new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 9

Denoising LM: Pushing the Limits of Error Correction Models for Speech Recognition

Language models (LMs) have long been used to improve results of automatic speech recognition (ASR) systems, but they are unaware of the errors that ASR systems make. Error correction models are designed to fix ASR errors, however, they showed little improvement over traditional LMs mainly due to the lack of supervised training data. In this paper, we present Denoising LM (DLM), which is a scaled error correction model trained with vast amounts of synthetic data, significantly exceeding prior attempts meanwhile achieving new state-of-the-art ASR performance. We use text-to-speech (TTS) systems to synthesize audio, which is fed into an ASR system to produce noisy hypotheses, which are then paired with the original texts to train the DLM. DLM has several key ingredients: (i) up-scaled model and data; (ii) usage of multi-speaker TTS systems; (iii) combination of multiple noise augmentation strategies; and (iv) new decoding techniques. With a Transformer-CTC ASR, DLM achieves 1.5% word error rate (WER) on test-clean and 3.3% WER on test-other on Librispeech, which to our knowledge are the best reported numbers in the setting where no external audio data are used and even match self-supervised methods which use external audio data. Furthermore, a single DLM is applicable to different ASRs, and greatly surpassing the performance of conventional LM based beam-search rescoring. These results indicate that properly investigated error correction models have the potential to replace conventional LMs, holding the key to a new level of accuracy in ASR systems.

  • 6 authors
·
May 24, 2024

Measuring Prosody Diversity in Zero-Shot TTS: A New Metric, Benchmark, and Exploration

Prosody diversity is essential for achieving naturalness and expressiveness in zero-shot text-to-speech (TTS). However, frequently used acoustic metrics capture only partial views of prosodic variation and correlate poorly with human perception, leaving the problem of reliably quantifying prosody diversity underexplored. To bridge this gap, we introduce ProsodyEval, a prosody diversity assessment dataset that provides Prosody Mean Opinion Score (PMOS) alongside conventional acoustic metrics. ProsodyEval comprises 1000 speech samples derived from 7 mainstream TTS systems, with 2000 human ratings. Building on this, we propose the Discretized Speech Weighted Edit Distance (DS-WED), a new objective diversity metric that quantifies prosodic variation via weighted edit distance over semantic tokens. Experiments on ProsodyEval show that DS-WED achieves substantially higher correlation with human judgments than existing acoustic metrics, while remaining highly robust in speech tokenization from HuBERT and WavLM. Leveraging DS-WED, we benchmark state-of-the-art open-source TTS systems on LibriSpeech test-clean and Seed-TTS test-en, and further explorations uncover several factors that influence prosody diversity, including generative modeling paradigms, duration control, and reinforcement learning. Moreover, we find that current large audio language models (LALMs) remain limited in capturing prosodic variations. Audio samples are available at https://prosodyeval.github.io.

  • 8 authors
·
Sep 24

CLEAR: Continuous Latent Autoregressive Modeling for High-quality and Low-latency Speech Synthesis

Autoregressive (AR) language models have emerged as powerful solutions for zero-shot text-to-speech (TTS) synthesis, capable of generating natural speech from a few seconds of audio prompts. However, conventional AR-based TTS systems relying on discrete audio tokens face the challenge of lossy compression during tokenization, requiring longer discrete token sequences to capture the same information as continuous ones, which adds inference latency and complicates AR modeling. To address this challenge, this paper proposes the Continuous Latent Autoregressive model (CLEAR), a unified zero-shot TTS framework that directly models continuous audio representations. More specifically, CLEAR introduces an enhanced variational autoencoder with shortcut connections, which achieves a high compression ratio to map waveforms into compact continuous latents. A lightweight MLP-based rectified flow head that operates independently for each hidden state is presented to model the continuous latent probability distribution, and trained jointly with the AR model within a single-stage framework. Experiments show that the proposed zero-shot CLEAR TTS can synthesize high-quality speech with low latency. Compared to state-of-the-art (SOTA) TTS models, CLEAR delivers competitive performance in robustness, speaker similarity and naturalness, while offering a lower real-time factor (RTF). In particular, CLEAR achieves SOTA results on the LibriSpeech test-clean dataset, with a word error rate of 1.88\% and an RTF of 0.29. Moreover, CLEAR facilitates streaming speech synthesis with a first-frame delay of 96ms, while maintaining high-quality speech synthesis.

  • 5 authors
·
Aug 26

W2v-BERT: Combining Contrastive Learning and Masked Language Modeling for Self-Supervised Speech Pre-Training

Motivated by the success of masked language modeling~(MLM) in pre-training natural language processing models, we propose w2v-BERT that explores MLM for self-supervised speech representation learning. w2v-BERT is a framework that combines contrastive learning and MLM, where the former trains the model to discretize input continuous speech signals into a finite set of discriminative speech tokens, and the latter trains the model to learn contextualized speech representations via solving a masked prediction task consuming the discretized tokens. In contrast to existing MLM-based speech pre-training frameworks such as HuBERT, which relies on an iterative re-clustering and re-training process, or vq-wav2vec, which concatenates two separately trained modules, w2v-BERT can be optimized in an end-to-end fashion by solving the two self-supervised tasks~(the contrastive task and MLM) simultaneously. Our experiments show that w2v-BERT achieves competitive results compared to current state-of-the-art pre-trained models on the LibriSpeech benchmarks when using the Libri-Light~60k corpus as the unsupervised data. In particular, when compared to published models such as conformer-based wav2vec~2.0 and HuBERT, our model shows~5\% to~10\% relative WER reduction on the test-clean and test-other subsets. When applied to the Google's Voice Search traffic dataset, w2v-BERT outperforms our internal conformer-based wav2vec~2.0 by more than~30\% relatively.

