new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

Deep Learning solutions to singular ordinary differential equations: from special functions to spherical accretion

Singular regular points often arise in differential equations describing physical phenomena such as fluid dynamics, electromagnetism, and gravitation. Traditional numerical techniques often fail or become unstable near these points, requiring the use of semi-analytical tools, such as series expansions and perturbative methods, in combination with numerical algorithms; or to invoke more sophisticated methods. In this work, we take an alternative route and leverage the power of machine learning to exploit Physics Informed Neural Networks (PINNs) as a modern approach to solving ordinary differential equations with singular points. PINNs utilize deep learning architectures to approximate solutions by embedding the differential equations into the loss function of the neural network. We discuss the advantages of PINNs in handling singularities, particularly their ability to bypass traditional grid-based methods and provide smooth approximations across irregular regions. Techniques for enhancing the accuracy of PINNs near singular points, such as adaptive loss weighting, are used in order to achieve high efficiency in the training of the network. We exemplify our results by studying four differential equations of interest in mathematics and gravitation -- the Legendre equation, the hypergeometric equation, the solution for black hole space-times in theories of Lorentz violating gravity, and the spherical accretion of a perfect fluid in a Schwarzschild geometry.

  • 3 authors
·
Sep 30, 2024

Parabolic-elliptic and indirect-direct simplifications in chemotaxis systems driven by indirect signalling

Singular limits for the following indirect signalling chemotaxis system align* \left\{ array{lllllll} \partial_t n = \Delta n - \nabla \cdot (n \nabla c ) & in \Omega\times(0,\infty) , \varepsilon \partial_t c = \Delta c - c + w & in \Omega\times(0,\infty), \varepsilon \partial_t w = \tau \Delta w - w + n & in \Omega\times (0,\infty), \partial_\nu n = \partial_\nu c = \partial_\nu w = 0, &on \partial\Omega\times (0,\infty) %(n,c,w)_{t=0} = (n_0,c_0,w_0) & on \Omega, array \right. align* are investigated. More precisely, we study parabolic-elliptic simplification, or PES, varepsilonto 0^+ with fixed tau>0 up to the critical dimension N=4, and indirect-direct simplification, or IDS, (varepsilon,tau)to (0^+,0^+) up to the critical dimension N=2. These are relevant in biological situations where the signalling process is on a much faster time scale compared to the species diffusion and all interactions. Showing singular limits in critical dimensions is challenging. To deal with the PES, we carefully combine the entropy function, an Adam-type inequality, the regularisation of slow evolution, and an energy equation method to obtain strong convergence in representative spaces. For the IDS, a bootstrap argument concerning the L^p-energy function is devised, which allows us to obtain suitable uniform bounds for the singular limits. Moreover, in both scenarios, we also present the convergence rates, where the effect of the initial layer and the convergence to the critical manifold are also revealed.

  • 4 authors
·
Aug 2

Fast and Eager k-Medoids Clustering: O(k) Runtime Improvement of the PAM, CLARA, and CLARANS Algorithms

Clustering non-Euclidean data is difficult, and one of the most used algorithms besides hierarchical clustering is the popular algorithm Partitioning Around Medoids (PAM), also simply referred to as k-medoids clustering. In Euclidean geometry the mean-as used in k-means-is a good estimator for the cluster center, but this does not exist for arbitrary dissimilarities. PAM uses the medoid instead, the object with the smallest dissimilarity to all others in the cluster. This notion of centrality can be used with any (dis-)similarity, and thus is of high relevance to many domains and applications. A key issue with PAM is its high run time cost. We propose modifications to the PAM algorithm that achieve an O(k)-fold speedup in the second ("SWAP") phase of the algorithm, but will still find the same results as the original PAM algorithm. If we relax the choice of swaps performed (while retaining comparable quality), we can further accelerate the algorithm by eagerly performing additional swaps in each iteration. With the substantially faster SWAP, we can now explore faster initialization strategies, because (i) the classic ("BUILD") initialization now becomes the bottleneck, and (ii) our swap is fast enough to compensate for worse starting conditions. We also show how the CLARA and CLARANS algorithms benefit from the proposed modifications. While we do not study the parallelization of our approach in this work, it can easily be combined with earlier approaches to use PAM and CLARA on big data (some of which use PAM as a subroutine, hence can immediately benefit from these improvements), where the performance with high k becomes increasingly important. In experiments on real data with k=100,200, we observed a 458x respectively 1191x speedup compared to the original PAM SWAP algorithm, making PAM applicable to larger data sets, and in particular to higher k.

