new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

TwiBot-22: Towards Graph-Based Twitter Bot Detection

Twitter bot detection has become an increasingly important task to combat misinformation, facilitate social media moderation, and preserve the integrity of the online discourse. State-of-the-art bot detection methods generally leverage the graph structure of the Twitter network, and they exhibit promising performance when confronting novel Twitter bots that traditional methods fail to detect. However, very few of the existing Twitter bot detection datasets are graph-based, and even these few graph-based datasets suffer from limited dataset scale, incomplete graph structure, as well as low annotation quality. In fact, the lack of a large-scale graph-based Twitter bot detection benchmark that addresses these issues has seriously hindered the development and evaluation of novel graph-based bot detection approaches. In this paper, we propose TwiBot-22, a comprehensive graph-based Twitter bot detection benchmark that presents the largest dataset to date, provides diversified entities and relations on the Twitter network, and has considerably better annotation quality than existing datasets. In addition, we re-implement 35 representative Twitter bot detection baselines and evaluate them on 9 datasets, including TwiBot-22, to promote a fair comparison of model performance and a holistic understanding of research progress. To facilitate further research, we consolidate all implemented codes and datasets into the TwiBot-22 evaluation framework, where researchers could consistently evaluate new models and datasets. The TwiBot-22 Twitter bot detection benchmark and evaluation framework are publicly available at https://twibot22.github.io/

  • 22 authors
·
Jun 9, 2022

HPCTransCompile: An AI Compiler Generated Dataset for High-Performance CUDA Transpilation and LLM Preliminary Exploration

The rapid growth of deep learning has driven exponential increases in model parameters and computational demands. NVIDIA GPUs and their CUDA-based software ecosystem provide robust support for parallel computing, significantly alleviating computational bottlenecks. Meanwhile, due to the cultivation of user programming habits and the high performance of GPUs, the CUDA ecosystem has established a dominant position in the field of parallel software. This dominance requires other hardware platforms to support CUDA-based software with performance portability. However, translating CUDA code to other platforms poses significant challenges due to differences in parallel programming paradigms and hardware architectures. Existing approaches rely on language extensions, domain-specific languages (DSLs), or compilers but face limitations in workload coverage and generalizability. Moreover, these methods often incur substantial development costs. Recently, LLMs have demonstrated extraordinary potential in various vertical domains, especially in code-related tasks. However, the performance of existing LLMs in CUDA transpilation, particularly for high-performance code, remains suboptimal. To address these challenges, we propose a novel framework for generating high-performance CUDA and corresponding platform code pairs, leveraging AI compiler and automatic optimization technology. We further enhance the framework with a graph-based data augmentation method and introduce HPCTransEval, a benchmark for evaluating LLM performance on CUDA transpilation. We conduct experiments using CUDA-to-CPU transpilation as a case study on leading LLMs. The speedup ratio of the CPU operators has an average improvemnet of 43.8\%, highlighting the potential of LLMs to address compatibility challenges within the CUDA ecosystem. Our code is available at https://github.com/PJLAB-CHIP/HPCTransCompile.

  • 10 authors
·
Jun 12

BRIDGES: Bridging Graph Modality and Large Language Models within EDA Tasks

While many EDA tasks already involve graph-based data, existing LLMs in EDA primarily either represent graphs as sequential text, or simply ignore graph-structured data that might be beneficial like dataflow graphs of RTL code. Recent studies have found that LLM performance suffers when graphs are represented as sequential text, and using additional graph information significantly boosts performance. To address these challenges, we introduce BRIDGES, a framework designed to incorporate graph modality into LLMs for EDA tasks. BRIDGES integrates an automated data generation workflow, a solution that combines graph modality with LLM, and a comprehensive evaluation suite. First, we establish an LLM-driven workflow to generate RTL and netlist-level data, converting them into dataflow and netlist graphs with function descriptions. This workflow yields a large-scale dataset comprising over 500,000 graph instances and more than 1.5 billion tokens. Second, we propose a lightweight cross-modal projector that encodes graph representations into text-compatible prompts, enabling LLMs to effectively utilize graph data without architectural modifications. Experimental results demonstrate 2x to 10x improvements across multiple tasks compared to text-only baselines, including accuracy in design retrieval, type prediction and perplexity in function description, with negligible computational overhead (<1% model weights increase and <30% additional runtime overhead). Even without additional LLM finetuning, our results outperform text-only by a large margin. We plan to release BRIDGES, including the dataset, models, and training flow.

  • 6 authors
·
Apr 7

Disentangled Structural and Featural Representation for Task-Agnostic Graph Valuation

With the emergence of data marketplaces, the demand for methods to assess the value of data has increased significantly. While numerous techniques have been proposed for this purpose, none have specifically addressed graphs as the main data modality. Graphs are widely used across various fields, ranging from chemical molecules to social networks. In this study, we break down graphs into two main components: structural and featural, and we focus on evaluating data without relying on specific task-related metrics, making it applicable in practical scenarios where validation requirements may be lacking. We introduce a novel framework called blind message passing, which aligns the seller's and buyer's graphs using a shared node permutation based on graph matching. This allows us to utilize the graph Wasserstein distance to quantify the differences in the structural distribution of graph datasets, called the structural disparities. We then consider featural aspects of buyers' and sellers' graphs for data valuation and capture their statistical similarities and differences, referred to as relevance and diversity, respectively. Our approach ensures that buyers and sellers remain unaware of each other's datasets. Our experiments on real datasets demonstrate the effectiveness of our approach in capturing the relevance, diversity, and structural disparities of seller data for buyers, particularly in graph-based data valuation scenarios.

  • 2 authors
·
Aug 22, 2024

Advancing Surgical VQA with Scene Graph Knowledge

Modern operating room is becoming increasingly complex, requiring innovative intra-operative support systems. While the focus of surgical data science has largely been on video analysis, integrating surgical computer vision with language capabilities is emerging as a necessity. Our work aims to advance Visual Question Answering (VQA) in the surgical context with scene graph knowledge, addressing two main challenges in the current surgical VQA systems: removing question-condition bias in the surgical VQA dataset and incorporating scene-aware reasoning in the surgical VQA model design. First, we propose a Surgical Scene Graph-based dataset, SSG-QA, generated by employing segmentation and detection models on publicly available datasets. We build surgical scene graphs using spatial and action information of instruments and anatomies. These graphs are fed into a question engine, generating diverse QA pairs. Our SSG-QA dataset provides a more complex, diverse, geometrically grounded, unbiased, and surgical action-oriented dataset compared to existing surgical VQA datasets. We then propose SSG-QA-Net, a novel surgical VQA model incorporating a lightweight Scene-embedded Interaction Module (SIM), which integrates geometric scene knowledge in the VQA model design by employing cross-attention between the textual and the scene features. Our comprehensive analysis of the SSG-QA dataset shows that SSG-QA-Net outperforms existing methods across different question types and complexities. We highlight that the primary limitation in the current surgical VQA systems is the lack of scene knowledge to answer complex queries. We present a novel surgical VQA dataset and model and show that results can be significantly improved by incorporating geometric scene features in the VQA model design. The source code and the dataset will be made publicly available at: https://github.com/CAMMA-public/SSG-QA

  • 6 authors
·
Dec 15, 2023

GraphTranslator: Aligning Graph Model to Large Language Model for Open-ended Tasks

Large language models (LLMs) like ChatGPT, exhibit powerful zero-shot and instruction-following capabilities, have catalyzed a revolutionary transformation across diverse fields, especially for open-ended tasks. While the idea is less explored in the graph domain, despite the availability of numerous powerful graph models (GMs), they are restricted to tasks in a pre-defined form. Although several methods applying LLMs to graphs have been proposed, they fail to simultaneously handle the pre-defined and open-ended tasks, with LLM as a node feature enhancer or as a standalone predictor. To break this dilemma, we propose to bridge the pretrained GM and LLM by a Translator, named GraphTranslator, aiming to leverage GM to handle the pre-defined tasks effectively and utilize the extended interface of LLMs to offer various open-ended tasks for GM. To train such Translator, we propose a Producer capable of constructing the graph-text alignment data along node information, neighbor information and model information. By translating node representation into tokens, GraphTranslator empowers an LLM to make predictions based on language instructions, providing a unified perspective for both pre-defined and open-ended tasks. Extensive results demonstrate the effectiveness of our proposed GraphTranslator on zero-shot node classification. The graph question answering experiments reveal our GraphTranslator potential across a broad spectrum of open-ended tasks through language instructions. Our code is available at: https://github.com/alibaba/GraphTranslator.