  • 7 authors
·
Aug 7, 2021

CUDA: Convolution-based Unlearnable Datasets

Large-scale training of modern deep learning models heavily relies on publicly available data on the web. This potentially unauthorized usage of online data leads to concerns regarding data privacy. Recent works aim to make unlearnable data for deep learning models by adding small, specially designed noises to tackle this issue. However, these methods are vulnerable to adversarial training (AT) and/or are computationally heavy. In this work, we propose a novel, model-free, Convolution-based Unlearnable DAtaset (CUDA) generation technique. CUDA is generated using controlled class-wise convolutions with filters that are randomly generated via a private key. CUDA encourages the network to learn the relation between filters and labels rather than informative features for classifying the clean data. We develop some theoretical analysis demonstrating that CUDA can successfully poison Gaussian mixture data by reducing the clean data performance of the optimal Bayes classifier. We also empirically demonstrate the effectiveness of CUDA with various datasets (CIFAR-10, CIFAR-100, ImageNet-100, and Tiny-ImageNet), and architectures (ResNet-18, VGG-16, Wide ResNet-34-10, DenseNet-121, DeIT, EfficientNetV2-S, and MobileNetV2). Our experiments show that CUDA is robust to various data augmentations and training approaches such as smoothing, AT with different budgets, transfer learning, and fine-tuning. For instance, training a ResNet-18 on ImageNet-100 CUDA achieves only 8.96%, 40.08%, and 20.58% clean test accuracies with empirical risk minimization (ERM), L_{infty} AT, and L_{2} AT, respectively. Here, ERM on the clean training data achieves a clean test accuracy of 80.66%. CUDA exhibits unlearnability effect with ERM even when only a fraction of the training dataset is perturbed. Furthermore, we also show that CUDA is robust to adaptive defenses designed specifically to break it.

  • 3 authors
·
Mar 7, 2023

BAP v2: An Enhanced Task Framework for Instruction Following in Minecraft Dialogues

Developing interactive agents that can understand language, perceive their surroundings, and act within the physical world is a long-standing goal of AI research. The Minecraft Collaborative Building Task (MCBT) (Narayan-Chen, Jayannavar, and Hockenmaier 2019), a two-player game in which an Architect (A) instructs a Builder (B) to construct a target structure in a simulated 3D Blocks World environment, offers a rich platform to work towards this goal. In this work, we focus on the Builder Action Prediction (BAP) subtask: predicting B's actions in a multimodal game context (Jayannavar, Narayan-Chen, and Hockenmaier 2020) - a challenging testbed for grounded instruction following, with limited training data. We holistically re-examine this task and introduce BAP v2 to address key challenges in evaluation, training data, and modeling. Specifically, we define an enhanced evaluation benchmark, featuring a cleaner test set and fairer, more insightful metrics that also reveal spatial reasoning as the primary performance bottleneck. To address data scarcity and to teach models basic spatial skills, we generate different types of synthetic MCBT data. We observe that current, LLM-based SOTA models trained on the human BAP dialogues fail on these simpler, synthetic BAP ones, but show that training models on this synthetic data improves their performance across the board. We also introduce a new SOTA model, Llama-CRAFTS, which leverages richer input representations, and achieves an F1 score of 53.0 on the BAP v2 task and strong performance on the synthetic data. While this result marks a notable 6 points improvement over previous work, it also underscores the task's remaining difficulty, establishing BAP v2 as a fertile ground for future research, and providing a useful measure of the spatial capabilities of current text-only LLMs in such embodied tasks.

  • 9 authors
·
Jan 18 1

TTSnap: Test-Time Scaling of Diffusion Models via Noise-Aware Pruning

A prominent approach to test-time scaling for text-to-image diffusion models formulates the problem as a search over multiple noise seeds, selecting the one that maximizes a certain image-reward function. The effectiveness of this strategy heavily depends on the number and diversity of noise seeds explored. However, verifying each candidate is computationally expensive, because each must be fully denoised before a reward can be computed. This severely limits the number of samples that can be explored under a fixed budget. We propose test-time scaling with noise-aware pruning (TTSnap), a framework that prunes low-quality candidates without fully denoising them. The key challenge is that reward models are learned in the clean image domain, and the ranking of rewards predicted for intermediate estimates are often inconsistent with those predicted for clean images. To overcome this, we train noise-aware reward models via self-distillation to align the reward for intermediate estimates with that of the final clean images. To stabilize learning across different noise levels, we adopt a curriculum training strategy that progressively shifts the data domain from clean images to noise images. In addition, we introduce a new metric that measures reward alignment and computational budget utilization. Experiments demonstrate that our approach improves performance by over 16\% compared with existing methods, enabling more efficient and effective test-time scaling. It also provides orthogonal gains when combined with post-training techniques and local test-time optimization. Code: https://github.com/TerrysLearning/TTSnap/.