  • 2 authors
·
Aug 12, 2020

Faster k-Medoids Clustering: Improving the PAM, CLARA, and CLARANS Algorithms

Clustering non-Euclidean data is difficult, and one of the most used algorithms besides hierarchical clustering is the popular algorithm Partitioning Around Medoids (PAM), also simply referred to as k-medoids. In Euclidean geometry the mean-as used in k-means-is a good estimator for the cluster center, but this does not hold for arbitrary dissimilarities. PAM uses the medoid instead, the object with the smallest dissimilarity to all others in the cluster. This notion of centrality can be used with any (dis-)similarity, and thus is of high relevance to many domains such as biology that require the use of Jaccard, Gower, or more complex distances. A key issue with PAM is its high run time cost. We propose modifications to the PAM algorithm to achieve an O(k)-fold speedup in the second SWAP phase of the algorithm, but will still find the same results as the original PAM algorithm. If we slightly relax the choice of swaps performed (at comparable quality), we can further accelerate the algorithm by performing up to k swaps in each iteration. With the substantially faster SWAP, we can now also explore alternative strategies for choosing the initial medoids. We also show how the CLARA and CLARANS algorithms benefit from these modifications. It can easily be combined with earlier approaches to use PAM and CLARA on big data (some of which use PAM as a subroutine, hence can immediately benefit from these improvements), where the performance with high k becomes increasingly important. In experiments on real data with k=100, we observed a 200-fold speedup compared to the original PAM SWAP algorithm, making PAM applicable to larger data sets as long as we can afford to compute a distance matrix, and in particular to higher k (at k=2, the new SWAP was only 1.5 times faster, as the speedup is expected to increase with k).

  • 2 authors
·
Oct 12, 2018

Better Neural PDE Solvers Through Data-Free Mesh Movers

Recently, neural networks have been extensively employed to solve partial differential equations (PDEs) in physical system modeling. While major studies focus on learning system evolution on predefined static mesh discretizations, some methods utilize reinforcement learning or supervised learning techniques to create adaptive and dynamic meshes, due to the dynamic nature of these systems. However, these approaches face two primary challenges: (1) the need for expensive optimal mesh data, and (2) the change of the solution space's degree of freedom and topology during mesh refinement. To address these challenges, this paper proposes a neural PDE solver with a neural mesh adapter. To begin with, we introduce a novel data-free neural mesh adaptor, called Data-free Mesh Mover (DMM), with two main innovations. Firstly, it is an operator that maps the solution to adaptive meshes and is trained using the Monge-Amp\`ere equation without optimal mesh data. Secondly, it dynamically changes the mesh by moving existing nodes rather than adding or deleting nodes and edges. Theoretical analysis shows that meshes generated by DMM have the lowest interpolation error bound. Based on DMM, to efficiently and accurately model dynamic systems, we develop a moving mesh based neural PDE solver (MM-PDE) that embeds the moving mesh with a two-branch architecture and a learnable interpolation framework to preserve information within the data. Empirical experiments demonstrate that our method generates suitable meshes and considerably enhances accuracy when modeling widely considered PDE systems. The code can be found at: https://github.com/Peiyannn/MM-PDE.git.

  • 3 authors
·
Dec 9, 2023

Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective

A burgeoning line of research leverages deep neural networks to approximate the solutions to high dimensional PDEs, opening lines of theoretical inquiry focused on explaining how it is that these models appear to evade the curse of dimensionality. However, most prior theoretical analyses have been limited to linear PDEs. In this work, we take a step towards studying the representational power of neural networks for approximating solutions to nonlinear PDEs. We focus on a class of PDEs known as nonlinear elliptic variational PDEs, whose solutions minimize an Euler-Lagrange energy functional E(u) = int_Omega L(x, u(x), nabla u(x)) - f(x) u(x)dx. We show that if composing a function with Barron norm b with partial derivatives of L produces a function of Barron norm at most B_L b^p, the solution to the PDE can be epsilon-approximated in the L^2 sense by a function with Barron norm Oleft(left(dB_Lright)^{max{p log(1/ epsilon), p^{log(1/epsilon)}}}right). By a classical result due to Barron [1993], this correspondingly bounds the size of a 2-layer neural network needed to approximate the solution. Treating p, epsilon, B_L as constants, this quantity is polynomial in dimension, thus showing neural networks can evade the curse of dimensionality. Our proof technique involves neurally simulating (preconditioned) gradient in an appropriate Hilbert space, which converges exponentially fast to the solution of the PDE, and such that we can bound the increase of the Barron norm at each iterate. Our results subsume and substantially generalize analogous prior results for linear elliptic PDEs over a unit hypercube.

