new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

Str2Str: A Score-based Framework for Zero-shot Protein Conformation Sampling

The dynamic nature of proteins is crucial for determining their biological functions and properties, for which Monte Carlo (MC) and molecular dynamics (MD) simulations stand as predominant tools to study such phenomena. By utilizing empirically derived force fields, MC or MD simulations explore the conformational space through numerically evolving the system via Markov chain or Newtonian mechanics. However, the high-energy barrier of the force fields can hamper the exploration of both methods by the rare event, resulting in inadequately sampled ensemble without exhaustive running. Existing learning-based approaches perform direct sampling yet heavily rely on target-specific simulation data for training, which suffers from high data acquisition cost and poor generalizability. Inspired by simulated annealing, we propose Str2Str, a novel structure-to-structure translation framework capable of zero-shot conformation sampling with roto-translation equivariant property. Our method leverages an amortized denoising score matching objective trained on general crystal structures and has no reliance on simulation data during both training and inference. Experimental results across several benchmarking protein systems demonstrate that Str2Str outperforms previous state-of-the-art generative structure prediction models and can be orders of magnitude faster compared to long MD simulations. Our open-source implementation is available at https://github.com/lujiarui/Str2Str

  • 4 authors
·
Jun 5, 2023

Crystal Transformer: Self-learning neural language model for Generative and Tinkering Design of Materials

Self-supervised neural language models have recently achieved unprecedented success, from natural language processing to learning the languages of biological sequences and organic molecules. These models have demonstrated superior performance in the generation, structure classification, and functional predictions for proteins and molecules with learned representations. However, most of the masking-based pre-trained language models are not designed for generative design, and their black-box nature makes it difficult to interpret their design logic. Here we propose BLMM Crystal Transformer, a neural network based probabilistic generative model for generative and tinkering design of inorganic materials. Our model is built on the blank filling language model for text generation and has demonstrated unique advantages in learning the "materials grammars" together with high-quality generation, interpretability, and data efficiency. It can generate chemically valid materials compositions with as high as 89.7\% charge neutrality and 84.8\% balanced electronegativity, which are more than 4 and 8 times higher compared to a pseudo random sampling baseline. The probabilistic generation process of BLMM allows it to recommend tinkering operations based on learned materials chemistry and makes it useful for materials doping. Combined with the TCSP crysal structure prediction algorithm, We have applied our model to discover a set of new materials as validated using DFT calculations. Our work thus brings the unsupervised transformer language models based generative artificial intelligence to inorganic materials. A user-friendly web app has been developed for computational materials doping and can be accessed freely at www.materialsatlas.org/blmtinker.

  • 7 authors
·
Apr 25, 2022

ProteinBench: A Holistic Evaluation of Protein Foundation Models

Recent years have witnessed a surge in the development of protein foundation models, significantly improving performance in protein prediction and generative tasks ranging from 3D structure prediction and protein design to conformational dynamics. However, the capabilities and limitations associated with these models remain poorly understood due to the absence of a unified evaluation framework. To fill this gap, we introduce ProteinBench, a holistic evaluation framework designed to enhance the transparency of protein foundation models. Our approach consists of three key components: (i) A taxonomic classification of tasks that broadly encompass the main challenges in the protein domain, based on the relationships between different protein modalities; (ii) A multi-metric evaluation approach that assesses performance across four key dimensions: quality, novelty, diversity, and robustness; and (iii) In-depth analyses from various user objectives, providing a holistic view of model performance. Our comprehensive evaluation of protein foundation models reveals several key findings that shed light on their current capabilities and limitations. To promote transparency and facilitate further research, we release the evaluation dataset, code, and a public leaderboard publicly for further analysis and a general modular toolkit. We intend for ProteinBench to be a living benchmark for establishing a standardized, in-depth evaluation framework for protein foundation models, driving their development and application while fostering collaboration within the field.