  • 9 authors
·
Nov 27

Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks

We identify label errors in the test sets of 10 of the most commonly-used computer vision, natural language, and audio datasets, and subsequently study the potential for these label errors to affect benchmark results. Errors in test sets are numerous and widespread: we estimate an average of at least 3.3% errors across the 10 datasets, where for example label errors comprise at least 6% of the ImageNet validation set. Putative label errors are identified using confident learning algorithms and then human-validated via crowdsourcing (51% of the algorithmically-flagged candidates are indeed erroneously labeled, on average across the datasets). Traditionally, machine learning practitioners choose which model to deploy based on test accuracy - our findings advise caution here, proposing that judging models over correctly labeled test sets may be more useful, especially for noisy real-world datasets. Surprisingly, we find that lower capacity models may be practically more useful than higher capacity models in real-world datasets with high proportions of erroneously labeled data. For example, on ImageNet with corrected labels: ResNet-18 outperforms ResNet-50 if the prevalence of originally mislabeled test examples increases by just 6%. On CIFAR-10 with corrected labels: VGG-11 outperforms VGG-19 if the prevalence of originally mislabeled test examples increases by just 5%. Test set errors across the 10 datasets can be viewed at https://labelerrors.com and all label errors can be reproduced by https://github.com/cleanlab/label-errors.

  • 3 authors
·
Mar 26, 2021

Improving Adversarial Robustness of Masked Autoencoders via Test-time Frequency-domain Prompting

In this paper, we investigate the adversarial robustness of vision transformers that are equipped with BERT pretraining (e.g., BEiT, MAE). A surprising observation is that MAE has significantly worse adversarial robustness than other BERT pretraining methods. This observation drives us to rethink the basic differences between these BERT pretraining methods and how these differences affect the robustness against adversarial perturbations. Our empirical analysis reveals that the adversarial robustness of BERT pretraining is highly related to the reconstruction target, i.e., predicting the raw pixels of masked image patches will degrade more adversarial robustness of the model than predicting the semantic context, since it guides the model to concentrate more on medium-/high-frequency components of images. Based on our analysis, we provide a simple yet effective way to boost the adversarial robustness of MAE. The basic idea is using the dataset-extracted domain knowledge to occupy the medium-/high-frequency of images, thus narrowing the optimization space of adversarial perturbations. Specifically, we group the distribution of pretraining data and optimize a set of cluster-specific visual prompts on frequency domain. These prompts are incorporated with input images through prototype-based prompt selection during test period. Extensive evaluation shows that our method clearly boost MAE's adversarial robustness while maintaining its clean performance on ImageNet-1k classification. Our code is available at: https://github.com/shikiw/RobustMAE.

  • 8 authors
·
Aug 20, 2023

Demystifying the Visual Quality Paradox in Multimodal Large Language Models

Recent Multimodal Large Language Models (MLLMs) excel on benchmark vision-language tasks, yet little is known about how input visual quality shapes their responses. Does higher perceptual quality of images already translate to better MLLM understanding? We conduct the first systematic study spanning leading MLLMs and a suite of vision-language benchmarks, applying controlled degradations and stylistic shifts to each image. Surprisingly, we uncover a visual-quality paradox: model, task, and even individual-instance performance can improve when images deviate from human-perceived fidelity. Off-the-shelf restoration pipelines fail to reconcile these idiosyncratic preferences. To close the gap, we introduce Visual-Quality Test-Time Tuning (VQ-TTT)-a lightweight adaptation module that: (1) inserts a learnable, low-rank kernel before the frozen vision encoder to modulate frequency content; and (2) fine-tunes only shallow vision-encoder layers via LoRA. VQ-TTT dynamically adjusts each input image in a single forward pass, aligning it with task-specific model preferences. Across the evaluated MLLMs and all datasets, VQ-TTT lifts significant average accuracy, with no external models, cached features, or extra training data. These findings redefine ``better'' visual inputs for MLLMs and highlight the need for adaptive, rather than universally ``clean'', imagery, in the new era of AI being the main data customer.