  • 4 authors
·
Oct 21, 2022

Dale meets Langevin: A Multiplicative Denoising Diffusion Model

Gradient descent has proven to be a powerful and effective technique for optimization in numerous machine learning applications. Recent advances in computational neuroscience have shown that learning in standard gradient descent optimization formulation is not consistent with learning in biological systems. This has opened up interesting avenues for building biologically inspired learning techniques. One such approach is inspired by Dale's law, which states that inhibitory and excitatory synapses do not swap roles during the course of learning. The resulting exponential gradient descent optimization scheme leads to log-normally distributed synaptic weights. Interestingly, the density that satisfies the Fokker-Planck equation corresponding to the stochastic differential equation (SDE) with geometric Brownian motion (GBM) is the log-normal density. Leveraging this connection, we start with the SDE governing geometric Brownian motion, and show that discretizing the corresponding reverse-time SDE yields a multiplicative update rule, which surprisingly, coincides with the sampling equivalent of the exponential gradient descent update founded on Dale's law. Furthermore, we propose a new formalism for multiplicative denoising score-matching, subsuming the loss function proposed by Hyvaerinen for non-negative data. Indeed, log-normally distributed data is positive and the proposed score-matching formalism turns out to be a natural fit. This allows for training of score-based models for image data and results in a novel multiplicative update scheme for sample generation starting from a log-normal density. Experimental results on MNIST, Fashion MNIST, and Kuzushiji datasets demonstrate generative capability of the new scheme. To the best of our knowledge, this is the first instance of a biologically inspired generative model employing multiplicative updates, founded on geometric Brownian motion.

Lagrangian PINNs: A causality-conforming solution to failure modes of physics-informed neural networks

Physics-informed neural networks (PINNs) leverage neural-networks to find the solutions of partial differential equation (PDE)-constrained optimization problems with initial conditions and boundary conditions as soft constraints. These soft constraints are often considered to be the sources of the complexity in the training phase of PINNs. Here, we demonstrate that the challenge of training (i) persists even when the boundary conditions are strictly enforced, and (ii) is closely related to the Kolmogorov n-width associated with problems demonstrating transport, convection, traveling waves, or moving fronts. Given this realization, we describe the mechanism underlying the training schemes such as those used in eXtended PINNs (XPINN), curriculum regularization, and sequence-to-sequence learning. For an important category of PDEs, i.e., governed by non-linear convection-diffusion equation, we propose reformulating PINNs on a Lagrangian frame of reference, i.e., LPINNs, as a PDE-informed solution. A parallel architecture with two branches is proposed. One branch solves for the state variables on the characteristics, and the second branch solves for the low-dimensional characteristics curves. The proposed architecture conforms to the causality innate to the convection, and leverages the direction of travel of the information in the domain. Finally, we demonstrate that the loss landscapes of LPINNs are less sensitive to the so-called "complexity" of the problems, compared to those in the traditional PINNs in the Eulerian framework.

  • 3 authors
·
May 5, 2022

Rescaled Einstein-Gauss-Bonnet Gravity Inflation

We study the inflationary phenomenology of a rescaled Einstein-Gauss-Bonnet gravity. In this framework, the gravitational constant of the Einstein-Hilbert term is rescaled due to effective terms active in the high curvature era. Basically, the total theory is an F(R,G,phi) theory with the Gauss-Bonnet part contributing only a non-minimal coupling to the scalar field, so it is a theory with string theory origins and with a non-trivial F(R) gravity part. The F(R) gravity part in the high curvature regime contributes only a rescaled Einstein-Hilbert term and thus the resulting theory is effectively a rescaled version of a standard Einstein-Gauss-Bonnet theory. We develop the formalism of rescaled Einstein-Gauss-Bonnet gravity, taking in account the GW170817 constraints on the gravitational wave speed. We show explicitly how the rescaled theory affects directly the primordial scalar and tensor perturbations, and how the slow-roll and observational indices of inflation are affected by the rescaling of the theory. We perform a thorough phenomenological analysis of several models of interest and we show that is it possible to obtain viable inflationary theories compatible with the latest Planck data. Also among the studied models there are cases that yield a relatively large blue tilted tensor spectral index and we demonstrate that these models can lead to detectable primordial gravitational waves in the future gravitational wave experiments. Some of the scenarios examined, for specific values of the reheating temperature may be detectable by SKA, LISA, BBO, DECIGO and the Einstein Telescope.