  • 10 authors
·
Sep 10, 2024 2

All that structure matches does not glitter

Generative models for materials, especially inorganic crystals, hold potential to transform the theoretical prediction of novel compounds and structures. Advancement in this field depends critically on robust benchmarks and minimal, information-rich datasets that enable meaningful model evaluation. This paper critically examines common datasets and reported metrics for a crystal structure prediction taskx2014generating the most likely structures given the chemical composition of a material. We focus on three key issues: First, materials datasets should contain unique crystal structures; for example, we show that the widely-utilized carbon-24 dataset only contains approx40% unique structures. Second, materials datasets should not be split randomly if polymorphs of many different compositions are numerous, which we find to be the case for the perov-5 dataset. Third, benchmarks can mislead if used uncritically, e.g., reporting a match rate metric without considering the structural variety exhibited by identical building blocks. To address these oft-overlooked issues, we introduce several fixes. We provide revised versions of the carbon-24 dataset: one with duplicates removed, one deduplicated and split by number of atoms N, and two containing only identical structures but with different unit cells. We also propose a new split for the perov-5 dataset which ensures polymorphs are grouped within each split subset, setting a more sensible standard for benchmarking model performance. Finally, we present METRe and cRMSE, new model evaluation metrics that can correct existing issues with the match rate metric.

  • 10 authors
·
Sep 15

UniGenX: Unified Generation of Sequence and Structure with Autoregressive Diffusion

Unified generation of sequence and structure for scientific data (e.g., materials, molecules, proteins) is a critical task. Existing approaches primarily rely on either autoregressive sequence models or diffusion models, each offering distinct advantages and facing notable limitations. Autoregressive models, such as GPT, Llama, and Phi-4, have demonstrated remarkable success in natural language generation and have been extended to multimodal tasks (e.g., image, video, and audio) using advanced encoders like VQ-VAE to represent complex modalities as discrete sequences. However, their direct application to scientific domains is challenging due to the high precision requirements and the diverse nature of scientific data. On the other hand, diffusion models excel at generating high-dimensional scientific data, such as protein, molecule, and material structures, with remarkable accuracy. Yet, their inability to effectively model sequences limits their potential as general-purpose multimodal foundation models. To address these challenges, we propose UniGenX, a unified framework that combines autoregressive next-token prediction with conditional diffusion models. This integration leverages the strengths of autoregressive models to ease the training of conditional diffusion models, while diffusion-based generative heads enhance the precision of autoregressive predictions. We validate the effectiveness of UniGenX on material and small molecule generation tasks, achieving a significant leap in state-of-the-art performance for material crystal structure prediction and establishing new state-of-the-art results for small molecule structure prediction, de novo design, and conditional generation. Notably, UniGenX demonstrates significant improvements, especially in handling long sequences for complex structures, showcasing its efficacy as a versatile tool for scientific data generation.

  • 25 authors
·
Mar 9

A Probabilistic Generative Grammar for Semantic Parsing

Domain-general semantic parsing is a long-standing goal in natural language processing, where the semantic parser is capable of robustly parsing sentences from domains outside of which it was trained. Current approaches largely rely on additional supervision from new domains in order to generalize to those domains. We present a generative model of natural language utterances and logical forms and demonstrate its application to semantic parsing. Our approach relies on domain-independent supervision to generalize to new domains. We derive and implement efficient algorithms for training, parsing, and sentence generation. The work relies on a novel application of hierarchical Dirichlet processes (HDPs) for structured prediction, which we also present in this manuscript. This manuscript is an excerpt of chapter 4 from the Ph.D. thesis of Saparov (2022), where the model plays a central role in a larger natural language understanding system. This manuscript provides a new simplified and more complete presentation of the work first introduced in Saparov, Saraswat, and Mitchell (2017). The description and proofs of correctness of the training algorithm, parsing algorithm, and sentence generation algorithm are much simplified in this new presentation. We also describe the novel application of hierarchical Dirichlet processes for structured prediction. In addition, we extend the earlier work with a new model of word morphology, which utilizes the comprehensive morphological data from Wiktionary.