  • 9 authors
·
Feb 11, 2024

Representation Learning with Large Language Models for Recommendation

Recommender systems have seen significant advancements with the influence of deep learning and graph neural networks, particularly in capturing complex user-item relationships. However, these graph-based recommenders heavily depend on ID-based data, potentially disregarding valuable textual information associated with users and items, resulting in less informative learned representations. Moreover, the utilization of implicit feedback data introduces potential noise and bias, posing challenges for the effectiveness of user preference learning. While the integration of large language models (LLMs) into traditional ID-based recommenders has gained attention, challenges such as scalability issues, limitations in text-only reliance, and prompt input constraints need to be addressed for effective implementation in practical recommender systems. To address these challenges, we propose a model-agnostic framework RLMRec that aims to enhance existing recommenders with LLM-empowered representation learning. It proposes a recommendation paradigm that integrates representation learning with LLMs to capture intricate semantic aspects of user behaviors and preferences. RLMRec incorporates auxiliary textual signals, develops a user/item profiling paradigm empowered by LLMs, and aligns the semantic space of LLMs with the representation space of collaborative relational signals through a cross-view alignment framework. This work further establish a theoretical foundation demonstrating that incorporating textual signals through mutual information maximization enhances the quality of representations. In our evaluation, we integrate RLMRec with state-of-the-art recommender models, while also analyzing its efficiency and robustness to noise data. Our implementation codes are available at https://github.com/HKUDS/RLMRec.

  • 8 authors
·
Oct 24, 2023

HM-RAG: Hierarchical Multi-Agent Multimodal Retrieval Augmented Generation

While Retrieval-Augmented Generation (RAG) augments Large Language Models (LLMs) with external knowledge, conventional single-agent RAG remains fundamentally limited in resolving complex queries demanding coordinated reasoning across heterogeneous data ecosystems. We present HM-RAG, a novel Hierarchical Multi-agent Multimodal RAG framework that pioneers collaborative intelligence for dynamic knowledge synthesis across structured, unstructured, and graph-based data. The framework is composed of three-tiered architecture with specialized agents: a Decomposition Agent that dissects complex queries into contextually coherent sub-tasks via semantic-aware query rewriting and schema-guided context augmentation; Multi-source Retrieval Agents that carry out parallel, modality-specific retrieval using plug-and-play modules designed for vector, graph, and web-based databases; and a Decision Agent that uses consistency voting to integrate multi-source answers and resolve discrepancies in retrieval results through Expert Model Refinement. This architecture attains comprehensive query understanding by combining textual, graph-relational, and web-derived evidence, resulting in a remarkable 12.95% improvement in answer accuracy and a 3.56% boost in question classification accuracy over baseline RAG systems on the ScienceQA and CrisisMMD benchmarks. Notably, HM-RAG establishes state-of-the-art results in zero-shot settings on both datasets. Its modular architecture ensures seamless integration of new data modalities while maintaining strict data governance, marking a significant advancement in addressing the critical challenges of multimodal reasoning and knowledge synthesis in RAG systems. Code is available at https://github.com/ocean-luna/HMRAG.

  • 7 authors
·
Apr 13

LLaVA Needs More Knowledge: Retrieval Augmented Natural Language Generation with Knowledge Graph for Explaining Thoracic Pathologies

Generating Natural Language Explanations (NLEs) for model predictions on medical images, particularly those depicting thoracic pathologies, remains a critical and challenging task. Existing methodologies often struggle due to general models' insufficient domain-specific medical knowledge and privacy concerns associated with retrieval-based augmentation techniques. To address these issues, we propose a novel Vision-Language framework augmented with a Knowledge Graph (KG)-based datastore, which enhances the model's understanding by incorporating additional domain-specific medical knowledge essential for generating accurate and informative NLEs. Our framework employs a KG-based retrieval mechanism that not only improves the precision of the generated explanations but also preserves data privacy by avoiding direct data retrieval. The KG datastore is designed as a plug-and-play module, allowing for seamless integration with various model architectures. We introduce and evaluate three distinct frameworks within this paradigm: KG-LLaVA, which integrates the pre-trained LLaVA model with KG-RAG; Med-XPT, a custom framework combining MedCLIP, a transformer-based projector, and GPT-2; and Bio-LLaVA, which adapts LLaVA by incorporating the Bio-ViT-L vision model. These frameworks are validated on the MIMIC-NLE dataset, where they achieve state-of-the-art results, underscoring the effectiveness of KG augmentation in generating high-quality NLEs for thoracic pathologies.

  • 5 authors
·
Oct 7, 2024

Causally Fair Node Classification on Non-IID Graph Data

Fair machine learning seeks to identify and mitigate biases in predictions against unfavorable populations characterized by demographic attributes, such as race and gender. Recently, a few works have extended fairness to graph data, such as social networks, but most of them neglect the causal relationships among data instances. This paper addresses the prevalent challenge in fairness-aware ML algorithms, which typically assume Independent and Identically Distributed (IID) data. We tackle the overlooked domain of non-IID, graph-based settings where data instances are interconnected, influencing the outcomes of fairness interventions. We base our research on the Network Structural Causal Model (NSCM) framework and posit two main assumptions: Decomposability and Graph Independence, which enable the computation of interventional distributions in non-IID settings using the do-calculus. Based on that, we develop the Message Passing Variational Autoencoder for Causal Inference (MPVA) to compute interventional distributions and facilitate causally fair node classification through estimated interventional distributions. Empirical evaluations on semi-synthetic and real-world datasets demonstrate that MPVA outperforms conventional methods by effectively approximating interventional distributions and mitigating bias. The implications of our findings underscore the potential of causality-based fairness in complex ML applications, setting the stage for further research into relaxing the initial assumptions to enhance model fairness.

  • 5 authors
·
May 2

Implicit Gaussian process representation of vector fields over arbitrary latent manifolds

Gaussian processes (GPs) are popular nonparametric statistical models for learning unknown functions and quantifying the spatiotemporal uncertainty in data. Recent works have extended GPs to model scalar and vector quantities distributed over non-Euclidean domains, including smooth manifolds appearing in numerous fields such as computer vision, dynamical systems, and neuroscience. However, these approaches assume that the manifold underlying the data is known, limiting their practical utility. We introduce RVGP, a generalisation of GPs for learning vector signals over latent Riemannian manifolds. Our method uses positional encoding with eigenfunctions of the connection Laplacian, associated with the tangent bundle, readily derived from common graph-based approximation of data. We demonstrate that RVGP possesses global regularity over the manifold, which allows it to super-resolve and inpaint vector fields while preserving singularities. Furthermore, we use RVGP to reconstruct high-density neural dynamics derived from low-density EEG recordings in healthy individuals and Alzheimer's patients. We show that vector field singularities are important disease markers and that their reconstruction leads to a comparable classification accuracy of disease states to high-density recordings. Thus, our method overcomes a significant practical limitation in experimental and clinical applications.

  • 9 authors
·
Sep 28, 2023

Interpretable graph-based models on multimodal biomedical data integration: A technical review and benchmarking

Integrating heterogeneous biomedical data including imaging, omics, and clinical records supports accurate diagnosis and personalised care. Graph-based models fuse such non-Euclidean data by capturing spatial and relational structure, yet clinical uptake requires regulator-ready interpretability. We present the first technical survey of interpretable graph based models for multimodal biomedical data, covering 26 studies published between Jan 2019 and Sep 2024. Most target disease classification, notably cancer and rely on static graphs from simple similarity measures, while graph-native explainers are rare; post-hoc methods adapted from non-graph domains such as gradient saliency, and SHAP predominate. We group existing approaches into four interpretability families, outline trends such as graph-in-graph hierarchies, knowledge-graph edges, and dynamic topology learning, and perform a practical benchmark. Using an Alzheimer disease cohort, we compare Sensitivity Analysis, Gradient Saliency, SHAP and Graph Masking. SHAP and Sensitivity Analysis recover the broadest set of known AD pathways and Gene-Ontology terms, whereas Gradient Saliency and Graph Masking surface complementary metabolic and transport signatures. Permutation tests show all four beat random gene sets, but with distinct trade-offs: SHAP and Graph Masking offer deeper biology at higher compute cost, while Gradient Saliency and Sensitivity Analysis are quicker though coarser. We also provide a step-by-step flowchart covering graph construction, explainer choice and resource budgeting to help researchers balance transparency and performance. This review synthesises the state of interpretable graph learning for multimodal medicine, benchmarks leading techniques, and charts future directions, from advanced XAI tools to under-studied diseases, serving as a concise reference for method developers and translational scientists.