  • 5 authors
·
Mar 22

Noise-Adaptive Layerwise Learning Rates: Accelerating Geometry-Aware Optimization for Deep Neural Network Training

Geometry-aware optimization algorithms, such as Muon, have achieved remarkable success in training deep neural networks (DNNs). These methods leverage the underlying geometry of DNNs by selecting appropriate norms for different layers and updating parameters via norm-constrained linear minimization oracles (LMOs). However, even within a group of layers associated with the same norm, the local curvature can be heterogeneous across layers and vary dynamically over the course of training. For example, recent work shows that sharpness varies substantially across transformer layers and throughout training, yet standard geometry-aware optimizers impose fixed learning rates to layers within the same group, which may be inefficient for DNN training. In this paper, we introduce a noise-adaptive layerwise learning rate scheme on top of geometry-aware optimization algorithms and substantially accelerate DNN training compared to methods that use fixed learning rates within each group. Our method estimates gradient variance in the dual norm induced by the chosen LMO on the fly, and uses it to assign time-varying noise-adaptive layerwise learning rates within each group. We provide a theoretical analysis showing that our algorithm achieves a sharp convergence rate. Empirical results on transformer architectures such as LLaMA and GPT demonstrate that our approach achieves faster convergence than state-of-the-art optimizers.

  • 5 authors
·
Oct 15

Synergistic Learning with Multi-Task DeepONet for Efficient PDE Problem Solving

Multi-task learning (MTL) is an inductive transfer mechanism designed to leverage useful information from multiple tasks to improve generalization performance compared to single-task learning. It has been extensively explored in traditional machine learning to address issues such as data sparsity and overfitting in neural networks. In this work, we apply MTL to problems in science and engineering governed by partial differential equations (PDEs). However, implementing MTL in this context is complex, as it requires task-specific modifications to accommodate various scenarios representing different physical processes. To this end, we present a multi-task deep operator network (MT-DeepONet) to learn solutions across various functional forms of source terms in a PDE and multiple geometries in a single concurrent training session. We introduce modifications in the branch network of the vanilla DeepONet to account for various functional forms of a parameterized coefficient in a PDE. Additionally, we handle parameterized geometries by introducing a binary mask in the branch network and incorporating it into the loss term to improve convergence and generalization to new geometry tasks. Our approach is demonstrated on three benchmark problems: (1) learning different functional forms of the source term in the Fisher equation; (2) learning multiple geometries in a 2D Darcy Flow problem and showcasing better transfer learning capabilities to new geometries; and (3) learning 3D parameterized geometries for a heat transfer problem and demonstrate the ability to predict on new but similar geometries. Our MT-DeepONet framework offers a novel approach to solving PDE problems in engineering and science under a unified umbrella based on synergistic learning that reduces the overall training cost for neural operators.

  • 5 authors
·
Aug 4, 2024

Neural Sheaf Diffusion: A Topological Perspective on Heterophily and Oversmoothing in GNNs

Cellular sheaves equip graphs with a "geometrical" structure by assigning vector spaces and linear maps to nodes and edges. Graph Neural Networks (GNNs) implicitly assume a graph with a trivial underlying sheaf. This choice is reflected in the structure of the graph Laplacian operator, the properties of the associated diffusion equation, and the characteristics of the convolutional models that discretise this equation. In this paper, we use cellular sheaf theory to show that the underlying geometry of the graph is deeply linked with the performance of GNNs in heterophilic settings and their oversmoothing behaviour. By considering a hierarchy of increasingly general sheaves, we study how the ability of the sheaf diffusion process to achieve linear separation of the classes in the infinite time limit expands. At the same time, we prove that when the sheaf is non-trivial, discretised parametric diffusion processes have greater control than GNNs over their asymptotic behaviour. On the practical side, we study how sheaves can be learned from data. The resulting sheaf diffusion models have many desirable properties that address the limitations of classical graph diffusion equations (and corresponding GNN models) and obtain competitive results in heterophilic settings. Overall, our work provides new connections between GNNs and algebraic topology and would be of interest to both fields.