  • 8 authors
·
Jun 18 2

WILT: A Multi-Turn, Memorization-Robust Inductive Logic Benchmark for LLMs

While large language models have shown impressive capabilities across a wide range of domains, they still encounter significant challenges in reasoning tasks that require gathering evidence over multiple turns and drawing logical conclusions. These challenges present significant obstacles for LLM chat user interfaces, which rely on multi-turn interactions to facilitate effective collaboration. This limitation leads to real-world issues; for example, service chatbots must gather necessary information from customers over multiple turns to diagnose and resolve problems effectively. Despite the multi-turn nature of many real-world LLM use cases, most existing benchmarks rely on carefully curated single-turn tests, which often blur the line between memorization and genuine reasoning. To address this, we introduce the Wason Inductive Logic Test (WILT), a simple yet challenging multi-turn reasoning benchmark designed to resist memorization. WILT is inspired by the Wason 2-4-6 task, where participants must infer a boolean function involving three variables (e.g., x < y < z) by proposing test cases (such as (2, 4, 6)). In WILT, each test starts from a clean slate, with only the initial instructions provided, preventing models from relying on pre-learned responses. Over several turns, models must interact with the environment by suggesting test cases to narrow the possible hypotheses and ultimately infer the hidden function based on the outcomes. Our findings reveal that LLMs struggle with this task, exhibiting distinct strengths and weaknesses: some are better at narrowing down the hypothesis space by proposing valuable test cases, while others are more adept at deducing the hidden function from observed cases. Despite these variations, the best-performing model achieves only 28% accuracy, highlighting a significant gap in LLM performance on complex multi-turn reasoning tasks.

  • 4 authors
·
Oct 14, 2024

KramaBench: A Benchmark for AI Systems on Data-to-Insight Pipelines over Data Lakes

Constructing real-world data-to-insight pipelines often involves data extraction from data lakes, data integration across heterogeneous data sources, and diverse operations from data cleaning to analysis. The design and implementation of data science pipelines require domain knowledge, technical expertise, and even project-specific insights. AI systems have shown remarkable reasoning, coding, and understanding capabilities. However, it remains unclear to what extent these capabilities translate into successful design and execution of such complex pipelines. We introduce KRAMABENCH: a benchmark composed of 104 manually-curated real-world data science pipelines spanning 1700 data files from 24 data sources in 6 different domains. We show that these pipelines test the end-to-end capabilities of AI systems on data processing, requiring data discovery, wrangling and cleaning, efficient processing, statistical reasoning, and orchestrating data processing steps given a high-level task. Our evaluation tests 5 general models and 3 code generation models using our reference framework, DS-GURU, which instructs the AI model to decompose a question into a sequence of subtasks, reason through each step, and synthesize Python code that implements the proposed design. Our results on KRAMABENCH show that, although the models are sufficiently capable of solving well-specified data science code generation tasks, when extensive data processing and domain knowledge are required to construct real-world data science pipelines, existing out-of-box models fall short. Progress on KramaBench represents crucial steps towards developing autonomous data science agents for real-world applications. Our code, reference framework, and data are available at https://github.com/mitdbg/KramaBench.

  • 19 authors
·
Jun 6

Stable Video Infinity: Infinite-Length Video Generation with Error Recycling

We propose Stable Video Infinity (SVI) that is able to generate infinite-length videos with high temporal consistency, plausible scene transitions, and controllable streaming storylines. While existing long-video methods attempt to mitigate accumulated errors via handcrafted anti-drifting (e.g., modified noise scheduler, frame anchoring), they remain limited to single-prompt extrapolation, producing homogeneous scenes with repetitive motions. We identify that the fundamental challenge extends beyond error accumulation to a critical discrepancy between the training assumption (seeing clean data) and the test-time autoregressive reality (conditioning on self-generated, error-prone outputs). To bridge this hypothesis gap, SVI incorporates Error-Recycling Fine-Tuning, a new type of efficient training that recycles the Diffusion Transformer (DiT)'s self-generated errors into supervisory prompts, thereby encouraging DiT to actively identify and correct its own errors. This is achieved by injecting, collecting, and banking errors through closed-loop recycling, autoregressively learning from error-injected feedback. Specifically, we (i) inject historical errors made by DiT to intervene on clean inputs, simulating error-accumulated trajectories in flow matching; (ii) efficiently approximate predictions with one-step bidirectional integration and calculate errors with residuals; (iii) dynamically bank errors into replay memory across discretized timesteps, which are resampled for new input. SVI is able to scale videos from seconds to infinite durations with no additional inference cost, while remaining compatible with diverse conditions (e.g., audio, skeleton, and text streams). We evaluate SVI on three benchmarks, including consistent, creative, and conditional settings, thoroughly verifying its versatility and state-of-the-art role.

epfl-vita EPFL VITA Lab
·
Oct 10 2

Overview of the TREC 2023 deep learning track

This is the fifth year of the TREC Deep Learning track. As in previous years, we leverage the MS MARCO datasets that made hundreds of thousands of human-annotated training labels available for both passage and document ranking tasks. We mostly repeated last year's design, to get another matching test set, based on the larger, cleaner, less-biased v2 passage and document set, with passage ranking as primary and document ranking as a secondary task (using labels inferred from passage). As we did last year, we sample from MS MARCO queries that were completely held out, unused in corpus construction, unlike the test queries in the first three years. This approach yields a more difficult test with more headroom for improvement. Alongside the usual MS MARCO (human) queries from MS MARCO, this year we generated synthetic queries using a fine-tuned T5 model and using a GPT-4 prompt. The new headline result this year is that runs using Large Language Model (LLM) prompting in some way outperformed runs that use the "nnlm" approach, which was the best approach in the previous four years. Since this is the last year of the track, future iterations of prompt-based ranking can happen in other tracks. Human relevance assessments were applied to all query types, not just human MS MARCO queries. Evaluation using synthetic queries gave similar results to human queries, with system ordering agreement of τ=0.8487. However, human effort was needed to select a subset of the synthetic queries that were usable. We did not see clear evidence of bias, where runs using GPT-4 were favored when evaluated using synthetic GPT-4 queries, or where runs using T5 were favored when evaluated on synthetic T5 queries.

