File size: 7,618 Bytes
b02e301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Implementing Notebook 1 using various LLMs via Groq"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from dotenv import load_dotenv"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "load_dotenv(override=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
    "groq_api_key = os.getenv('GROQ_API_KEY')\n",
    "\n",
    "if openai_api_key:\n",
    "    print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
    "else:\n",
    "    print(\"OpenAI API Key not set - please head to the troubleshooting guide in the setup folder\")\n",
    "\n",
    "if groq_api_key:\n",
    "    print(f\"Groq API Key exists and begins {groq_api_key[:2]}\")\n",
    "else:\n",
    "    print(\"Groq API Key not set - please head to the troubleshooting guide in the setup folder\")\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from openai import OpenAI"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "openai = OpenAI(\n",
    "    base_url=\"https://api.groq.com/openai/v1\",\n",
    "    api_key=groq_api_key\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# And now - let's ask for a question:\n",
    "\n",
    "question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
    "messages = [{\"role\": \"user\", \"content\": question}]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# openai/gpt-oss-120b\n",
    "\n",
    "response = openai.chat.completions.create(\n",
    "    model=\"openai/gpt-oss-120b\",\n",
    "    messages=messages\n",
    ")\n",
    "\n",
    "print(response.choices[0].message.content)\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# moonshotai/kimi-k2-instruct\n",
    "\n",
    "response = openai.chat.completions.create(\n",
    "    model=\"moonshotai/kimi-k2-instruct\",\n",
    "    messages=messages\n",
    ")\n",
    "\n",
    "question = response.choices[0].message.content\n",
    "\n",
    "print(question)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# form a new messages list\n",
    "messages = [{\"role\": \"user\", \"content\": question}]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Ask meta-llama/llama-guard-4-12b\n",
    "\n",
    "response = openai.chat.completions.create(\n",
    "    model=\"llama-3.1-8b-instant\",\n",
    "    messages=messages\n",
    ")\n",
    "\n",
    "answer = response.choices[0].message.content\n",
    "print(answer)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from IPython.display import Markdown, display\n",
    "\n",
    "display(Markdown(question))\n",
    "display(Markdown(answer))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left; width:100%\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
    "            <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
    "            First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
    "            Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
    "            Finally have 3 third LLM call propose the Agentic AI solution. <br/>\n",
    "            We will cover this at up-coming labs, so don't worry if you're unsure.. just give it a try!\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# First create the messages:\n",
    "\n",
    "messages = [{\"role\": \"user\", \"content\": \"Pick a business area that is worth exploring for a Gen-Z audience, that can be an agentic-ai opportunity. \\\n",
    "             Somehwere where the concept of agentisation can be applied commerically. Respond only with the business idea.\"}]\n",
    "\n",
    "# Then make the first call: \n",
    "\n",
    "response = openai.chat.completions.create(\n",
    "    model = \"qwen/qwen3-32b\",\n",
    "    messages = messages\n",
    ")\n",
    "\n",
    "# Then read the business idea:\n",
    "\n",
    "business_idea = response.choices[0].message.content\n",
    "print(business_idea)\n",
    "\n",
    "# And repeat! In the next message, include the business idea within the message\n",
    "\n",
    "user_prompt_pain_point = f\"What is the pain point of the Gen-Z audience in the business area of {business_idea}?, that can be solved by an agentic-ai solution? Give a brief answer\"\n",
    "\n",
    "response = openai.chat.completions.create(\n",
    "    model = \"gemma2-9b-it\",\n",
    "    messages = [{\"role\": \"user\", \"content\": user_prompt_pain_point}]\n",
    ")\n",
    "\n",
    "pain_point = response.choices[0].message.content\n",
    "print(pain_point)\n",
    "\n",
    "user_prompt_solution = f\"What is the solution to the pain point {pain_point} of the Gen-Z audience in the business area of {business_idea}?, that can be solved by an agentic-ai solution? Provide a step-by-step breakdown\"\n",
    "\n",
    "response = openai.chat.completions.create(\n",
    "    model = \"deepseek-r1-distill-llama-70b\",\n",
    "    messages = [{\"role\": \"user\", \"content\": user_prompt_solution}]\n",
    ")\n",
    "\n",
    "business_solution = response.choices[0].message.content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "display(Markdown(business_solution))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}