  • 5 authors
·
Feb 9, 2022

On Neural Differential Equations

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

  • 1 authors
·
Feb 4, 2022

More on the Weak Gravity Conjecture via Convexity of Charged Operators

The Weak Gravity Conjecture has recently been re-formulated in terms of a particle with non-negative self-binding energy. Because of the dual conformal field theory (CFT) formulation in the anti-de Sitter space the conformal dimension Delta (Q) of the lowest-dimension operator with charge Q under some global U(1) symmetry must be a convex function of Q. This property has been conjectured to hold for any (unitary) conformal field theory and generalized to larger global symmetry groups. Here we refine and further test the convex charge conjecture via semiclassical computations for fixed charge sectors of different theories in different dimensions. We analyze the convexity properties of the leading and next-to-leading order terms stemming from the semiclassical computation, de facto, extending previous tests beyond the leading perturbative contributions and to arbitrary charges. In particular, the leading contribution is sufficient to test convexity in the semiclassical computations. We also consider intriguing cases in which the models feature a transition from real to complex conformal dimensions either as a function of the charge or number of matter fields. As a relevant example of the first kind, we investigate the O(N) model in 4+epsilon dimensions. As an example of the second type we consider the U(N)times U(M) model in 4-epsilon dimensions. Both models display a rich dynamics where, by changing the number of matter fields and/or charge, one can achieve dramatically different physical regimes. We discover that whenever a complex conformal dimension appears, the real part satisfies the convexity property.

  • 5 authors
·
Sep 10, 2021

A Heat Diffusion Perspective on Geodesic Preserving Dimensionality Reduction

Diffusion-based manifold learning methods have proven useful in representation learning and dimensionality reduction of modern high dimensional, high throughput, noisy datasets. Such datasets are especially present in fields like biology and physics. While it is thought that these methods preserve underlying manifold structure of data by learning a proxy for geodesic distances, no specific theoretical links have been established. Here, we establish such a link via results in Riemannian geometry explicitly connecting heat diffusion to manifold distances. In this process, we also formulate a more general heat kernel based manifold embedding method that we call heat geodesic embeddings. This novel perspective makes clearer the choices available in manifold learning and denoising. Results show that our method outperforms existing state of the art in preserving ground truth manifold distances, and preserving cluster structure in toy datasets. We also showcase our method on single cell RNA-sequencing datasets with both continuum and cluster structure, where our method enables interpolation of withheld timepoints of data. Finally, we show that parameters of our more general method can be configured to give results similar to PHATE (a state-of-the-art diffusion based manifold learning method) as well as SNE (an attraction/repulsion neighborhood based method that forms the basis of t-SNE).

  • 7 authors
·
May 30, 2023

Pixel-level modelling of group-scale strong lens CASSOWARY 19

We present the first high-precision model for the group-scale strong lensing system CASSOWARY 19 (CSWA19), utilising images from the Hubble Space Telescope (HST). Sixteen member galaxies identified via the red-sequence method, and the main halo, all modelled as the dual Pseudo Isothermal Elliptical profile (dPIE), are incorporated into a parametric lens model alongside an external shear field. To model the system, we adopt the PyAutoLens software package, employing a progressive search chain strategy for realizing the transition of source model from multiple S\'ersic profiles to a brightness-adaptive pixelization, which uses 1000 pixels in the source plane to reconstruct the background source corresponding to 177,144 image pixels in the image plane. Our results indicate that the total mass within the Einstein radius is M_{theta_E} approx 1.41times10^{13}M_{odot} and the average slope of the total mass density rho (r)propto r^{-gamma} is gamma=1.33 within the effective radius. This slope is shallower than those measured in galaxies and groups but is closer to those of galaxy clusters. In addition, our approach successfully resolves the two merging galaxies in the background source and yields a total magnification of mu=103.18^{+0.23}_{-0.19}, which is significantly higher than the outcomes from previous studies of CSWA19. In summary, our research demonstrates the effectiveness of the brightness-adaptive pixelization source reconstruction technique for modelling group-scale strong lensing systems. It can serve as a technical reference for future investigations into pixel-level modelling of the group- and cluster-scale strong lensing systems.