  • 8 authors
·
Jul 10

UKBOB: One Billion MRI Labeled Masks for Generalizable 3D Medical Image Segmentation

In medical imaging, the primary challenge is collecting large-scale labeled data due to privacy concerns, logistics, and high labeling costs. In this work, we present the UK Biobank Organs and Bones (UKBOB), the largest labeled dataset of body organs, comprising 51,761 MRI 3D samples (equivalent to 17.9 million 2D images) and more than 1.37 billion 2D segmentation masks of 72 organs, all based on the UK Biobank MRI dataset. We utilize automatic labeling, introduce an automated label cleaning pipeline with organ-specific filters, and manually annotate a subset of 300 MRIs with 11 abdominal classes to validate the quality (referred to as UKBOB-manual). This approach allows for scaling up the dataset collection while maintaining confidence in the labels. We further confirm the validity of the labels by demonstrating zero-shot generalization of trained models on the filtered UKBOB to other small labeled datasets from similar domains (e.g., abdominal MRI). To further mitigate the effect of noisy labels, we propose a novel method called Entropy Test-time Adaptation (ETTA) to refine the segmentation output. We use UKBOB to train a foundation model, Swin-BOB, for 3D medical image segmentation based on the Swin-UNetr architecture, achieving state-of-the-art results in several benchmarks in 3D medical imaging, including the BRATS brain MRI tumor challenge (with a 0.4% improvement) and the BTCV abdominal CT scan benchmark (with a 1.3% improvement). The pre-trained models and the code are available at https://emmanuelleb985.github.io/ukbob , and the filtered labels will be made available with the UK Biobank.

1.4 Million Open-Source Distilled Reasoning Dataset to Empower Large Language Model Training

The AM-DeepSeek-R1-Distilled is a large-scale dataset with thinking traces for general reasoning tasks, composed of high-quality and challenging reasoning problems. These problems are collected from a multitude of open-source datasets, subjected to semantic deduplication and meticulous cleaning to eliminate test set contamination. All responses within the dataset are distilled from reasoning models (predominantly DeepSeek-R1) and have undergone rigorous verification procedures. Mathematical problems are validated by checking against reference answers, code problems are verified using test cases, and other tasks are evaluated with the aid of a reward model. The AM-Distill-Qwen-32B model, which was trained through only simple Supervised Fine-Tuning (SFT) using this batch of data, outperformed the DeepSeek-R1-Distill-Qwen-32B model on four benchmarks: AIME2024, MATH-500, GPQA-Diamond, and LiveCodeBench. Additionally, the AM-Distill-Qwen-72B model surpassed the DeepSeek-R1-Distill-Llama-70B model on all benchmarks as well. We are releasing these 1.4 million problems and their corresponding responses to the research community with the objective of fostering the development of powerful reasoning-oriented Large Language Models (LLMs). The dataset was published in https://huggingface.co/datasets/a-m-team/AM-DeepSeek-R1-Distilled-1.4M{https://huggingface.co/datasets/a-m-team/AM-DeepSeek-R1-Distilled-1.4M}.

  • 8 authors
·
Mar 25

Test-time Batch Statistics Calibration for Covariate Shift

Deep neural networks have a clear degradation when applying to the unseen environment due to the covariate shift. Conventional approaches like domain adaptation requires the pre-collected target data for iterative training, which is impractical in real-world applications. In this paper, we propose to adapt the deep models to the novel environment during inference. An previous solution is test time normalization, which substitutes the source statistics in BN layers with the target batch statistics. However, we show that test time normalization may potentially deteriorate the discriminative structures due to the mismatch between target batch statistics and source parameters. To this end, we present a general formulation alpha-BN to calibrate the batch statistics by mixing up the source and target statistics for both alleviating the domain shift and preserving the discriminative structures. Based on alpha-BN, we further present a novel loss function to form a unified test time adaptation framework Core, which performs the pairwise class correlation online optimization. Extensive experiments show that our approaches achieve the state-of-the-art performance on total twelve datasets from three topics, including model robustness to corruptions, domain generalization on image classification and semantic segmentation. Particularly, our alpha-BN improves 28.4\% to 43.9\% on GTA5 rightarrow Cityscapes without any training, even outperforms the latest source-free domain adaptation method.

