openai)
self.tools = [
{
"type": "function",
"function": {
"name": "record_user_details",
"description": "Record user contact information. IMPORTANT: You must ask for their name if they haven't provided it yet. Only call this tool after you have collected both email and name.",
"parameters": {
"type": "object",
"properties": {
"email": {"type": "string", "description": "The email address of this user"},
"name": {"type": "string", "description": "The user's full name"},
"notes": {"type": "string", "description": "A brief 1-line summary of what the user was asking about or interested in"}
},
"required": ["email", "name", "notes"],
"additionalProperties": False
}
}
},
{
"type": "function",
"function": {
"name": "record_unknown_question",
"description": "Always use this tool to record any question that couldn't be answered",
"parameters": {
"type": "object",
"properties": {
"question": {"type": "string", "description": "The question that couldn't be answered"}
},
"required": ["question"],
"additionalProperties": False
}
}
},
{
"type": "function",
"function": {
"name": "search_knowledge_base",
"description": "Search the knowledge base for specific information",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string", "description": "The search query"},
"focus_area": {"type": "string", "description": "Optional: specific area to focus on"}
},
"required": ["query"],
"additionalProperties": False
}
}
}
]
def record_user_details(self, email: str, name: str, notes: str) -> Dict:
self.email_collected = True
self.user_email = email
self.user_name = name
self.notifier.send(f"New Contact: {name} <{email}>\nInterest: {notes}")
return {"recorded": "ok", "message": f"Perfect! Thanks {name}. I'll be in touch soon."}
def record_unknown_question(self, question: str) -> Dict:
self.notifier.send(f"Unanswered: {question}")
return {"recorded": "ok", "message": "I'll make a note of that question."}
def search_knowledge_base(self, query: str, focus_area: str = None) -> Dict:
if not self.rag_system:
return {"success": False, "message": "RAG system not available"}
enhanced_query = f"{focus_area}: {query}" if focus_area else query
context = self.rag_system.retriever.retrieve(
enhanced_query,
method=self.config["rag_method"],
top_k=self.config["top_k"],
expand_query=self.config["query_expansion"],
query_expander=self.rag_system.query_expander if self.config["query_expansion"] else None
)
results = [{"source": doc["source"], "text": doc["text"][:300] + "...", "score": doc["retrieval_score"]} for doc in context]
return {"success": True, "results": results, "message": f"Found {len(results)} relevant pieces"}
def handle_tool_calls(self, tool_calls) -> List[Dict]:
results = []
for tool_call in tool_calls:
tool_name = tool_call.function.name
arguments = json.loads(tool_call.function.arguments)
print(f"[TOOL] Tool called: {tool_name}", flush=True)
tool_func = getattr(self, tool_name, None)
result = tool_func(**arguments) if tool_func else {"error": f"Unknown tool: {tool_name}"}
results.append({
"role": "tool",
"content": json.dumps(result),
"tool_call_id": tool_call.id
})
return results
def get_system_prompt(self, rag_context: List[Dict] = None) -> str:
prompt = f"""You are acting as {self.name}. You are answering questions on {self.name}'s website, particularly questions related to {self.name}'s career, background, skills and experience.
Your responsibility is to represent {self.name} for interactions on the website as faithfully as possible.
Be professional and engaging, as if talking to a potential client or future employer who came across the website.
"""
if rag_context:
prompt += "\n## Retrieved Information:\n"
for doc in rag_context:
prompt += f"\n[{doc['source']}]:\n{doc['text']}\n"
else:
all_context = "\n\n".join([f"## {k.title()}:\n{v}" for k, v in self.documents.items()])
prompt += f"\n{all_context}\n"
prompt += f"""
## Important Instructions:
- If you don't know the answer to any question, use your record_unknown_question tool
- If you need more specific information, use your search_knowledge_base tool
"""
if not self.email_collected:
prompt += """- If the user is engaging positively, naturally steer towards getting in touch
- Ask for BOTH their name and email address (ask for name first if they only provide email)
- When using record_user_details tool, include a 1-line summary of what they were interested in
- Only call the tool after you have collected both name and email
"""
else:
prompt += f"""- You have already collected contact from {self.user_name or 'this user'} ({self.user_email})
- Continue naturally without repeatedly asking for contact details
"""
prompt += f"\n\nWith this context, please chat with the user, always staying in character as {self.name}."
return prompt
def chat(self, message: str, history: List) -> str:
converted_history = []
for h in history:
if isinstance(h, (list, tuple)) and len(h) == 2:
user_msg, bot_msg = h
if user_msg:
converted_history.append({"role": "user", "content": user_msg})
if bot_msg:
converted_history.append({"role": "assistant", "content": bot_msg})
elif isinstance(h, dict):
converted_history.append({k: v for k, v in h.items() if k in ["role", "content"]})
history = converted_history
use_rag = self.config["rag_enabled"] and self.rag_system
rag_context = None
if use_rag:
query_check = self.openai.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": f"Is this query asking for specific information about someone's background, experience, or skills? Answer only 'yes' or 'no'.\n\nQuery: {message}"}],
temperature=0
)
should_retrieve = query_check.choices[0].message.content.strip().lower() == "yes"
if should_retrieve:
print("[RAG] Using RAG for this query")
rag_context = self.rag_system.retriever.retrieve(
message,
method=self.config["rag_method"],
top_k=self.config["top_k"],
expand_query=self.config["query_expansion"],
query_expander=self.rag_system.query_expander if self.config["query_expansion"] else None
)
system_prompt = self.get_system_prompt(rag_context)
messages = [{"role": "system", "content": system_prompt}] + history + [{"role": "user", "content": message}]
done = False
max_iterations = 5
iteration = 0
while not done and iteration < max_iterations:
iteration += 1
response = self.openai.chat.completions.create(model="gpt-4o-mini", messages=messages, tools=self.tools, temperature=0.7)
finish_reason = response.choices[0].finish_reason
if finish_reason == "tool_calls":
message_obj = response.choices[0].message
tool_calls = message_obj.tool_calls
results = self.handle_tool_calls(tool_calls)
messages.append(message_obj)
messages.extend(results)
else:
done = True
return response.choices[0].message.content
return response.choices[0].message.content
print("Initializing Digital Twin...")
twin = DigitalTwin()
print("Digital Twin ready!")
def chat_wrapper(message, history):
return twin.chat(message, history)
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="slate"), css="#chatbot {height: 600px;} .contain {max-width: 900px; margin: auto;}") as demo:
gr.Markdown(f"""# Chat with {twin.name}
Welcome! I'm an AI assistant representing {twin.name}. Ask me anything about background, experience, skills, or interests.
Features: Advanced RAG - Context-aware - Smart contact collection - Real-time notifications""")
chatbot = gr.ChatInterface(
chat_wrapper,
chatbot=gr.Chatbot(elem_id="chatbot"),
textbox=gr.Textbox(placeholder=f"Ask me about {twin.name}'s experience, skills, or background...", container=False, scale=7),
title=None,
description=None
)
gr.Markdown(f"""---
Powered by Advanced RAG - OpenAI GPT-4 - Hybrid Search and Reranking
RAG Configuration: {twin.config['rag_method'].upper()} - Top {twin.config['top_k']} docs - Query expansion: {'ON' if twin.config['query_expansion'] else 'OFF'}""")
if __name__ == "__main__":
demo.launch(share=False, server_name="0.0.0.0", server_port=7867)