  • 1 authors
·
Jun 20, 2016

DocHop-QA: Towards Multi-Hop Reasoning over Multimodal Document Collections

Despite recent advances in large language models (LLMs), most QA benchmarks are still confined to single-paragraph or single-document settings, failing to capture the complexity of real-world information-seeking tasks. Practical QA often requires multi-hop reasoning over information distributed across multiple documents, modalities, and structural formats. Although prior datasets made progress in this area, they rely heavily on Wikipedia-based content and unimodal plain text, with shallow reasoning paths that typically produce brief phrase-level or single-sentence answers, thus limiting their realism and generalizability. We propose DocHop-QA, a large-scale benchmark comprising 11,379 QA instances for multimodal, multi-document, multi-hop question answering. Constructed from publicly available scientific documents sourced from PubMed, DocHop-QA is domain-agnostic and incorporates diverse information formats, including textual passages, tables, and structural layout cues. Unlike existing datasets, DocHop-QA does not rely on explicitly hyperlinked documents; instead, it supports open-ended reasoning through semantic similarity and layout-aware evidence synthesis. To scale realistic QA construction, we designed an LLM-driven pipeline grounded in 11 high-frequency scientific question concepts. We evaluated DocHop-QA through four tasks spanning structured index prediction, generative answering, and multimodal integration, reflecting both discriminative and generative paradigms. These tasks demonstrate DocHop-QA's capacity to support complex, multimodal reasoning across multiple documents.

  • 6 authors
·
Aug 20

Lotus-2: Advancing Geometric Dense Prediction with Powerful Image Generative Model

Recovering pixel-wise geometric properties from a single image is fundamentally ill-posed due to appearance ambiguity and non-injective mappings between 2D observations and 3D structures. While discriminative regression models achieve strong performance through large-scale supervision, their success is bounded by the scale, quality and diversity of available data and limited physical reasoning. Recent diffusion models exhibit powerful world priors that encode geometry and semantics learned from massive image-text data, yet directly reusing their stochastic generative formulation is suboptimal for deterministic geometric inference: the former is optimized for diverse and high-fidelity image generation, whereas the latter requires stable and accurate predictions. In this work, we propose Lotus-2, a two-stage deterministic framework for stable, accurate and fine-grained geometric dense prediction, aiming to provide an optimal adaption protocol to fully exploit the pre-trained generative priors. Specifically, in the first stage, the core predictor employs a single-step deterministic formulation with a clean-data objective and a lightweight local continuity module (LCM) to generate globally coherent structures without grid artifacts. In the second stage, the detail sharpener performs a constrained multi-step rectified-flow refinement within the manifold defined by the core predictor, enhancing fine-grained geometry through noise-free deterministic flow matching. Using only 59K training samples, less than 1% of existing large-scale datasets, Lotus-2 establishes new state-of-the-art results in monocular depth estimation and highly competitive surface normal prediction. These results demonstrate that diffusion models can serve as deterministic world priors, enabling high-quality geometric reasoning beyond traditional discriminative and generative paradigms.

  • 4 authors
·
Nov 30 2

Sparse-view Pose Estimation and Reconstruction via Analysis by Generative Synthesis

Inferring the 3D structure underlying a set of multi-view images typically requires solving two co-dependent tasks -- accurate 3D reconstruction requires precise camera poses, and predicting camera poses relies on (implicitly or explicitly) modeling the underlying 3D. The classical framework of analysis by synthesis casts this inference as a joint optimization seeking to explain the observed pixels, and recent instantiations learn expressive 3D representations (e.g., Neural Fields) with gradient-descent-based pose refinement of initial pose estimates. However, given a sparse set of observed views, the observations may not provide sufficient direct evidence to obtain complete and accurate 3D. Moreover, large errors in pose estimation may not be easily corrected and can further degrade the inferred 3D. To allow robust 3D reconstruction and pose estimation in this challenging setup, we propose SparseAGS, a method that adapts this analysis-by-synthesis approach by: a) including novel-view-synthesis-based generative priors in conjunction with photometric objectives to improve the quality of the inferred 3D, and b) explicitly reasoning about outliers and using a discrete search with a continuous optimization-based strategy to correct them. We validate our framework across real-world and synthetic datasets in combination with several off-the-shelf pose estimation systems as initialization. We find that it significantly improves the base systems' pose accuracy while yielding high-quality 3D reconstructions that outperform the results from current multi-view reconstruction baselines.

  • 2 authors
·
Dec 4, 2024

Crystal Structure Generation with Autoregressive Large Language Modeling

The generation of plausible crystal structures is often the first step in predicting the structure and properties of a material from its chemical composition. Quickly generating and predicting inorganic crystal structures is important for the discovery of new materials, which can target applications such as energy or electronic devices. However, most current methods for crystal structure prediction are computationally expensive, slowing the pace of innovation. Seeding structure prediction algorithms with quality generated candidates can overcome a major bottleneck. Here, we introduce CrystaLLM, a methodology for the versatile generation of crystal structures, based on the autoregressive large language modeling (LLM) of the Crystallographic Information File (CIF) format. Trained on millions of CIF files, CrystaLLM focuses on modeling crystal structures through text. CrystaLLM can produce plausible crystal structures for a wide range of inorganic compounds unseen in training, as demonstrated by ab initio simulations. The integration with predictors of formation energy permits the use of a Monte Carlo Tree Search algorithm to improve the generation of meaningful structures. Our approach challenges conventional representations of crystals, and demonstrates the potential of LLMs for learning effective 'world models' of crystal chemistry, which will lead to accelerated discovery and innovation in materials science.