  • 3 authors
·
Oct 6, 2021

DiffTester: Accelerating Unit Test Generation for Diffusion LLMs via Repetitive Pattern

Software development relies heavily on extensive unit testing, which makes the efficiency of automated Unit Test Generation (UTG) particularly important. However, most existing LLMs generate test cases one token at a time in each forward pass, which leads to inefficient UTG. Recently, diffusion LLMs (dLLMs) have emerged, offering promising parallel generation capabilities and showing strong potential for efficient UTG. Despite this advantage, their application to UTG is still constrained by a clear trade-off between efficiency and test quality, since increasing the number of tokens generated in each step often causes a sharp decline in the quality of test cases. To overcome this limitation, we present DiffTester, an acceleration framework specifically tailored for dLLMs in UTG. The key idea of DiffTester is that unit tests targeting the same focal method often share repetitive structural patterns. By dynamically identifying these common patterns through abstract syntax tree analysis during generation, DiffTester adaptively increases the number of tokens produced at each step without compromising the quality of the output. To enable comprehensive evaluation, we extend the original TestEval benchmark, which was limited to Python, by introducing additional programming languages including Java and C++. Extensive experiments on three benchmarks with two representative models show that DiffTester delivers significant acceleration while preserving test coverage. Moreover, DiffTester generalizes well across different dLLMs and programming languages, providing a practical and scalable solution for efficient UTG in software development. Code and data are publicly available at https://github.com/wellbeingyang/DLM4UTG-open .

  • 4 authors
·
Sep 29 2

Self-Reflective Generation at Test Time

Large language models (LLMs) increasingly solve complex reasoning tasks via long chain-of-thought, but their forward-only autoregressive generation process is fragile; early token errors can cascade, which creates a clear need for self-reflection mechanisms. However, existing self-reflection either performs revisions over full drafts or learns self-correction via expensive training, both fundamentally reactive and inefficient. To address this, we propose Self-Reflective Generation at Test Time (SRGen), a lightweight test-time framework that reflects before generating at uncertain points. During token generation, SRGen utilizes dynamic entropy thresholding to identify high-uncertainty tokens. For each identified token, it trains a specific corrective vector, which fully exploits the already generated context for a self-reflective generation to correct the token probability distribution. By retrospectively analyzing the partial output, this self-reflection enables more trustworthy decisions, thereby significantly reducing the probability of errors at highly uncertain points. Evaluated on challenging mathematical reasoning benchmarks and a diverse set of LLMs, SRGen can consistently strengthen model reasoning: improvements in single-pass quality also translate into stronger self-consistency voting. Especially, on AIME2024 with DeepSeek-R1-Distill-Qwen-7B, SRGen yields absolute improvements of +12.0% on Pass@1 and +13.3% on Cons@5. Moreover, our findings position SRGen as a plug-and-play method that integrates reflection into the generation process for reliable LLM reasoning, achieving consistent gains with bounded overhead and broad composability with other training-time (e.g., RLHF) and test-time (e.g., SLOT) techniques.

  • 8 authors
·
Oct 3 2

TrimR: Verifier-based Training-Free Thinking Compression for Efficient Test-Time Scaling

Large Reasoning Models (LRMs) demonstrate exceptional capability in tackling complex mathematical, logical, and coding tasks by leveraging extended Chain-of-Thought (CoT) reasoning. Test-time scaling methods, such as prolonging CoT with explicit token-level exploration, can push LRMs' accuracy boundaries, but they incur significant decoding overhead. A key inefficiency source is LRMs often generate redundant thinking CoTs, which demonstrate clear structured overthinking and underthinking patterns. Inspired by human cognitive reasoning processes and numerical optimization theories, we propose TrimR, a verifier-based, training-free, efficient framework for dynamic CoT compression to trim reasoning and enhance test-time scaling, explicitly tailored for production-level deployment. Our method employs a lightweight, pretrained, instruction-tuned verifier to detect and truncate redundant intermediate thoughts of LRMs without any LRM or verifier fine-tuning. We present both the core algorithm and asynchronous online system engineered for high-throughput industrial applications. Empirical evaluations on Ascend NPUs and vLLM show that our framework delivers substantial gains in inference efficiency under large-batch workloads. In particular, on the four MATH500, AIME24, AIME25, and GPQA benchmarks, the reasoning runtime of Pangu Pro MoE, Pangu-R-38B, QwQ-32B, and DeepSeek-R1-Distill-Qwen-32B is improved by up to 70% with negligible impact on accuracy.

  • 10 authors
·
May 22

Adaptive Dual Uncertainty Optimization: Boosting Monocular 3D Object Detection under Test-Time Shifts

Accurate monocular 3D object detection (M3OD) is pivotal for safety-critical applications like autonomous driving, yet its reliability deteriorates significantly under real-world domain shifts caused by environmental or sensor variations. To address these shifts, Test-Time Adaptation (TTA) methods have emerged, enabling models to adapt to target distributions during inference. While prior TTA approaches recognize the positive correlation between low uncertainty and high generalization ability, they fail to address the dual uncertainty inherent to M3OD: semantic uncertainty (ambiguous class predictions) and geometric uncertainty (unstable spatial localization). To bridge this gap, we propose Dual Uncertainty Optimization (DUO), the first TTA framework designed to jointly minimize both uncertainties for robust M3OD. Through a convex optimization lens, we introduce an innovative convex structure of the focal loss and further derive a novel unsupervised version, enabling label-agnostic uncertainty weighting and balanced learning for high-uncertainty objects. In parallel, we design a semantic-aware normal field constraint that preserves geometric coherence in regions with clear semantic cues, reducing uncertainty from the unstable 3D representation. This dual-branch mechanism forms a complementary loop: enhanced spatial perception improves semantic classification, and robust semantic predictions further refine spatial understanding. Extensive experiments demonstrate the superiority of DUO over existing methods across various datasets and domain shift types.