  • 6 authors
·
May 3

Similarity-Based Self-Construct Graph Model for Predicting Patient Criticalness Using Graph Neural Networks and EHR Data

Accurately predicting the criticalness of ICU patients (such as in-ICU mortality risk) is vital for early intervention in critical care. However, conventional models often treat each patient in isolation and struggle to exploit the relational structure in Electronic Health Records (EHR). We propose a Similarity-Based Self-Construct Graph Model (SBSCGM) that dynamically builds a patient similarity graph from multi-modal EHR data, and a HybridGraphMedGNN architecture that operates on this graph to predict patient mortality and a continuous criticalness score. SBSCGM uses a hybrid similarity measure (combining feature-based and structural similarities) to connect patients with analogous clinical profiles in real-time. The HybridGraphMedGNN integrates Graph Convolutional Network (GCN), GraphSAGE, and Graph Attention Network (GAT) layers to learn robust patient representations, leveraging both local and global graph patterns. In experiments on 6,000 ICU stays from the MIMIC-III dataset, our model achieves state-of-the-art performance (AUC-ROC 0.94) outperforming baseline classifiers and single-type GNN models. We also demonstrate improved precision/recall and show that the attention mechanism provides interpretable insights into model predictions. Our framework offers a scalable and interpretable solution for critical care risk prediction, with potential to support clinicians in real-world ICU deployment.

  • 2 authors
·
Aug 1

DrivAerNet: A Parametric Car Dataset for Data-Driven Aerodynamic Design and Graph-Based Drag Prediction

This study introduces DrivAerNet, a large-scale high-fidelity CFD dataset of 3D industry-standard car shapes, and RegDGCNN, a dynamic graph convolutional neural network model, both aimed at aerodynamic car design through machine learning. DrivAerNet, with its 4000 detailed 3D car meshes using 0.5 million surface mesh faces and comprehensive aerodynamic performance data comprising of full 3D pressure, velocity fields, and wall-shear stresses, addresses the critical need for extensive datasets to train deep learning models in engineering applications. It is 60\% larger than the previously available largest public dataset of cars, and is the only open-source dataset that also models wheels and underbody. RegDGCNN leverages this large-scale dataset to provide high-precision drag estimates directly from 3D meshes, bypassing traditional limitations such as the need for 2D image rendering or Signed Distance Fields (SDF). By enabling fast drag estimation in seconds, RegDGCNN facilitates rapid aerodynamic assessments, offering a substantial leap towards integrating data-driven methods in automotive design. Together, DrivAerNet and RegDGCNN promise to accelerate the car design process and contribute to the development of more efficient vehicles. To lay the groundwork for future innovations in the field, the dataset and code used in our study are publicly accessible at https://github.com/Mohamedelrefaie/DrivAerNet

  • 3 authors
·
Mar 12, 2024

Think-on-Graph 3.0: Efficient and Adaptive LLM Reasoning on Heterogeneous Graphs via Multi-Agent Dual-Evolving Context Retrieval

Retrieval-Augmented Generation (RAG) and Graph-based RAG has become the important paradigm for enhancing Large Language Models (LLMs) with external knowledge. However, existing approaches face a fundamental trade-off. While graph-based methods are inherently dependent on high-quality graph structures, they face significant practical constraints: manually constructed knowledge graphs are prohibitively expensive to scale, while automatically extracted graphs from corpora are limited by the performance of the underlying LLM extractors, especially when using smaller, local-deployed models. This paper presents Think-on-Graph 3.0 (ToG-3), a novel framework that introduces Multi-Agent Context Evolution and Retrieval (MACER) mechanism to overcome these limitations. Our core innovation is the dynamic construction and refinement of a Chunk-Triplets-Community heterogeneous graph index, which pioneeringly incorporates a dual-evolution mechanism of Evolving Query and Evolving Sub-Graph for precise evidence retrieval. This approach addresses a critical limitation of prior Graph-based RAG methods, which typically construct a static graph index in a single pass without adapting to the actual query. A multi-agent system, comprising Constructor, Retriever, Reflector, and Responser agents, collaboratively engages in an iterative process of evidence retrieval, answer generation, sufficiency reflection, and, crucially, evolving query and subgraph. This dual-evolving multi-agent system allows ToG-3 to adaptively build a targeted graph index during reasoning, mitigating the inherent drawbacks of static, one-time graph construction and enabling deep, precise reasoning even with lightweight LLMs. Extensive experiments demonstrate that ToG-3 outperforms compared baselines on both deep and broad reasoning benchmarks, and ablation studies confirm the efficacy of the components of MACER framework.

Graph-based Document Structure Analysis

When reading a document, glancing at the spatial layout of a document is an initial step to understand it roughly. Traditional document layout analysis (DLA) methods, however, offer only a superficial parsing of documents, focusing on basic instance detection and often failing to capture the nuanced spatial and logical relations between instances. These limitations hinder DLA-based models from achieving a gradually deeper comprehension akin to human reading. In this work, we propose a novel graph-based Document Structure Analysis (gDSA) task. This task requires that model not only detects document elements but also generates spatial and logical relations in form of a graph structure, allowing to understand documents in a holistic and intuitive manner. For this new task, we construct a relation graph-based document structure analysis dataset (GraphDoc) with 80K document images and 4.13M relation annotations, enabling training models to complete multiple tasks like reading order, hierarchical structures analysis, and complex inter-element relation inference. Furthermore, a document relation graph generator (DRGG) is proposed to address the gDSA task, which achieves performance with 57.6% at mAP_g@0.5 for a strong benchmark baseline on this novel task and dataset. We hope this graphical representation of document structure can mark an innovative advancement in document structure analysis and understanding. The new dataset and code will be made publicly available at https://yufanchen96.github.io/projects/GraphDoc.

  • 7 authors
·
Feb 4

Graph-Based Captioning: Enhancing Visual Descriptions by Interconnecting Region Captions

Humans describe complex scenes with compositionality, using simple text descriptions enriched with links and relationships. While vision-language research has aimed to develop models with compositional understanding capabilities, this is not reflected yet in existing datasets which, for the most part, still use plain text to describe images. In this work, we propose a new annotation strategy, graph-based captioning (GBC) that describes an image using a labelled graph structure, with nodes of various types. The nodes in GBC are created using, in a first stage, object detection and dense captioning tools nested recursively to uncover and describe entity nodes, further linked together in a second stage by highlighting, using new types of nodes, compositions and relations among entities. Since all GBC nodes hold plain text descriptions, GBC retains the flexibility found in natural language, but can also encode hierarchical information in its edges. We demonstrate that GBC can be produced automatically, using off-the-shelf multimodal LLMs and open-vocabulary detection models, by building a new dataset, GBC10M, gathering GBC annotations for about 10M images of the CC12M dataset. We use GBC10M to showcase the wealth of node captions uncovered by GBC, as measured with CLIP training. We show that using GBC nodes' annotations -- notably those stored in composition and relation nodes -- results in significant performance boost on downstream models when compared to other dataset formats. To further explore the opportunities provided by GBC, we also propose a new attention mechanism that can leverage the entire GBC graph, with encouraging experimental results that show the extra benefits of incorporating the graph structure. Our datasets are released at https://huggingface.co/graph-based-captions.