  • 9 authors
·
Apr 15

SURFACEBENCH: Can Self-Evolving LLMs Find the Equations of 3D Scientific Surfaces?

Equation discovery from data is a core challenge in machine learning for science, requiring the recovery of concise symbolic expressions that govern complex physical and geometric phenomena. Recent approaches with large language models (LLMs) show promise in symbolic regression, but their success often hinges on memorized formulas or overly simplified functional forms. Existing benchmarks exacerbate this limitation: they focus on scalar functions, ignore domain grounding, and rely on brittle string-matching based metrics that fail to capture scientific equivalence. We introduce SurfaceBench, first comprehensive benchmark for symbolic surface discovery. SurfaceBench comprises 183 tasks across 15 categories of symbolic complexity, spanning explicit, implicit, and parametric equation representation forms. Each task includes ground-truth equations, variable semantics, and synthetically sampled three dimensional data. Unlike prior SR datasets, our tasks reflect surface-level structure, resist LLM memorization through novel symbolic compositions, and are grounded in scientific domains such as fluid dynamics, robotics, electromagnetics, and geometry. To evaluate equation discovery quality, we pair symbolic checks with geometry-aware metrics such as Chamfer and Hausdorff distances, capturing both algebraic fidelity and spatial reconstruction accuracy. Our experiments reveal that state-of-the-art frameworks, while occasionally successful on specific families, struggle to generalize across representation types and surface complexities. SurfaceBench thus establishes a challenging and diagnostic testbed that bridges symbolic reasoning with geometric reconstruction, enabling principled benchmarking of progress in compositional generalization, data-driven scientific induction, and geometry-aware reasoning with LLMs. We release the code here: https://github.com/Sanchit-404/surfacebench

  • 4 authors
·
Nov 13

On the matrices in B-spline collocation methods for Riesz fractional equations and their spectral properties

In this work, we focus on a fractional differential equation in Riesz form discretized by a polynomial B-spline collocation method. For an arbitrary polynomial degree p, we show that the resulting coefficient matrices possess a Toeplitz-like structure. We investigate their spectral properties via their symbol and we prove that, like for second order differential problems, also in this case the given matrices are ill-conditioned both in the low and high frequencies for large p. More precisely, in the fractional scenario the symbol has a single zero at 0 of order α, with α the fractional derivative order that ranges from 1 to 2, and it presents an exponential decay to zero at π for increasing p that becomes faster as α approaches 1. This translates in a mitigated conditioning in the low frequencies and in a deterioration in the high frequencies when compared to second order problems. Furthermore, the derivation of the symbol reveals another similarity of our problem with a classical diffusion problem. Since the entries of the coefficient matrices are defined as evaluations of fractional derivatives of the B-spline basis at the collocation points, we are able to express the central entries of the coefficient matrix as inner products of two fractional derivatives of cardinal B-splines. Finally, we perform a numerical study of the approximation behavior of polynomial B-spline collocation. This study suggests that, in line with non-fractional diffusion problems, the approximation order for smooth solutions in the fractional case is p+2-α for even p, and p+1-α for odd p.

  • 4 authors
·
Jun 28, 2021

An efficient Asymptotic-Preserving scheme for the Boltzmann mixture with disparate mass

In this paper, we develop and implement an efficient asymptotic-preserving (AP) scheme to solve the gas mixture of Boltzmann equations under the disparate mass scaling relevant to the so-called "epochal relaxation" phenomenon. The disparity in molecular masses, ranging across several orders of magnitude, leads to significant challenges in both the evaluation of collision operators and the designing of time-stepping schemes to capture the multi-scale nature of the dynamics. A direct implementation of the spectral method faces prohibitive computational costs as the mass ratio increases due to the need to resolve vastly different thermal velocities. Unlike [I. M. Gamba, S. Jin, and L. Liu, Commun. Math. Sci., 17 (2019), pp. 1257-1289], we propose an alternative approach based on proper truncation of asymptotic expansions of the collision operators, which significantly reduces the computational complexity and works well for small varepsilon. By incorporating the separation of three time scales in the model's relaxation process [P. Degond and B. Lucquin-Desreux, Math. Models Methods Appl. Sci., 6 (1996), pp. 405-436], we design an AP scheme that captures the specific dynamics of the disparate mass model while maintaining computational efficiency. Numerical experiments demonstrate the effectiveness of the proposed scheme in handling large mass ratios of heavy and light species, as well as capturing the epochal relaxation phenomenon.