  • 3 authors
·
Jul 10, 2023

A Periodic Bayesian Flow for Material Generation

Generative modeling of crystal data distribution is an important yet challenging task due to the unique periodic physical symmetry of crystals. Diffusion-based methods have shown early promise in modeling crystal distribution. More recently, Bayesian Flow Networks were introduced to aggregate noisy latent variables, resulting in a variance-reduced parameter space that has been shown to be advantageous for modeling Euclidean data distributions with structural constraints (Song et al., 2023). Inspired by this, we seek to unlock its potential for modeling variables located in non-Euclidean manifolds e.g. those within crystal structures, by overcoming challenging theoretical issues. We introduce CrysBFN, a novel crystal generation method by proposing a periodic Bayesian flow, which essentially differs from the original Gaussian-based BFN by exhibiting non-monotonic entropy dynamics. To successfully realize the concept of periodic Bayesian flow, CrysBFN integrates a new entropy conditioning mechanism and empirically demonstrates its significance compared to time-conditioning. Extensive experiments over both crystal ab initio generation and crystal structure prediction tasks demonstrate the superiority of CrysBFN, which consistently achieves new state-of-the-art on all benchmarks. Surprisingly, we found that CrysBFN enjoys a significant improvement in sampling efficiency, e.g., ~100x speedup 10 v.s. 2000 steps network forwards) compared with previous diffusion-based methods on MP-20 dataset. Code is available at https://github.com/wu-han-lin/CrysBFN.

  • 9 authors
·
Feb 4

Protein Multimer Structure Prediction via Prompt Learning

Understanding the 3D structures of protein multimers is crucial, as they play a vital role in regulating various cellular processes. It has been empirically confirmed that the multimer structure prediction~(MSP) can be well handled in a step-wise assembly fashion using provided dimer structures and predicted protein-protein interactions~(PPIs). However, due to the biological gap in the formation of dimers and larger multimers, directly applying PPI prediction techniques can often cause a poor generalization to the MSP task. To address this challenge, we aim to extend the PPI knowledge to multimers of different scales~(i.e., chain numbers). Specifically, we propose \textsc{PromptMSP}, a pre-training and Prompt tuning framework for Multimer Structure Prediction. First, we tailor the source and target tasks for effective PPI knowledge learning and efficient inference, respectively. We design PPI-inspired prompt learning to narrow the gaps of two task formats and generalize the PPI knowledge to multimers of different scales. We provide a meta-learning strategy to learn a reliable initialization of the prompt model, enabling our prompting framework to effectively adapt to limited data for large-scale multimers. Empirically, we achieve both significant accuracy (RMSD and TM-Score) and efficiency improvements compared to advanced MSP models. The code, data and checkpoints are released at https://github.com/zqgao22/PromptMSP.

  • 6 authors
·
Feb 28, 2024

4D Diffusion for Dynamic Protein Structure Prediction with Reference Guided Motion Alignment

Protein structure prediction is pivotal for understanding the structure-function relationship of proteins, advancing biological research, and facilitating pharmaceutical development and experimental design. While deep learning methods and the expanded availability of experimental 3D protein structures have accelerated structure prediction, the dynamic nature of protein structures has received limited attention. This study introduces an innovative 4D diffusion model incorporating molecular dynamics (MD) simulation data to learn dynamic protein structures. Our approach is distinguished by the following components: (1) a unified diffusion model capable of generating dynamic protein structures, including both the backbone and side chains, utilizing atomic grouping and side-chain dihedral angle predictions; (2) a reference network that enhances structural consistency by integrating the latent embeddings of the initial 3D protein structures; and (3) a motion alignment module aimed at improving temporal structural coherence across multiple time steps. To our knowledge, this is the first diffusion-based model aimed at predicting protein trajectories across multiple time steps simultaneously. Validation on benchmark datasets demonstrates that our model exhibits high accuracy in predicting dynamic 3D structures of proteins containing up to 256 amino acids over 32 time steps, effectively capturing both local flexibility in stable states and significant conformational changes.