  • 10 authors
·
Jul 9, 2024 1

TimeGraphs: Graph-based Temporal Reasoning

Many real-world systems exhibit temporal, dynamic behaviors, which are captured as time series of complex agent interactions. To perform temporal reasoning, current methods primarily encode temporal dynamics through simple sequence-based models. However, in general these models fail to efficiently capture the full spectrum of rich dynamics in the input, since the dynamics is not uniformly distributed. In particular, relevant information might be harder to extract and computing power is wasted for processing all individual timesteps, even if they contain no significant changes or no new information. Here we propose TimeGraphs, a novel approach that characterizes dynamic interactions as a hierarchical temporal graph, diverging from traditional sequential representations. Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales. Adopting a self-supervised method, TimeGraphs constructs a multi-level event hierarchy from a temporal input, which is then used to efficiently reason about the unevenly distributed dynamics. This construction process is scalable and incremental to accommodate streaming data. We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset. The results demonstrate both robustness and efficiency of TimeGraphs on a range of temporal reasoning tasks. Our approach obtains state-of-the-art performance and leads to a performance increase of up to 12.2% on event prediction and recognition tasks over current approaches. Our experiments further demonstrate a wide array of capabilities including zero-shot generalization, robustness in case of data sparsity, and adaptability to streaming data flow.

  • 5 authors
·
Jan 6, 2024

Graph-based Multi-ODE Neural Networks for Spatio-Temporal Traffic Forecasting

There is a recent surge in the development of spatio-temporal forecasting models in the transportation domain. Long-range traffic forecasting, however, remains a challenging task due to the intricate and extensive spatio-temporal correlations observed in traffic networks. Current works primarily rely on road networks with graph structures and learn representations using graph neural networks (GNNs), but this approach suffers from over-smoothing problem in deep architectures. To tackle this problem, recent methods introduced the combination of GNNs with residual connections or neural ordinary differential equations (ODE). However, current graph ODE models face two key limitations in feature extraction: (1) they lean towards global temporal patterns, overlooking local patterns that are important for unexpected events; and (2) they lack dynamic semantic edges in their architectural design. In this paper, we propose a novel architecture called Graph-based Multi-ODE Neural Networks (GRAM-ODE) which is designed with multiple connective ODE-GNN modules to learn better representations by capturing different views of complex local and global dynamic spatio-temporal dependencies. We also add some techniques like shared weights and divergence constraints into the intermediate layers of distinct ODE-GNN modules to further improve their communication towards the forecasting task. Our extensive set of experiments conducted on six real-world datasets demonstrate the superior performance of GRAM-ODE compared with state-of-the-art baselines as well as the contribution of different components to the overall performance. The code is available at https://github.com/zbliu98/GRAM-ODE

  • 3 authors
·
May 29, 2023

Knowledge Graph-based Retrieval-Augmented Generation for Schema Matching

Traditional similarity-based schema matching methods are incapable of resolving semantic ambiguities and conflicts in domain-specific complex mapping scenarios due to missing commonsense and domain-specific knowledge. The hallucination problem of large language models (LLMs) also makes it challenging for LLM-based schema matching to address the above issues. Therefore, we propose a Knowledge Graph-based Retrieval-Augmented Generation model for Schema Matching, referred to as the KG-RAG4SM. In particular, KG-RAG4SM introduces novel vector-based, graph traversal-based, and query-based graph retrievals, as well as a hybrid approach and ranking schemes that identify the most relevant subgraphs from external large knowledge graphs (KGs). We showcase that KG-based retrieval-augmented LLMs are capable of generating more accurate results for complex matching cases without any re-training. Our experimental results show that KG-RAG4SM outperforms the LLM-based state-of-the-art (SOTA) methods (e.g., Jellyfish-8B) by 35.89% and 30.50% in terms of precision and F1 score on the MIMIC dataset, respectively; KG-RAG4SM with GPT-4o-mini outperforms the pre-trained language model (PLM)-based SOTA methods (e.g., SMAT) by 69.20% and 21.97% in terms of precision and F1 score on the Synthea dataset, respectively. The results also demonstrate that our approach is more efficient in end-to-end schema matching, and scales to retrieve from large KGs. Our case studies on the dataset from the real-world schema matching scenario exhibit that the hallucination problem of LLMs for schema matching is well mitigated by our solution.

  • 4 authors
·
Jan 15

GID: Graph-based Intrusion Detection on Massive Process Traces for Enterprise Security Systems

Intrusion detection system (IDS) is an important part of enterprise security system architecture. In particular, anomaly-based IDS has been widely applied to detect abnormal process behaviors that deviate from the majority. However, such abnormal behavior usually consists of a series of low-level heterogeneous events. The gap between the low-level events and the high-level abnormal behaviors makes it hard to infer which single events are related to the real abnormal activities, especially considering that there are massive "noisy" low-level events happening in between. Hence, the existing work that focus on detecting single entities/events can hardly achieve high detection accuracy. Different from previous work, we design and implement GID, an efficient graph-based intrusion detection technique that can identify abnormal event sequences from a massive heterogeneous process traces with high accuracy. GID first builds a compact graph structure to capture the interactions between different system entities. The suspiciousness or anomaly score of process paths is then measured by leveraging random walk technique to the constructed acyclic directed graph. To eliminate the score bias from the path length, the Box-Cox power transformation based approach is introduced to normalize the anomaly scores so that the scores of paths of different lengths have the same distribution. The efficiency of suspicious path discovery is further improved by the proposed optimization scheme. We fully implement our GID algorithm and deploy it into a real enterprise security system, and it greatly helps detect the advanced threats, and optimize the incident response. Executing GID on system monitoring datasets showing that GID is efficient (about 2 million records per minute) and accurate (higher than 80% in terms of detection rate).

  • 8 authors
·
Aug 8, 2016

Sentiment-enhanced Graph-based Sarcasm Explanation in Dialogue

Sarcasm Explanation in Dialogue (SED) is a new yet challenging task, which aims to generate a natural language explanation for the given sarcastic dialogue that involves multiple modalities (\ie utterance, video, and audio). Although existing studies have achieved great success based on the generative pretrained language model BART, they overlook exploiting the sentiments residing in the utterance, video and audio, which play important roles in reflecting sarcasm that essentially involves subtle sentiment contrasts. Nevertheless, it is non-trivial to incorporate sentiments for boosting SED performance, due to three main challenges: 1) diverse effects of utterance tokens on sentiments; 2) gap between video-audio sentiment signals and the embedding space of BART; and 3) various relations among utterances, utterance sentiments, and video-audio sentiments. To tackle these challenges, we propose a novel sEntiment-enhanceD Graph-based multimodal sarcasm Explanation framework, named EDGE. In particular, we first propose a lexicon-guided utterance sentiment inference module, where a heuristic utterance sentiment refinement strategy is devised. We then develop a module named Joint Cross Attention-based Sentiment Inference (JCA-SI) by extending the multimodal sentiment analysis model JCA to derive the joint sentiment label for each video-audio clip. Thereafter, we devise a context-sentiment graph to comprehensively model the semantic relations among the utterances, utterance sentiments, and video-audio sentiments, to facilitate sarcasm explanation generation. Extensive experiments on the publicly released dataset WITS verify the superiority of our model over cutting-edge methods.

  • 6 authors
·
Feb 5, 2024

SkeletonMAE: Graph-based Masked Autoencoder for Skeleton Sequence Pre-training

Skeleton sequence representation learning has shown great advantages for action recognition due to its promising ability to model human joints and topology. However, the current methods usually require sufficient labeled data for training computationally expensive models, which is labor-intensive and time-consuming. Moreover, these methods ignore how to utilize the fine-grained dependencies among different skeleton joints to pre-train an efficient skeleton sequence learning model that can generalize well across different datasets. In this paper, we propose an efficient skeleton sequence learning framework, named Skeleton Sequence Learning (SSL). To comprehensively capture the human pose and obtain discriminative skeleton sequence representation, we build an asymmetric graph-based encoder-decoder pre-training architecture named SkeletonMAE, which embeds skeleton joint sequence into Graph Convolutional Network (GCN) and reconstructs the masked skeleton joints and edges based on the prior human topology knowledge. Then, the pre-trained SkeletonMAE encoder is integrated with the Spatial-Temporal Representation Learning (STRL) module to build the SSL framework. Extensive experimental results show that our SSL generalizes well across different datasets and outperforms the state-of-the-art self-supervised skeleton-based action recognition methods on FineGym, Diving48, NTU 60 and NTU 120 datasets. Additionally, we obtain comparable performance to some fully supervised methods. The code is avaliable at https://github.com/HongYan1123/SkeletonMAE.

