Spaces:
Running
Running
File size: 10,565 Bytes
b02e301 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import json
import numpy as np
from typing import List, Dict
from pathlib import Path
import pandas as pd
from datetime import datetime
class RAGEvaluator:
def __init__(self, openai_client):
self.client = openai_client
def mean_reciprocal_rank(self, retrieved_docs: List[str], relevant_docs: List[str]) -> float:
for i, doc_id in enumerate(retrieved_docs, 1):
if doc_id in relevant_docs:
return 1.0 / i
return 0.0
def dcg_at_k(self, relevances: List[float], k: int = None) -> float:
if k is not None:
relevances = relevances[:k]
if not relevances:
return 0.0
return relevances[0] + sum(rel / np.log2(i + 1) for i, rel in enumerate(relevances[1:], 2))
def ndcg_at_k(self, retrieved_docs: List[str], relevance_scores: Dict[str, float], k: int = 5) -> float:
retrieved_relevances = [relevance_scores.get(doc_id, 0.0) for doc_id in retrieved_docs[:k]]
dcg = self.dcg_at_k(retrieved_relevances, k)
ideal_relevances = sorted(relevance_scores.values(), reverse=True)[:k]
idcg = self.dcg_at_k(ideal_relevances, k)
if idcg == 0:
return 0.0
return dcg / idcg
def precision_at_k(self, retrieved_docs: List[str], relevant_docs: List[str], k: int = 5) -> float:
retrieved_k = retrieved_docs[:k]
relevant_count = sum(1 for doc in retrieved_k if doc in relevant_docs)
return relevant_count / k if k > 0 else 0.0
def recall_at_k(self, retrieved_docs: List[str], relevant_docs: List[str], k: int = 5) -> float:
if not relevant_docs:
return 0.0
retrieved_k = retrieved_docs[:k]
relevant_count = sum(1 for doc in retrieved_k if doc in relevant_docs)
return relevant_count / len(relevant_docs)
def llm_as_judge_relevance(self, query: str, document: str, context: str = "") -> Dict:
prompt = f"""You are evaluating the relevance of a document to a user query.
Context: {context}
Query: {query}
Document: {document}
Rate the relevance of this document to the query on a scale of 0-5:
- 0: Completely irrelevant
- 1: Minimally relevant
- 2: Somewhat relevant
- 3: Moderately relevant
- 4: Very relevant
- 5: Perfectly relevant
Respond with ONLY a JSON object in this format:
{{"relevance_score": <number>, "explanation": "<brief explanation>"}}"""
try:
response = self.client.chat.completions.create(model="gpt-4o-mini", messages=[{"role": "user", "content": prompt}], temperature=0.3)
result = json.loads(response.choices[0].message.content)
return result
except Exception as e:
print(f"LLM judge failed: {e}")
return {"relevance_score": 0, "explanation": "Error in evaluation"}
def llm_as_judge_answer(self, query: str, answer: str, ground_truth: str = None, context: List[str] = None) -> Dict:
prompt = f"""You are evaluating the quality of an AI assistant's answer.
Query: {query}
Answer: {answer}
"""
if ground_truth:
prompt += f"\nGround Truth:\n{ground_truth}\n"
if context:
prompt += f"\nAvailable Context:\n" + "\n---\n".join(context[:3])
prompt += """
Rate the answer on these dimensions (0-5 scale each):
- Accuracy: How factually correct is the answer?
- Completeness: Does it fully address the query?
- Relevance: Is the answer focused on the question?
- Coherence: Is it well-structured and clear?