  • 3 authors
·
Nov 20, 2024

The Rayleigh-Boltzmann equation with shear deformations in the hyperbolic-dominated regime

In this paper we consider a particular class of solutions of the Rayleigh-Boltzmann equation, known in the nonlinear setting as homoenergetic solutions, which have the form gleft( x,v,t right) =fleft( v-Lleft( tright)x,tright) where the matrix L(t) describes a shear flow deformation. We began this analysis in [22] where we rigorously proved the existence of a stationary non-equilibrium solution and established the different behaviour of the solutions for small and large values of the shear parameter, for cut-off collision kernels with homogeneity parameter 0leq gamma <1, including Maxwell molecules and hard potentials. In this paper, we concentrate in the case where the deformation term dominates the collision term for large times (hyperbolic-dominated regime). This occurs for collision kernels with gamma < 0 and in particular we focus on gamma in (-1,0). In such a hyperbolic-dominated regime, it appears challenging to provide a clear description of the long-term asymptotics of the solutions. Here we present a formal analysis of the long-time asymptotics for the distribution of velocities and provide the explicit form for the asymptotic profile. Additionally, we discuss the different asymptotic behaviour expected in the case of homogeneity gamma < -1. Furthermore, we provide a probabilistic interpretation describing a stochastic process consisting in a combination of collisions and shear flows. The tagged particle velocity {v(t)}_{tgeq 0} is a Markov process that arises from the combination of free flights in a shear flow along with random jumps caused by collisions.

  • 3 authors
·
Jun 18

Jets of foliations and b^k-algebroids

In this article, we introduce and study singular foliations of b^k-type. These singular foliations formalize the properties of vector fields that are tangent to order k along a submanifold W subset M. Our first result is a classification of these foliations, relating them to geometric structures defined in a formal neighborhood of the submanifold, such as jets of distributions that are involutive up to order k-1. When W is a hypersurface, singular foliations of b^k-type are Lie algebroids. In this particular case, they are generalizations of the b^k-tangent bundles introduced by Scott. Indeed, they are always locally isomorphic to b^k-tangent bundles, but globally such an isomorphism is obstructed by a holonomy invariant. Our second main result is a Riemann-Hilbert-style classification of singular foliations of b^k-type in terms of holonomy representations. In this paper, we study singular foliations of b^k-type from several different perspectives. In particular: (1) We study the problem of extending a k-th-order foliation to a (k+1)-th order foliation and prove that this is obstructed by a characteristic class. (2) When W is a hypersurface, we give a detailed study of algebroid differential forms and extend Scott's calculation of the cohomology. (3) We study algebroid symplectic forms in terms of the geometric structures induced on W. In particular, we find that there is a close relationship between the above obstruction class for extensions and the symplectic variation of the symplectic foliation induced on W.

  • 3 authors
·
Nov 28, 2023

Mathematical modelling of flow and adsorption in a gas chromatograph

In this paper, a mathematical model is developed to describe the evolution of the concentration of compounds through a gas chromatography column. The model couples mass balances and kinetic equations for all components. Both single and multiple-component cases are considered with constant or variable velocity. Non-dimensionalisation indicates the small effect of diffusion. The system where diffusion is neglected is analysed using Laplace transforms. In the multiple-component case, it is demonstrated that the competition between the compounds is negligible and the equations may be decoupled. This reduces the problem to solving a single integral equation to determine the concentration profile for all components (since they are scaled versions of each other). For a given analyte, we then only two parameters need to be fitted to the data. To verify this approach, the full governing equations are also solved numerically using the finite difference method and a global adaptive quadrature method to integrate the Laplace transformation. Comparison with the Laplace solution verifies the high degree of accuracy of the simpler Laplace form. The Laplace solution is then verified against experimental data from BTEX chromatography. This novel method, which involves solving a single equation and fitting parameters in pairs for individual components, is highly efficient. It is significantly faster and simpler than the full numerical solution and avoids the computationally expensive methods that would normally be used to fit all curves at the same time.

  • 5 authors
·
Oct 7, 2024