Stella-PL-retrieval-8k
This is an embedding model based on stella_en_1.5B_v5 and further fine-tuned for retrieval tasks in Polish. It transforms texts into 1024-dimensional vectors. The model training consisted of two stages:
- In the first stage, we adapted the model to support the Polish language using the multilingual knowledge distillation method method, leveraging a diverse corpus of 20 million Polish-English text pairs.
- The original Stella model and the output of the first stage were limited to a short context of 512 tokens. In the second stage, we extended the context to 8192 tokens and then fine-tuned the model using contrastive loss on a dataset comprising 1.5 million queries. Positive and negative passages for each query have been selected with the help of BAAI/bge-reranker-v2.5-gemma2-lightweight reranker. The model was trained for three epochs with a batch size of 1024 queries.
Usage (Sentence-Transformers)
The model utilizes the same prompts as the original stella_en_1.5B_v5.
For retrieval, queries should be prefixed with "Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: ".
For symmetric tasks such as semantic similarity, both texts should be prefixed with "Instruct: Retrieve semantically similar text.\nQuery: ".
Please note that the model uses a custom implementation, so you should add trust_remote_code=True argument when loading it.
You can use the model like this with sentence-transformers:
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
model = SentenceTransformer(
"sdadas/stella-pl-retrieval-8k",
trust_remote_code=True,
device="cuda"
)
model.bfloat16()
# Retrieval example
query_prefix = "Instruct: Given a web search query, retrieve relevant passages that answer the query.\nQuery: "
queries = [query_prefix + "Jak dożyć 100 lat?"]
answers = [
"Trzeba zdrowo się odżywiać i uprawiać sport.",
"Trzeba pić alkohol, imprezować i jeździć szybkimi autami.",
"Gdy trwała kampania politycy zapewniali, że rozprawią się z zakazem niedzielnego handlu."
]
queries_emb = model.encode(queries, convert_to_tensor=True, show_progress_bar=False)
answers_emb = model.encode(answers, convert_to_tensor=True, show_progress_bar=False)
best_answer = cos_sim(queries_emb, answers_emb).argmax().item()
print(answers[best_answer])
# Semantic similarity example
sim_prefix = "Instruct: Retrieve semantically similar text.\nQuery: "
sentences = [
sim_prefix + "Trzeba zdrowo się odżywiać i uprawiać sport.",
sim_prefix + "Warto jest prowadzić zdrowy tryb życia, uwzględniający aktywność fizyczną i dietę.",
sim_prefix + "One should eat healthy and engage in sports.",
sim_prefix + "Zakupy potwierdzasz PINem, który bezpiecznie ustalisz podczas aktywacji."
]
emb = model.encode(sentences, convert_to_tensor=True, show_progress_bar=False)
print(cos_sim(emb, emb))
Evaluation Results
The model achieves NDCG@10 of 62.69 on the Polish Information Retrieval Benchmark. See PIRB Leaderboard for detailed results.
Acknowledgements
The research was supported [in part] by project “Cloud Artificial Intelligence Service Engineering (CAISE) platform to create universal and smart services for various application areas”, No. KPOD.05.10-IW.10-0005/24, as part of the European IPCEI-CIS program, financed by NRRP (National Recovery and Resilience Plan) funds. Computations were carried out using the computers of Centre of Informatics Tricity Academic Supercomputer & Network at Gdansk University of Technology.
Citation
@article{dadas2024pirb,
title={{PIRB}: A Comprehensive Benchmark of Polish Dense and Hybrid Text Retrieval Methods},
author={Sławomir Dadas and Michał Perełkiewicz and Rafał Poświata},
year={2024},
eprint={2402.13350},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 583