Respond with ONLY a JSON object:
{
"accuracy": <number>,
"completeness": <number>,
"relevance": <number>,
"coherence": <number>,
"overall_score": <number>,
"feedback": "<brief explanation>"
}"""
try:
response = self.client.chat.completions.create(model="gpt-4o-mini", messages=[{"role": "user", "content": prompt}], temperature=0.3)
result = json.loads(response.choices[0].message.content)
return result
except Exception as e:
print(f"LLM judge failed: {e}")
return {"accuracy": 0, "completeness": 0, "relevance": 0, "coherence": 0, "overall_score": 0, "feedback": f"Error: {e}"}
def evaluate_retrieval(self, test_cases: List[Dict], retriever, method: str = "hybrid_rerank", k: int = 5) -> pd.DataFrame:
results = []
for test_case in test_cases:
query = test_case["query"]
relevant_docs = test_case.get("relevant_docs", [])
relevance_scores = test_case.get("relevance_scores", {})
retrieved = retriever.retrieve(query, method=method, top_k=k)
retrieved_ids = [doc["id"] for doc in retrieved]
mrr = self.mean_reciprocal_rank(retrieved_ids, relevant_docs)
ndcg = self.ndcg_at_k(retrieved_ids, relevance_scores, k)
precision = self.precision_at_k(retrieved_ids, relevant_docs, k)
recall = self.recall_at_k(retrieved_ids, relevant_docs, k)
results.append({
"query": query,
"method": method,
"mrr": mrr,
"ndcg@k": ndcg,
"precision@k": precision,
"recall@k": recall,
"num_retrieved": len(retrieved_ids)
})
return pd.DataFrame(results)
def evaluate_rag_system(self, test_cases: List[Dict], rag_system, system_prompt: str, method: str = "hybrid_rerank") -> pd.DataFrame:
results = []
for test_case in test_cases:
query = test_case["query"]
ground_truth = test_case.get("ground_truth")
response = rag_system.query(query, system_prompt, method=method)
context_texts = [doc["text"] for doc in response["context"]]
judge_result = self.llm_as_judge_answer(query, response["answer"], ground_truth, context_texts)
results.append({
"query": query,
"method": method,
"answer": response["answer"],
"num_context_docs": len(response["context"]),
**judge_result
})
return pd.DataFrame(results)
def compare_rag_methods(self, test_cases: List[Dict], rag_system, system_prompt: str, methods: List[str] = None) -> pd.DataFrame:
if methods is None:
methods = ["bm25", "semantic", "hybrid", "hybrid_rerank"]
all_results = []
for method in methods:
print(f"\nEvaluating method: {method}")
method_results = self.evaluate_rag_system(test_cases, rag_system, system_prompt, method)
all_results.append(method_results)
combined = pd.concat(all_results, ignore_index=True)
return combined
def save_evaluation_report(self, results: pd.DataFrame, output_dir: str = "evaluations", name: str = "evaluation"):
output_path = Path(output_dir)
output_path.mkdir(exist_ok=True)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
csv_path = output_path / f"{name}_{timestamp}.csv"
results.to_csv(csv_path, index=False)
print(f"Saved CSV to {csv_path}")
summary = results.groupby("method").agg({
"overall_score": ["mean", "std"],
"accuracy": "mean",
"completeness": "mean",
"relevance": "mean",
"coherence": "mean"
}).round(3)
summary_path = output_path / f"{name}_summary_{timestamp}.txt"
with open(summary_path, "w") as f:
f.write("RAG Evaluation Summary\n")
f.write("=" * 50 + "\n\n")
f.write(summary.to_string())
f.write("\n\n")
f.write(f"Total queries evaluated: {len(results)}\n")
f.write(f"Timestamp: {timestamp}\n")
print(f"Saved summary to {summary_path}")
return csv_path, summary_path
def create_test_cases(queries_and_answers: List[tuple]) -> List[Dict]:
return [{"query": query, "ground_truth": answer} for query, answer in queries_and_answers]
if __name__ == "__main__":
import sys
from pathlib import Path
sys.path.insert(0, str(Path(__file__).parent))
from openai import OpenAI
from helpers import get_config, load_all_documents
from rag_system import RAGSystem
print("RAG System Evaluation Demo")
print("=" * 50)
config = get_config()
client = OpenAI(api_key=config["openai_api_key"])
print("\nLoading documents...")
app_dir = Path(__file__).parent
documents = load_all_documents(str(app_dir / "me"))
print(f"Loaded {len(documents)} documents")
print("\nInitializing RAG system...")
rag_system = RAGSystem(client, data_dir=str(app_dir / "data"))
rag_system.load_knowledge_base(documents, chunk_size=500, overlap=50)
print("RAG system ready")
evaluator = RAGEvaluator(client)
test_cases = create_test_cases([
("What is your background?", "Professional background and experience"),
("What technologies do you work with?", "List of technologies and tech stack"),
("What projects have you worked on?", "Description of projects and achievements")
])
print(f"\nRunning evaluation with {len(test_cases)} test cases...")
print("\nComparing RAG methods: BM25, Semantic, Hybrid, Hybrid+Rerank")
system_prompt = f"You are an AI assistant representing {config['name']}. Answer questions based on the provided context."
results = evaluator.compare_rag_methods(test_cases, rag_system, system_prompt)
print("\n" + "=" * 50)
print("RESULTS SUMMARY")
print("=" * 50)
summary = results.groupby("method").agg({
"overall_score": ["mean", "std"],
"accuracy": "mean",
"completeness": "mean",
"relevance": "mean",
"coherence": "mean"
}).round(3)
print(summary)
csv_path, summary_path = evaluator.save_evaluation_report(results, name="rag_comparison")
print("\n" + "=" * 50)
print(f"Detailed results saved to: {csv_path}")
print(f"Summary saved to: {summary_path}")
print("=" * 50)
|