  • 6 authors
·
Jul 17, 2023

Large Graph Convolutional Network Training with GPU-Oriented Data Communication Architecture

Graph Convolutional Networks (GCNs) are increasingly adopted in large-scale graph-based recommender systems. Training GCN requires the minibatch generator traversing graphs and sampling the sparsely located neighboring nodes to obtain their features. Since real-world graphs often exceed the capacity of GPU memory, current GCN training systems keep the feature table in host memory and rely on the CPU to collect sparse features before sending them to the GPUs. This approach, however, puts tremendous pressure on host memory bandwidth and the CPU. This is because the CPU needs to (1) read sparse features from memory, (2) write features into memory as a dense format, and (3) transfer the features from memory to the GPUs. In this work, we propose a novel GPU-oriented data communication approach for GCN training, where GPU threads directly access sparse features in host memory through zero-copy accesses without much CPU help. By removing the CPU gathering stage, our method significantly reduces the consumption of the host resources and data access latency. We further present two important techniques to achieve high host memory access efficiency by the GPU: (1) automatic data access address alignment to maximize PCIe packet efficiency, and (2) asynchronous zero-copy access and kernel execution to fully overlap data transfer with training. We incorporate our method into PyTorch and evaluate its effectiveness using several graphs with sizes up to 111 million nodes and 1.6 billion edges. In a multi-GPU training setup, our method is 65-92% faster than the conventional data transfer method, and can even match the performance of all-in-GPU-memory training for some graphs that fit in GPU memory.

  • 8 authors
·
Mar 4, 2021

Variationally Regularized Graph-based Representation Learning for Electronic Health Records

Electronic Health Records (EHR) are high-dimensional data with implicit connections among thousands of medical concepts. These connections, for instance, the co-occurrence of diseases and lab-disease correlations can be informative when only a subset of these variables is documented by the clinician. A feasible approach to improving the representation learning of EHR data is to associate relevant medical concepts and utilize these connections. Existing medical ontologies can be the reference for EHR structures, but they place numerous constraints on the data source. Recent progress on graph neural networks (GNN) enables end-to-end learning of topological structures for non-grid or non-sequential data. However, there are problems to be addressed on how to learn the medical graph adaptively and how to understand the effect of the medical graph on representation learning. In this paper, we propose a variationally regularized encoder-decoder graph network that achieves more robustness in graph structure learning by regularizing node representations. Our model outperforms the existing graph and non-graph based methods in various EHR predictive tasks based on both public data and real-world clinical data. Besides the improvements in empirical experiment performances, we provide an interpretation of the effect of variational regularization compared to standard graph neural network, using singular value analysis.

  • 2 authors
·
Dec 8, 2019

LexRank: Graph-based Lexical Centrality as Salience in Text Summarization

We introduce a stochastic graph-based method for computing relative importance of textual units for Natural Language Processing. We test the technique on the problem of Text Summarization (TS). Extractive TS relies on the concept of sentence salience to identify the most important sentences in a document or set of documents. Salience is typically defined in terms of the presence of particular important words or in terms of similarity to a centroid pseudo-sentence. We consider a new approach, LexRank, for computing sentence importance based on the concept of eigenvector centrality in a graph representation of sentences. In this model, a connectivity matrix based on intra-sentence cosine similarity is used as the adjacency matrix of the graph representation of sentences. Our system, based on LexRank ranked in first place in more than one task in the recent DUC 2004 evaluation. In this paper we present a detailed analysis of our approach and apply it to a larger data set including data from earlier DUC evaluations. We discuss several methods to compute centrality using the similarity graph. The results show that degree-based methods (including LexRank) outperform both centroid-based methods and other systems participating in DUC in most of the cases. Furthermore, the LexRank with threshold method outperforms the other degree-based techniques including continuous LexRank. We also show that our approach is quite insensitive to the noise in the data that may result from an imperfect topical clustering of documents.

  • 2 authors
·
Sep 9, 2011

MultiHal: Multilingual Dataset for Knowledge-Graph Grounded Evaluation of LLM Hallucinations

Large Language Models (LLMs) have inherent limitations of faithfulness and factuality, commonly referred to as hallucinations. Several benchmarks have been developed that provide a test bed for factuality evaluation within the context of English-centric datasets, while relying on supplementary informative context like web links or text passages but ignoring the available structured factual resources. To this end, Knowledge Graphs (KGs) have been identified as a useful aid for hallucination mitigation, as they provide a structured way to represent the facts about entities and their relations with minimal linguistic overhead. We bridge the lack of KG paths and multilinguality for factual language modeling within the existing hallucination evaluation benchmarks and propose a KG-based multilingual, multihop benchmark called MultiHal framed for generative text evaluation. As part of our data collection pipeline, we mined 140k KG-paths from open-domain KGs, from which we pruned noisy KG-paths, curating a high-quality subset of 25.9k. Our baseline evaluation shows an absolute scale increase by approximately 0.12 to 0.36 points for the semantic similarity score in KG-RAG over vanilla QA across multiple languages and multiple models, demonstrating the potential of KG integration. We anticipate MultiHal will foster future research towards several graph-based hallucination mitigation and fact-checking tasks.

  • 4 authors
·
May 20 2

ResPlan: A Large-Scale Vector-Graph Dataset of 17,000 Residential Floor Plans

We introduce ResPlan, a large-scale dataset of 17,000 detailed, structurally rich, and realistic residential floor plans, created to advance spatial AI research. Each plan includes precise annotations of architectural elements (walls, doors, windows, balconies) and functional spaces (such as kitchens, bedrooms, and bathrooms). ResPlan addresses key limitations of existing datasets such as RPLAN (Wu et al., 2019) and MSD (van Engelenburg et al., 2024) by offering enhanced visual fidelity and greater structural diversity, reflecting realistic and non-idealized residential layouts. Designed as a versatile, general-purpose resource, ResPlan supports a wide range of applications including robotics, reinforcement learning, generative AI, virtual and augmented reality, simulations, and game development. Plans are provided in both geometric and graph-based formats, enabling direct integration into simulation engines and fast 3D conversion. A key contribution is an open-source pipeline for geometry cleaning, alignment, and annotation refinement. Additionally, ResPlan includes structured representations of room connectivity, supporting graph-based spatial reasoning tasks. Finally, we present comparative analyses with existing benchmarks and outline several open benchmark tasks enabled by ResPlan. Ultimately, ResPlan offers a significant advance in scale, realism, and usability, providing a robust foundation for developing and benchmarking next-generation spatial intelligence systems.

  • 2 authors
·
Aug 19

G3Reg: Pyramid Graph-based Global Registration using Gaussian Ellipsoid Model

This study introduces a novel framework, G3Reg, for fast and robust global registration of LiDAR point clouds. In contrast to conventional complex keypoints and descriptors, we extract fundamental geometric primitives, including planes, clusters, and lines (PCL) from the raw point cloud to obtain low-level semantic segments. Each segment is represented as a unified Gaussian Ellipsoid Model (GEM), using a probability ellipsoid to ensure the ground truth centers are encompassed with a certain degree of probability. Utilizing these GEMs, we present a distrust-and-verify scheme based on a Pyramid Compatibility Graph for Global Registration (PAGOR). Specifically, we establish an upper bound, which can be traversed based on the confidence level for compatibility testing to construct the pyramid graph. Then, we solve multiple maximum cliques (MAC) for each level of the pyramid graph, thus generating the corresponding transformation candidates. In the verification phase, we adopt a precise and efficient metric for point cloud alignment quality, founded on geometric primitives, to identify the optimal candidate. The algorithm's performance is validated on three publicly available datasets and a self-collected multi-session dataset. Parameter settings remained unchanged during the experiment evaluations. The results exhibit superior robustness and real-time performance of the G3Reg framework compared to state-of-the-art methods. Furthermore, we demonstrate the potential for integrating individual GEM and PAGOR components into other registration frameworks to enhance their efficacy. Code: https://github.com/HKUST-Aerial-Robotics/G3Reg