  • 9 authors
·
Aug 22, 2024

DISPROTBENCH: A Disorder-Aware, Task-Rich Benchmark for Evaluating Protein Structure Prediction in Realistic Biological Contexts

Recent advances in protein structure prediction have achieved near-atomic accuracy for well-folded proteins. However, current benchmarks inadequately assess model performance in biologically challenging contexts, especially those involving intrinsically disordered regions (IDRs), limiting their utility in applications such as drug discovery, disease variant interpretation, and protein interface design. We introduce DisProtBench, a comprehensive benchmark for evaluating protein structure prediction models (PSPMs) under structural disorder and complex biological conditions. DisProtBench spans three key axes: (1) Data complexity, covering disordered regions, G protein-coupled receptor (GPCR) ligand pairs, and multimeric complexes; (2) Task diversity, benchmarking twelve leading PSPMs across structure-based tasks with unified classification, regression, and interface metrics; and (3) Interpretability, via the DisProtBench Portal, which provides precomputed 3D structures and visual error analyses. Our results reveal significant variability in model robustness under disorder, with low-confidence regions linked to functional prediction failures. Notably, global accuracy metrics often fail to predict task performance in disordered settings, emphasizing the need for function-aware evaluation. DisProtBench establishes a reproducible, extensible, and biologically grounded framework for assessing next-generation PSPMs in realistic biomedical scenarios.

  • 9 authors
·
Jun 18

Generating Novel, Designable, and Diverse Protein Structures by Equivariantly Diffusing Oriented Residue Clouds

Proteins power a vast array of functional processes in living cells. The capability to create new proteins with designed structures and functions would thus enable the engineering of cellular behavior and development of protein-based therapeutics and materials. Structure-based protein design aims to find structures that are designable (can be realized by a protein sequence), novel (have dissimilar geometry from natural proteins), and diverse (span a wide range of geometries). While advances in protein structure prediction have made it possible to predict structures of novel protein sequences, the combinatorially large space of sequences and structures limits the practicality of search-based methods. Generative models provide a compelling alternative, by implicitly learning the low-dimensional structure of complex data distributions. Here, we leverage recent advances in denoising diffusion probabilistic models and equivariant neural networks to develop Genie, a generative model of protein structures that performs discrete-time diffusion using a cloud of oriented reference frames in 3D space. Through in silico evaluations, we demonstrate that Genie generates protein backbones that are more designable, novel, and diverse than existing models. This indicates that Genie is capturing key aspects of the distribution of protein structure space and facilitates protein design with high success rates. Code for generating new proteins and training new versions of Genie is available at https://github.com/aqlaboratory/genie.

  • 2 authors
·
Jan 29, 2023

MolSpectLLM: A Molecular Foundation Model Bridging Spectroscopy, Molecule Elucidation, and 3D Structure Generation

Recent advances in molecular foundation models have shown impressive performance in molecular property prediction and de novo molecular design, with promising applications in areas such as drug discovery and reaction prediction. Nevertheless, most existing approaches rely exclusively on SMILES representations and overlook both experimental spectra and 3D structural information-two indispensable sources for capturing molecular behavior in real-world scenarios. This limitation reduces their effectiveness in tasks where stereochemistry, spatial conformation, and experimental validation are critical. To overcome these challenges, we propose MolSpectLLM, a molecular foundation model pretrained on Qwen2.5-7B that unifies experimental spectroscopy with molecular 3D structure. By explicitly modeling molecular spectra, MolSpectLLM achieves state-of-the-art performance on spectrum-related tasks, with an average accuracy of 0.53 across NMR, IR, and MS benchmarks. MolSpectLLM also shows strong performance on the spectra analysis task, obtaining 15.5% sequence accuracy and 41.7% token accuracy on Spectra-to-SMILES, substantially outperforming large general-purpose LLMs. More importantly, MolSpectLLM not only achieves strong performance on molecular elucidation tasks, but also generates accurate 3D molecular structures directly from SMILES or spectral inputs, bridging spectral analysis, molecular elucidation, and molecular design. Code are available at https://github.com/Eurekashen/MolSpectLLM{https://github.com/Eurekashen/MolSpectLLM}.