  • 7 authors
·
Aug 28

Visual Document Understanding and Question Answering: A Multi-Agent Collaboration Framework with Test-Time Scaling

Existing vision-language models (VLMs), whether generalists or specialists, remain constrained by their parameter scale, lack robust self-correction capabilities, and underperform in tasks involving long visual contexts and complex reasoning, resulting in suboptimal performance on document-based tasks. To address this, we propose MACT, a Multi-Agent Collaboration framework with Test-Time scaling, tailored for visual document understanding and visual question answering (VQA). It comprises four distinct small-scale agents, i.e., planning, execution, judgment, and answer agents, with clearly defined roles and effective collaboration. Notably, the judgment agent exclusively verifies correctness and redirects to prior agents for revisions, outperforming conventional correction strategies. To further expand the capability boundaries of the framework, we propose mixed reward modeling that balances agent-specific abilities and global collaboration, as well as agent-wise hybrid test-time scaling, which customizes different scaling strategies for each agent based on their functions. Evaluated on benchmarks spanning both document-based and non-document-based settings, our MACT shows superior performance with a smaller parameter scale without sacrificing the ability of general and mathematical tasks. Especially, it stands out in benchmarks involving long visual contexts and complicated reasoning. The three variants of MACT consistently hold the top three positions in average scores, leading in 13 of the 15 benchmarks. Code will be available at: https://github.com/YU-deep/MACT.git.

  • 9 authors
·
Aug 5 2

Enhancing Automated Software Traceability by Transfer Learning from Open-World Data

Software requirements traceability is a critical component of the software engineering process, enabling activities such as requirements validation, compliance verification, and safety assurance. However, the cost and effort of manually creating a complete set of trace links across natural language artifacts such as requirements, design, and test-cases can be prohibitively expensive. Researchers have therefore proposed automated link-generation solutions primarily based on information-retrieval (IR) techniques; however, these solutions have failed to deliver the accuracy needed for full adoption in industrial projects. Improvements can be achieved using deep-learning traceability models; however, their efficacy is impeded by the limited size and availability of project-level artifacts and links to serve as training data. In this paper, we address this problem by proposing and evaluating several deep-learning approaches for text-to-text traceability. Our method, named NLTrace, explores three transfer learning strategies that use datasets mined from open world platforms. Through pretraining Language Models (LMs) and leveraging adjacent tracing tasks, we demonstrate that NLTrace can significantly improve the performance of LM based trace models when training links are available. In such scenarios NLTrace outperforms the best performing classical IR method with an 188% improvement in F2 score and 94.01% in Mean Average Precision (MAP). It also outperforms the general LM based trace model by 7% and 23% for F2 and MAP respectively. In addition, NLTrace can adapt to low-resource tracing scenarios where other LM models can not. The knowledge learned from adjacent tasks enables NLTrace to outperform VSM models by 28% F2 on generation challenges when presented with a small number of training examples.

  • 6 authors
·
Jul 3, 2022

Generative augmentations for improved cardiac ultrasound segmentation using diffusion models

One of the main challenges in current research on segmentation in cardiac ultrasound is the lack of large and varied labeled datasets and the differences in annotation conventions between datasets. This makes it difficult to design robust segmentation models that generalize well to external datasets. This work utilizes diffusion models to create generative augmentations that can significantly improve diversity of the dataset and thus the generalisability of segmentation models without the need for more annotated data. The augmentations are applied in addition to regular augmentations. A visual test survey showed that experts cannot clearly distinguish between real and fully generated images. Using the proposed generative augmentations, segmentation robustness was increased when training on an internal dataset and testing on an external dataset with an improvement of over 20 millimeters in Hausdorff distance. Additionally, the limits of agreement for automatic ejection fraction estimation improved by up to 20% of absolute ejection fraction value on out of distribution cases. These improvements come exclusively from the increased variation of the training data using the generative augmentations, without modifying the underlying machine learning model. The augmentation tool is available as an open source Python library at https://github.com/GillesVanDeVyver/EchoGAINS.