  • 5 authors
·
Aug 22, 2023

Unified Conversational Recommendation Policy Learning via Graph-based Reinforcement Learning

Conversational recommender systems (CRS) enable the traditional recommender systems to explicitly acquire user preferences towards items and attributes through interactive conversations. Reinforcement learning (RL) is widely adopted to learn conversational recommendation policies to decide what attributes to ask, which items to recommend, and when to ask or recommend, at each conversation turn. However, existing methods mainly target at solving one or two of these three decision-making problems in CRS with separated conversation and recommendation components, which restrict the scalability and generality of CRS and fall short of preserving a stable training procedure. In the light of these challenges, we propose to formulate these three decision-making problems in CRS as a unified policy learning task. In order to systematically integrate conversation and recommendation components, we develop a dynamic weighted graph based RL method to learn a policy to select the action at each conversation turn, either asking an attribute or recommending items. Further, to deal with the sample efficiency issue, we propose two action selection strategies for reducing the candidate action space according to the preference and entropy information. Experimental results on two benchmark CRS datasets and a real-world E-Commerce application show that the proposed method not only significantly outperforms state-of-the-art methods but also enhances the scalability and stability of CRS.

  • 5 authors
·
May 20, 2021

Small Models, Big Impact: Efficient Corpus and Graph-Based Adaptation of Small Multilingual Language Models for Low-Resource Languages

Low-resource languages (LRLs) face significant challenges in natural language processing (NLP) due to limited data. While current state-of-the-art large language models (LLMs) still struggle with LRLs, smaller multilingual models (mLMs) such as mBERT and XLM-R offer greater promise due to a better fit of their capacity to low training data sizes. This study systematically investigates parameter-efficient adapter-based methods for adapting mLMs to LRLs, evaluating three architectures: Sequential Bottleneck, Invertible Bottleneck, and Low-Rank Adaptation. Using unstructured text from GlotCC and structured knowledge from ConceptNet, we show that small adaptation datasets (e.g., up to 1 GB of free-text or a few MB of knowledge graph data) yield gains in intrinsic (masked language modeling) and extrinsic tasks (topic classification, sentiment analysis, and named entity recognition). We find that Sequential Bottleneck adapters excel in language modeling, while Invertible Bottleneck adapters slightly outperform other methods on downstream tasks due to better embedding alignment and larger parameter counts. Adapter-based methods match or outperform full fine-tuning while using far fewer parameters, and smaller mLMs prove more effective for LRLs than massive LLMs like LLaMA-3, GPT-4, and DeepSeek-R1-based distilled models. While adaptation improves performance, pre-training data size remains the dominant factor, especially for languages with extensive pre-training coverage.

  • 4 authors
·
Feb 14 2

Dynamic 3D Gaussian Tracking for Graph-Based Neural Dynamics Modeling

Videos of robots interacting with objects encode rich information about the objects' dynamics. However, existing video prediction approaches typically do not explicitly account for the 3D information from videos, such as robot actions and objects' 3D states, limiting their use in real-world robotic applications. In this work, we introduce a framework to learn object dynamics directly from multi-view RGB videos by explicitly considering the robot's action trajectories and their effects on scene dynamics. We utilize the 3D Gaussian representation of 3D Gaussian Splatting (3DGS) to train a particle-based dynamics model using Graph Neural Networks. This model operates on sparse control particles downsampled from the densely tracked 3D Gaussian reconstructions. By learning the neural dynamics model on offline robot interaction data, our method can predict object motions under varying initial configurations and unseen robot actions. The 3D transformations of Gaussians can be interpolated from the motions of control particles, enabling the rendering of predicted future object states and achieving action-conditioned video prediction. The dynamics model can also be applied to model-based planning frameworks for object manipulation tasks. We conduct experiments on various kinds of deformable materials, including ropes, clothes, and stuffed animals, demonstrating our framework's ability to model complex shapes and dynamics. Our project page is available at https://gs-dynamics.github.io.

  • 3 authors
·
Oct 24, 2024 2

Pose Anything: A Graph-Based Approach for Category-Agnostic Pose Estimation

Traditional 2D pose estimation models are limited by their category-specific design, making them suitable only for predefined object categories. This restriction becomes particularly challenging when dealing with novel objects due to the lack of relevant training data. To address this limitation, category-agnostic pose estimation (CAPE) was introduced. CAPE aims to enable keypoint localization for arbitrary object categories using a single model, requiring minimal support images with annotated keypoints. This approach not only enables object pose generation based on arbitrary keypoint definitions but also significantly reduces the associated costs, paving the way for versatile and adaptable pose estimation applications. We present a novel approach to CAPE that leverages the inherent geometrical relations between keypoints through a newly designed Graph Transformer Decoder. By capturing and incorporating this crucial structural information, our method enhances the accuracy of keypoint localization, marking a significant departure from conventional CAPE techniques that treat keypoints as isolated entities. We validate our approach on the MP-100 benchmark, a comprehensive dataset comprising over 20,000 images spanning more than 100 categories. Our method outperforms the prior state-of-the-art by substantial margins, achieving remarkable improvements of 2.16% and 1.82% under 1-shot and 5-shot settings, respectively. Furthermore, our method's end-to-end training demonstrates both scalability and efficiency compared to previous CAPE approaches.

  • 2 authors
·
Nov 29, 2023

Sheaf Neural Networks for Graph-based Recommender Systems

Recent progress in Graph Neural Networks has resulted in wide adoption by many applications, including recommendation systems. The reason for Graph Neural Networks' superiority over other approaches is that many problems in recommendation systems can be naturally modeled as graphs, where nodes can be either users or items and edges represent preference relationships. In current Graph Neural Network approaches, nodes are represented with a static vector learned at training time. This static vector might only be suitable to capture some of the nuances of users or items they define. To overcome this limitation, we propose using a recently proposed model inspired by category theory: Sheaf Neural Networks. Sheaf Neural Networks, and its connected Laplacian, can address the previous problem by associating every node (and edge) with a vector space instead than a single vector. The vector space representation is richer and allows picking the proper representation at inference time. This approach can be generalized for different related tasks on graphs and achieves state-of-the-art performance in terms of F1-Score@N in collaborative filtering and Hits@20 in link prediction. For collaborative filtering, the approach is evaluated on the MovieLens 100K with a 5.1% improvement, on MovieLens 1M with a 5.4% improvement and on Book-Crossing with a 2.8% improvement, while for link prediction on the ogbl-ddi dataset with a 1.6% refinement with respect to the respective baselines.

  • 4 authors
·
Apr 7, 2023

RDB2G-Bench: A Comprehensive Benchmark for Automatic Graph Modeling of Relational Databases

Relational databases (RDBs) are composed of interconnected tables, where relationships between them are defined through foreign keys. Recent research on applying machine learning to RDBs has explored graph-based representations of RDBs, where rows of tables are modeled as nodes, and foreign key relationships are modeled as edges. RDB-to-graph modeling helps capture cross-table dependencies, ultimately leading to enhanced performance across diverse tasks. However, there are numerous ways to model RDBs as graphs, and performance varies significantly depending on the chosen graph model. In our analysis, applying a common heuristic rule for graph modeling leads to up to a 10% drop in performance compared to the best-performing graph model, which remains non-trivial to identify. To foster research on intelligent RDB-to-graph modeling, we introduce RDB2G-Bench, the first benchmark framework for evaluating such methods. We construct extensive datasets covering 5 real-world RDBs and 12 predictive tasks, resulting in around 50k graph-performance pairs for efficient and reproducible evaluations. Thanks to our precomputed datasets, we were able to benchmark 9 automatic RDB-to-graph modeling methods on the 12 tasks over 600x faster than on-the-fly evaluation, which requires repeated model training. Our analysis of the datasets and benchmark results reveals key structural patterns affecting graph model effectiveness, along with practical implications for effective graph modeling.