  • 9 authors
·
Sep 26

Generative Regression Based Watch Time Prediction for Short-Video Recommendation

Watch time prediction (WTP) has emerged as a pivotal task in short video recommendation systems, designed to quantify user engagement through continuous interaction modeling. Predicting users' watch times on videos often encounters fundamental challenges, including wide value ranges and imbalanced data distributions, which can lead to significant estimation bias when directly applying regression techniques. Recent studies have attempted to address these issues by converting the continuous watch time estimation into an ordinal regression task. While these methods demonstrate partial effectiveness, they exhibit notable limitations: (1) the discretization process frequently relies on bucket partitioning, inherently reducing prediction flexibility and accuracy and (2) the interdependencies among different partition intervals remain underutilized, missing opportunities for effective error correction. Inspired by language modeling paradigms, we propose a novel Generative Regression (GR) framework that reformulates WTP as a sequence generation task. Our approach employs structural discretization to enable nearly lossless value reconstruction while maintaining prediction fidelity. Through carefully designed vocabulary construction and label encoding schemes, each watch time is bijectively mapped to a token sequence. To mitigate the training-inference discrepancy caused by teacher-forcing, we introduce a curriculum learning with embedding mixup strategy that gradually transitions from guided to free-generation modes. We evaluate our method against state-of-the-art approaches on two public datasets and one industrial dataset. We also perform online A/B testing on the Kuaishou App to confirm the real-world effectiveness. The results conclusively show that GR outperforms existing techniques significantly.

  • 9 authors
·
Dec 28, 2024

Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction

Click-Through Rate prediction is an important task in recommender systems, which aims to estimate the probability of a user to click on a given item. Recently, many deep models have been proposed to learn low-order and high-order feature interactions from original features. However, since useful interactions are always sparse, it is difficult for DNN to learn them effectively under a large number of parameters. In real scenarios, artificial features are able to improve the performance of deep models (such as Wide & Deep Learning), but feature engineering is expensive and requires domain knowledge, making it impractical in different scenarios. Therefore, it is necessary to augment feature space automatically. In this paper, We propose a novel Feature Generation by Convolutional Neural Network (FGCNN) model with two components: Feature Generation and Deep Classifier. Feature Generation leverages the strength of CNN to generate local patterns and recombine them to generate new features. Deep Classifier adopts the structure of IPNN to learn interactions from the augmented feature space. Experimental results on three large-scale datasets show that FGCNN significantly outperforms nine state-of-the-art models. Moreover, when applying some state-of-the-art models as Deep Classifier, better performance is always achieved, showing the great compatibility of our FGCNN model. This work explores a novel direction for CTR predictions: it is quite useful to reduce the learning difficulties of DNN by automatically identifying important features.

  • 6 authors
·
Apr 8, 2019

NFIG: Autoregressive Image Generation with Next-Frequency Prediction

Autoregressive models have achieved promising results in natural language processing. However, for image generation tasks, they encounter substantial challenges in effectively capturing long-range dependencies, managing computational costs, and most crucially, defining meaningful autoregressive sequences that reflect natural image hierarchies. To address these issues, we present Next-Frequency Image Generation (NFIG), a novel framework that decomposes the image generation process into multiple frequency-guided stages. Our approach first generates low-frequency components to establish global structure with fewer tokens, then progressively adds higher-frequency details, following the natural spectral hierarchy of images. This principled autoregressive sequence not only improves the quality of generated images by better capturing true causal relationships between image components, but also significantly reduces computational overhead during inference. Extensive experiments demonstrate that NFIG achieves state-of-the-art performance with fewer steps, offering a more efficient solution for image generation, with 1.25times speedup compared to VAR-d20 while achieving better performance (FID: 2.81) on the ImageNet-256 benchmark. We hope that our insight of incorporating frequency-domain knowledge to guide autoregressive sequence design will shed light on future research. We will make our code publicly available upon acceptance of the paper.