  • 8 authors
·
Feb 27

NAAQA: A Neural Architecture for Acoustic Question Answering

The goal of the Acoustic Question Answering (AQA) task is to answer a free-form text question about the content of an acoustic scene. It was inspired by the Visual Question Answering (VQA) task. In this paper, based on the previously introduced CLEAR dataset, we propose a new benchmark for AQA, namely CLEAR2, that emphasizes the specific challenges of acoustic inputs. These include handling of variable duration scenes, and scenes built with elementary sounds that differ between training and test set. We also introduce NAAQA, a neural architecture that leverages specific properties of acoustic inputs. The use of 1D convolutions in time and frequency to process 2D spectro-temporal representations of acoustic content shows promising results and enables reductions in model complexity. We show that time coordinate maps augment temporal localization capabilities which enhance performance of the network by ~17 percentage points. On the other hand, frequency coordinate maps have little influence on this task. NAAQA achieves 79.5% of accuracy on the AQA task with ~4 times fewer parameters than the previously explored VQA model. We evaluate the perfomance of NAAQA on an independent data set reconstructed from DAQA. We also test the addition of a MALiMo module in our model on both CLEAR2 and DAQA. We provide a detailed analysis of the results for the different question types. We release the code to produce CLEAR2 as well as NAAQA to foster research in this newly emerging machine learning task.

  • 3 authors
·
Jun 10, 2021

Reproducibility in Multiple Instance Learning: A Case For Algorithmic Unit Tests

Multiple Instance Learning (MIL) is a sub-domain of classification problems with positive and negative labels and a "bag" of inputs, where the label is positive if and only if a positive element is contained within the bag, and otherwise is negative. Training in this context requires associating the bag-wide label to instance-level information, and implicitly contains a causal assumption and asymmetry to the task (i.e., you can't swap the labels without changing the semantics). MIL problems occur in healthcare (one malignant cell indicates cancer), cyber security (one malicious executable makes an infected computer), and many other tasks. In this work, we examine five of the most prominent deep-MIL models and find that none of them respects the standard MIL assumption. They are able to learn anti-correlated instances, i.e., defaulting to "positive" labels until seeing a negative counter-example, which should not be possible for a correct MIL model. We suspect that enhancements and other works derived from these models will share the same issue. In any context in which these models are being used, this creates the potential for learning incorrect models, which creates risk of operational failure. We identify and demonstrate this problem via a proposed "algorithmic unit test", where we create synthetic datasets that can be solved by a MIL respecting model, and which clearly reveal learning that violates MIL assumptions. The five evaluated methods each fail one or more of these tests. This provides a model-agnostic way to identify violations of modeling assumptions, which we hope will be useful for future development and evaluation of MIL models.

  • 2 authors
·
Oct 26, 2023

Finding Blind Spots in Evaluator LLMs with Interpretable Checklists

Large Language Models (LLMs) are increasingly relied upon to evaluate text outputs of other LLMs, thereby influencing leaderboards and development decisions. However, concerns persist over the accuracy of these assessments and the potential for misleading conclusions. In this work, we investigate the effectiveness of LLMs as evaluators for text generation tasks. We propose FBI, a novel framework designed to examine the proficiency of Evaluator LLMs in assessing four critical abilities in other LLMs: factual accuracy, instruction following, coherence in long-form writing, and reasoning proficiency. By introducing targeted perturbations in answers generated by LLMs, that clearly impact one of these key capabilities, we test whether an Evaluator LLM can detect these quality drops. By creating a total of 2400 perturbed answers covering 22 perturbation categories, we conduct a comprehensive study using different evaluation strategies on five prominent LLMs commonly used as evaluators in the literature. Our findings reveal significant shortcomings in current Evaluator LLMs, which failed to identify quality drops in over 50\% of cases on average. Single-answer and pairwise evaluations demonstrated notable limitations, whereas reference-based evaluations showed comparatively better performance. These results underscore the unreliable nature of current Evaluator LLMs and advocate for cautious implementation in practical applications. Code and data are available at https://github.com/AI4Bharat/FBI.

  • 4 authors
·
Jun 19, 2024

DETRs with Collaborative Hybrid Assignments Training

In this paper, we provide the observation that too few queries assigned as positive samples in DETR with one-to-one set matching leads to sparse supervision on the encoder's output which considerably hurt the discriminative feature learning of the encoder and vice visa for attention learning in the decoder. To alleviate this, we present a novel collaborative hybrid assignments training scheme, namely Co-DETR, to learn more efficient and effective DETR-based detectors from versatile label assignment manners. This new training scheme can easily enhance the encoder's learning ability in end-to-end detectors by training the multiple parallel auxiliary heads supervised by one-to-many label assignments such as ATSS and Faster RCNN. In addition, we conduct extra customized positive queries by extracting the positive coordinates from these auxiliary heads to improve the training efficiency of positive samples in the decoder. In inference, these auxiliary heads are discarded and thus our method introduces no additional parameters and computational cost to the original detector while requiring no hand-crafted non-maximum suppression (NMS). We conduct extensive experiments to evaluate the effectiveness of the proposed approach on DETR variants, including DAB-DETR, Deformable-DETR, and DINO-Deformable-DETR. The state-of-the-art DINO-Deformable-DETR with Swin-L can be improved from 58.5% to 59.5% AP on COCO val. Surprisingly, incorporated with ViT-L backbone, we achieve 66.0% AP on COCO test-dev and 67.9% AP on LVIS val, outperforming previous methods by clear margins with much fewer model sizes. Codes are available at https://github.com/Sense-X/Co-DETR.

  • 3 authors
·
Nov 22, 2022