Clue-RAG: Towards Accurate and Cost-Efficient Graph-based RAG via Multi-Partite Graph and Query-Driven Iterative Retrieval

Despite the remarkable progress of Large Language Models (LLMs), their performance in question answering (QA) remains limited by the lack of domain-specific and up-to-date knowledge. Retrieval-Augmented Generation (RAG) addresses this limitation by incorporating external information, often from graph-structured data. However, existing graph-based RAG methods suffer from poor graph quality due to incomplete extraction and insufficient utilization of query information during retrieval. To overcome these limitations, we propose Clue-RAG, a novel approach that introduces (1) a multi-partite graph index incorporates Chunk, knowledge unit, and entity to capture semantic content at multiple levels of granularity, coupled with a hybrid extraction strategy that reduces LLM token usage while still producing accurate and disambiguated knowledge units, and (2) Q-Iter, a query-driven iterative retrieval strategy that enhances relevance through semantic search and constrained graph traversal. Experiments on three QA benchmarks show that Clue-RAG significantly outperforms state-of-the-art baselines, achieving up to 99.33% higher Accuracy and 113.51% higher F1 score while reducing indexing costs by 72.58%. Remarkably, Clue-RAG matches or outperforms baselines even without using an LLM for indexing. These results demonstrate the effectiveness and cost-efficiency of Clue-RAG in advancing graph-based RAG systems.

  • 5 authors
·
Jul 11

Accelerating Scientific Discovery with Generative Knowledge Extraction, Graph-Based Representation, and Multimodal Intelligent Graph Reasoning

Leveraging generative Artificial Intelligence (AI), we have transformed a dataset comprising 1,000 scientific papers into an ontological knowledge graph. Through an in-depth structural analysis, we have calculated node degrees, identified communities and connectivities, and evaluated clustering coefficients and betweenness centrality of pivotal nodes, uncovering fascinating knowledge architectures. The graph has an inherently scale-free nature, is highly connected, and can be used for graph reasoning by taking advantage of transitive and isomorphic properties that reveal unprecedented interdisciplinary relationships that can be used to answer queries, identify gaps in knowledge, propose never-before-seen material designs, and predict material behaviors. We compute deep node embeddings for combinatorial node similarity ranking for use in a path sampling strategy links dissimilar concepts that have previously not been related. One comparison revealed structural parallels between biological materials and Beethoven's 9th Symphony, highlighting shared patterns of complexity through isomorphic mapping. In another example, the algorithm proposed a hierarchical mycelium-based composite based on integrating path sampling with principles extracted from Kandinsky's 'Composition VII' painting. The resulting material integrates an innovative set of concepts that include a balance of chaos/order, adjustable porosity, mechanical strength, and complex patterned chemical functionalization. We uncover other isomorphisms across science, technology and art, revealing a nuanced ontology of immanence that reveal a context-dependent heterarchical interplay of constituents. Graph-based generative AI achieves a far higher degree of novelty, explorative capacity, and technical detail, than conventional approaches and establishes a widely useful framework for innovation by revealing hidden connections.

  • 1 authors
·
Mar 18, 2024

ProteinRPN: Towards Accurate Protein Function Prediction with Graph-Based Region Proposals

Protein function prediction is a crucial task in bioinformatics, with significant implications for understanding biological processes and disease mechanisms. While the relationship between sequence and function has been extensively explored, translating protein structure to function continues to present substantial challenges. Various models, particularly, CNN and graph-based deep learning approaches that integrate structural and functional data, have been proposed to address these challenges. However, these methods often fall short in elucidating the functional significance of key residues essential for protein functionality, as they predominantly adopt a retrospective perspective, leading to suboptimal performance. Inspired by region proposal networks in computer vision, we introduce the Protein Region Proposal Network (ProteinRPN) for accurate protein function prediction. Specifically, the region proposal module component of ProteinRPN identifies potential functional regions (anchors) which are refined through the hierarchy-aware node drop pooling layer favoring nodes with defined secondary structures and spatial proximity. The representations of the predicted functional nodes are enriched using attention mechanisms and subsequently fed into a Graph Multiset Transformer, which is trained with supervised contrastive (SupCon) and InfoNCE losses on perturbed protein structures. Our model demonstrates significant improvements in predicting Gene Ontology (GO) terms, effectively localizing functional residues within protein structures. The proposed framework provides a robust, scalable solution for protein function annotation, advancing the understanding of protein structure-function relationships in computational biology.

  • 3 authors
·
Sep 1, 2024

Emotion Classification from Multi-Channel EEG Signals Using HiSTN: A Hierarchical Graph-based Spatial-Temporal Approach

This study introduces a parameter-efficient Hierarchical Spatial Temporal Network (HiSTN) specifically designed for the task of emotion classification using multi-channel electroencephalogram data. The network incorporates a graph hierarchy constructed from bottom-up at various abstraction levels, offering the dual advantages of enhanced task-relevant deep feature extraction and a lightweight design. The model's effectiveness is further amplified when used in conjunction with a proposed unique label smoothing method. Comprehensive benchmark experiments reveal that this combined approach yields high, balanced performance in terms of both quantitative and qualitative predictions. HiSTN, which has approximately 1,000 parameters, achieves mean F1 scores of 96.82% (valence) and 95.62% (arousal) in subject-dependent tests on the rarely-utilized 5-classification task problem from the DREAMER dataset. In the subject-independent settings, the same model yields mean F1 scores of 78.34% for valence and 81.59% for arousal. The adoption of the Sequential Top-2 Hit Rate (Seq2HR) metric highlights the significant enhancements in terms of the balance between model's quantitative and qualitative for predictions achieved through our approach when compared to training with regular one-hot labels. These improvements surpass 50% in subject-dependent tasks and 30% in subject-independent tasks. The study also includes relevant ablation studies and case explorations to further elucidate the workings of the proposed model and enhance its interpretability.

  • 3 authors
·
Aug 9, 2024

What Makes a Scene ? Scene Graph-based Evaluation and Feedback for Controllable Generation

While text-to-image generation has been extensively studied, generating images from scene graphs remains relatively underexplored, primarily due to challenges in accurately modeling spatial relationships and object interactions. To fill this gap, we introduce Scene-Bench, a comprehensive benchmark designed to evaluate and enhance the factual consistency in generating natural scenes. Scene-Bench comprises MegaSG, a large-scale dataset of one million images annotated with scene graphs, facilitating the training and fair comparison of models across diverse and complex scenes. Additionally, we propose SGScore, a novel evaluation metric that leverages chain-of-thought reasoning capabilities of multimodal large language models (LLMs) to assess both object presence and relationship accuracy, offering a more effective measure of factual consistency than traditional metrics like FID and CLIPScore. Building upon this evaluation framework, we develop a scene graph feedback pipeline that iteratively refines generated images by identifying and correcting discrepancies between the scene graph and the image. Extensive experiments demonstrate that Scene-Bench provides a more comprehensive and effective evaluation framework compared to existing benchmarks, particularly for complex scene generation. Furthermore, our feedback strategy significantly enhances the factual consistency of image generation models, advancing the field of controllable image generation.

  • 4 authors
·
Nov 22, 2024

Enhancing Structured-Data Retrieval with GraphRAG: Soccer Data Case Study

Extracting meaningful insights from large and complex datasets poses significant challenges, particularly in ensuring the accuracy and relevance of retrieved information. Traditional data retrieval methods such as sequential search and index-based retrieval often fail when handling intricate and interconnected data structures, resulting in incomplete or misleading outputs. To overcome these limitations, we introduce Structured-GraphRAG, a versatile framework designed to enhance information retrieval across structured datasets in natural language queries. Structured-GraphRAG utilizes multiple knowledge graphs, which represent data in a structured format and capture complex relationships between entities, enabling a more nuanced and comprehensive retrieval of information. This graph-based approach reduces the risk of errors in language model outputs by grounding responses in a structured format, thereby enhancing the reliability of results. We demonstrate the effectiveness of Structured-GraphRAG by comparing its performance with that of a recently published method using traditional retrieval-augmented generation. Our findings show that Structured-GraphRAG significantly improves query processing efficiency and reduces response times. While our case study focuses on soccer data, the framework's design is broadly applicable, offering a powerful tool for data analysis and enhancing language model applications across various structured domains.