  • 6 authors
·
Mar 10

DetailFlow: 1D Coarse-to-Fine Autoregressive Image Generation via Next-Detail Prediction

This paper presents DetailFlow, a coarse-to-fine 1D autoregressive (AR) image generation method that models images through a novel next-detail prediction strategy. By learning a resolution-aware token sequence supervised with progressively degraded images, DetailFlow enables the generation process to start from the global structure and incrementally refine details. This coarse-to-fine 1D token sequence aligns well with the autoregressive inference mechanism, providing a more natural and efficient way for the AR model to generate complex visual content. Our compact 1D AR model achieves high-quality image synthesis with significantly fewer tokens than previous approaches, i.e. VAR/VQGAN. We further propose a parallel inference mechanism with self-correction that accelerates generation speed by approximately 8x while reducing accumulation sampling error inherent in teacher-forcing supervision. On the ImageNet 256x256 benchmark, our method achieves 2.96 gFID with 128 tokens, outperforming VAR (3.3 FID) and FlexVAR (3.05 FID), which both require 680 tokens in their AR models. Moreover, due to the significantly reduced token count and parallel inference mechanism, our method runs nearly 2x faster inference speed compared to VAR and FlexVAR. Extensive experimental results demonstrate DetailFlow's superior generation quality and efficiency compared to existing state-of-the-art methods.

  • 13 authors
·
May 27 2

GenAD: Generative End-to-End Autonomous Driving

Directly producing planning results from raw sensors has been a long-desired solution for autonomous driving and has attracted increasing attention recently. Most existing end-to-end autonomous driving methods factorize this problem into perception, motion prediction, and planning. However, we argue that the conventional progressive pipeline still cannot comprehensively model the entire traffic evolution process, e.g., the future interaction between the ego car and other traffic participants and the structural trajectory prior. In this paper, we explore a new paradigm for end-to-end autonomous driving, where the key is to predict how the ego car and the surroundings evolve given past scenes. We propose GenAD, a generative framework that casts autonomous driving into a generative modeling problem. We propose an instance-centric scene tokenizer that first transforms the surrounding scenes into map-aware instance tokens. We then employ a variational autoencoder to learn the future trajectory distribution in a structural latent space for trajectory prior modeling. We further adopt a temporal model to capture the agent and ego movements in the latent space to generate more effective future trajectories. GenAD finally simultaneously performs motion prediction and planning by sampling distributions in the learned structural latent space conditioned on the instance tokens and using the learned temporal model to generate futures. Extensive experiments on the widely used nuScenes benchmark show that the proposed GenAD achieves state-of-the-art performance on vision-centric end-to-end autonomous driving with high efficiency. Code: https://github.com/wzzheng/GenAD.

  • 5 authors
·
Feb 18, 2024

GVGEN: Text-to-3D Generation with Volumetric Representation

In recent years, 3D Gaussian splatting has emerged as a powerful technique for 3D reconstruction and generation, known for its fast and high-quality rendering capabilities. To address these shortcomings, this paper introduces a novel diffusion-based framework, GVGEN, designed to efficiently generate 3D Gaussian representations from text input. We propose two innovative techniques:(1) Structured Volumetric Representation. We first arrange disorganized 3D Gaussian points as a structured form GaussianVolume. This transformation allows the capture of intricate texture details within a volume composed of a fixed number of Gaussians. To better optimize the representation of these details, we propose a unique pruning and densifying method named the Candidate Pool Strategy, enhancing detail fidelity through selective optimization. (2) Coarse-to-fine Generation Pipeline. To simplify the generation of GaussianVolume and empower the model to generate instances with detailed 3D geometry, we propose a coarse-to-fine pipeline. It initially constructs a basic geometric structure, followed by the prediction of complete Gaussian attributes. Our framework, GVGEN, demonstrates superior performance in qualitative and quantitative assessments compared to existing 3D generation methods. Simultaneously, it maintains a fast generation speed (sim7 seconds), effectively striking a balance between quality and efficiency.

  • 9 authors
·
Mar 19, 2024 1

Predictive, scalable and interpretable knowledge tracing on structured domains

Intelligent tutoring systems optimize the selection and timing of learning materials to enhance understanding and long-term retention. This requires estimates of both the learner's progress (''knowledge tracing''; KT), and the prerequisite structure of the learning domain (''knowledge mapping''). While recent deep learning models achieve high KT accuracy, they do so at the expense of the interpretability of psychologically-inspired models. In this work, we present a solution to this trade-off. PSI-KT is a hierarchical generative approach that explicitly models how both individual cognitive traits and the prerequisite structure of knowledge influence learning dynamics, thus achieving interpretability by design. Moreover, by using scalable Bayesian inference, PSI-KT targets the real-world need for efficient personalization even with a growing body of learners and learning histories. Evaluated on three datasets from online learning platforms, PSI-KT achieves superior multi-step predictive accuracy and scalable inference in continual-learning settings, all while providing interpretable representations of learner-specific traits and the prerequisite structure of knowledge that causally supports learning. In sum, predictive, scalable and interpretable knowledge tracing with solid knowledge mapping lays a key foundation for effective personalized learning to make education accessible to a broad, global audience.