  • 5 authors
·
Sep 26, 2024 2

Graph Deep Learning for Time Series Forecasting

Graph-based deep learning methods have become popular tools to process collections of correlated time series. Differently from traditional multivariate forecasting methods, neural graph-based predictors take advantage of pairwise relationships by conditioning forecasts on a (possibly dynamic) graph spanning the time series collection. The conditioning can take the form of an architectural inductive bias on the neural forecasting architecture, resulting in a family of deep learning models called spatiotemporal graph neural networks. Such relational inductive biases enable the training of global forecasting models on large time-series collections, while at the same time localizing predictions w.r.t. each element in the set (i.e., graph nodes) by accounting for local correlations among them (i.e., graph edges). Indeed, recent theoretical and practical advances in graph neural networks and deep learning for time series forecasting make the adoption of such processing frameworks appealing and timely. However, most of the studies in the literature focus on proposing variations of existing neural architectures by taking advantage of modern deep learning practices, while foundational and methodological aspects have not been subject to systematic investigation. To fill the gap, this paper aims to introduce a comprehensive methodological framework that formalizes the forecasting problem and provides design principles for graph-based predictive models and methods to assess their performance. At the same time, together with an overview of the field, we provide design guidelines, recommendations, and best practices, as well as an in-depth discussion of open challenges and future research directions.

  • 4 authors
·
Oct 24, 2023

Referring Expression Comprehension: A Survey of Methods and Datasets

Referring expression comprehension (REC) aims to localize a target object in an image described by a referring expression phrased in natural language. Different from the object detection task that queried object labels have been pre-defined, the REC problem only can observe the queries during the test. It thus more challenging than a conventional computer vision problem. This task has attracted a lot of attention from both computer vision and natural language processing community, and several lines of work have been proposed, from CNN-RNN model, modular network to complex graph-based model. In this survey, we first examine the state of the art by comparing modern approaches to the problem. We classify methods by their mechanism to encode the visual and textual modalities. In particular, we examine the common approach of joint embedding images and expressions to a common feature space. We also discuss modular architectures and graph-based models that interface with structured graph representation. In the second part of this survey, we review the datasets available for training and evaluating REC systems. We then group results according to the datasets, backbone models, settings so that they can be fairly compared. Finally, we discuss promising future directions for the field, in particular the compositional referring expression comprehension that requires longer reasoning chain to address.

  • 3 authors
·
Jul 18, 2020

Medical Graph RAG: Towards Safe Medical Large Language Model via Graph Retrieval-Augmented Generation

We introduce a novel graph-based Retrieval-Augmented Generation (RAG) framework specifically designed for the medical domain, called MedGraphRAG, aimed at enhancing Large Language Model (LLM) capabilities and generating evidence-based results, thereby improving safety and reliability when handling private medical data. Our comprehensive pipeline begins with a hybrid static-semantic approach to document chunking, significantly improving context capture over traditional methods. Extracted entities are used to create a three-tier hierarchical graph structure, linking entities to foundational medical knowledge sourced from medical papers and dictionaries. These entities are then interconnected to form meta-graphs, which are merged based on semantic similarities to develop a comprehensive global graph. This structure supports precise information retrieval and response generation. The retrieval process employs a U-retrieve method to balance global awareness and indexing efficiency of the LLM. Our approach is validated through a comprehensive ablation study comparing various methods for document chunking, graph construction, and information retrieval. The results not only demonstrate that our hierarchical graph construction method consistently outperforms state-of-the-art models on multiple medical Q\&A benchmarks, but also confirms that the responses generated include source documentation, significantly enhancing the reliability of medical LLMs in practical applications. Code will be at: https://github.com/MedicineToken/Medical-Graph-RAG/tree/main

  • 3 authors
·
Aug 7, 2024

MicroVQA++: High-Quality Microscopy Reasoning Dataset with Weakly Supervised Graphs for Multimodal Large Language Model

Multimodal Large Language Models are increasingly applied to biomedical imaging, yet scientific reasoning for microscopy remains limited by the scarcity of large-scale, high-quality training data. We introduce MicroVQA++, a three-stage, large-scale and high-quality microscopy VQA corpus derived from the BIOMEDICA archive. Stage one bootstraps supervision from expert-validated figure-caption pairs sourced from peer-reviewed articles. Stage two applies HiCQA-Graph, a novel heterogeneous graph over images, captions, and QAs that fuses NLI-based textual entailment, CLIP-based vision-language alignment, and agent signals to identify and filter inconsistent samples. Stage three uses a MultiModal Large Language Model (MLLM) agent to generate multiple-choice questions (MCQ) followed by human screening. The resulting release comprises a large training split and a human-checked test split whose Bloom's level hard-sample distribution exceeds the MicroVQA benchmark. Our work delivers (i) a quality-controlled dataset that couples expert literature with graph-based filtering and human refinement; (ii) HiCQA-Graph, the first graph that jointly models (image, caption, QA) for cross-modal consistency filtering; (iii) evidence that careful data construction enables 4B-scale MLLMs to reach competitive microscopy reasoning performance (e.g., GPT-5) and achieve state-of-the-art performance among open-source MLLMs. Code and dataset will be released after the review process concludes.

  • 5 authors
·
Nov 14 2

DWIE: an entity-centric dataset for multi-task document-level information extraction

This paper presents DWIE, the 'Deutsche Welle corpus for Information Extraction', a newly created multi-task dataset that combines four main Information Extraction (IE) annotation subtasks: (i) Named Entity Recognition (NER), (ii) Coreference Resolution, (iii) Relation Extraction (RE), and (iv) Entity Linking. DWIE is conceived as an entity-centric dataset that describes interactions and properties of conceptual entities on the level of the complete document. This contrasts with currently dominant mention-driven approaches that start from the detection and classification of named entity mentions in individual sentences. Further, DWIE presented two main challenges when building and evaluating IE models for it. First, the use of traditional mention-level evaluation metrics for NER and RE tasks on entity-centric DWIE dataset can result in measurements dominated by predictions on more frequently mentioned entities. We tackle this issue by proposing a new entity-driven metric that takes into account the number of mentions that compose each of the predicted and ground truth entities. Second, the document-level multi-task annotations require the models to transfer information between entity mentions located in different parts of the document, as well as between different tasks, in a joint learning setting. To realize this, we propose to use graph-based neural message passing techniques between document-level mention spans. Our experiments show an improvement of up to 5.5 F1 percentage points when incorporating neural graph propagation into our joint model. This demonstrates DWIE's potential to stimulate further research in graph neural networks for representation learning in multi-task IE. We make DWIE publicly available at https://github.com/klimzaporojets/DWIE.

  • 4 authors
·
Sep 26, 2020

AgriField3D: A Curated 3D Point Cloud and Procedural Model Dataset of Field-Grown Maize from a Diversity Panel

The application of artificial intelligence (AI) in three-dimensional (3D) agricultural research, particularly for maize, has been limited by the scarcity of large-scale, diverse datasets. While 2D image datasets are abundant, they fail to capture essential structural details such as leaf architecture, plant volume, and spatial arrangements that 3D data provide. To address this limitation, we present AgriField3D (https://baskargroup.github.io/AgriField3D/), a curated dataset of 3D point clouds of field-grown maize plants from a diverse genetic panel, designed to be AI-ready for advancing agricultural research. Our dataset comprises over 1,000 high-quality point clouds collected using a Terrestrial Laser Scanner, complemented by procedural models that provide structured, parametric representations of maize plants. These procedural models, generated using Non-Uniform Rational B-Splines (NURBS) and optimized via a two-step process combining Particle Swarm Optimization (PSO) and differentiable programming, enable precise, scalable reconstructions of leaf surfaces and plant architectures. To enhance usability, we performed graph-based segmentation to isolate individual leaves and stalks, ensuring consistent labeling across all samples. We also conducted rigorous manual quality control on all datasets, correcting errors in segmentation, ensuring accurate leaf ordering, and validating metadata annotations. The dataset further includes metadata detailing plant morphology and quality, alongside multi-resolution subsampled versions (100k, 50k, 10k points) optimized for various computational needs. By integrating point cloud data of field grown plants with high-fidelity procedural models and ensuring meticulous manual validation, AgriField3D provides a comprehensive foundation for AI-driven phenotyping, plant structural analysis, and 3D applications in agricultural research.

  • 9 authors
·
Mar 10