  • 4 authors
·
Mar 19, 2024

CoTox: Chain-of-Thought-Based Molecular Toxicity Reasoning and Prediction

Drug toxicity remains a major challenge in pharmaceutical development. Recent machine learning models have improved in silico toxicity prediction, but their reliance on annotated data and lack of interpretability limit their applicability. This limits their ability to capture organ-specific toxicities driven by complex biological mechanisms. Large language models (LLMs) offer a promising alternative through step-by-step reasoning and integration of textual data, yet prior approaches lack biological context and transparent rationale. To address this issue, we propose CoTox, a novel framework that integrates LLM with chain-of-thought (CoT) reasoning for multi-toxicity prediction. CoTox combines chemical structure data, biological pathways, and gene ontology (GO) terms to generate interpretable toxicity predictions through step-by-step reasoning. Using GPT-4o, we show that CoTox outperforms both traditional machine learning and deep learning model. We further examine its performance across various LLMs to identify where CoTox is most effective. Additionally, we find that representing chemical structures with IUPAC names, which are easier for LLMs to understand than SMILES, enhances the model's reasoning ability and improves predictive performance. To demonstrate its practical utility in drug development, we simulate the treatment of relevant cell types with drug and incorporated the resulting biological context into the CoTox framework. This approach allow CoTox to generate toxicity predictions aligned with physiological responses, as shown in case study. This result highlights the potential of LLM-based frameworks to improve interpretability and support early-stage drug safety assessment. The code and prompt used in this work are available at https://github.com/dmis-lab/CoTox.

  • 7 authors
·
Aug 5 2

Breaking Bad Molecules: Are MLLMs Ready for Structure-Level Molecular Detoxification?

Toxicity remains a leading cause of early-stage drug development failure. Despite advances in molecular design and property prediction, the task of molecular toxicity repair - generating structurally valid molecular alternatives with reduced toxicity - has not yet been systematically defined or benchmarked. To fill this gap, we introduce ToxiMol, the first benchmark task for general-purpose Multimodal Large Language Models (MLLMs) focused on molecular toxicity repair. We construct a standardized dataset covering 11 primary tasks and 560 representative toxic molecules spanning diverse mechanisms and granularities. We design a prompt annotation pipeline with mechanism-aware and task-adaptive capabilities, informed by expert toxicological knowledge. In parallel, we propose an automated evaluation framework, ToxiEval, which integrates toxicity endpoint prediction, synthetic accessibility, drug-likeness, and structural similarity into a high-throughput evaluation chain for repair success. We systematically assess nearly 30 mainstream general-purpose MLLMs and design multiple ablation studies to analyze key factors such as evaluation criteria, candidate diversity, and failure attribution. Experimental results show that although current MLLMs still face significant challenges on this task, they begin to demonstrate promising capabilities in toxicity understanding, semantic constraint adherence, and structure-aware molecule editing.

  • 8 authors
·
Jun 12

Leveraging Invariant Principle for Heterophilic Graph Structure Distribution Shifts

Heterophilic Graph Neural Networks (HGNNs) have shown promising results for semi-supervised learning tasks on graphs. Notably, most real-world heterophilic graphs are composed of a mixture of nodes with different neighbor patterns, exhibiting local node-level homophilic and heterophilic structures. However, existing works are only devoted to designing better HGNN backbones or architectures for node classification tasks on heterophilic and homophilic graph benchmarks simultaneously, and their analyses of HGNN performance with respect to nodes are only based on the determined data distribution without exploring the effect caused by this structural difference between training and testing nodes. How to learn invariant node representations on heterophilic graphs to handle this structure difference or distribution shifts remains unexplored. In this paper, we first discuss the limitations of previous graph-based invariant learning methods from the perspective of data augmentation. Then, we propose HEI, a framework capable of generating invariant node representations through incorporating heterophily information to infer latent environments without augmentation, which are then used for invariant prediction, under heterophilic graph structure distribution shifts. We theoretically show that our proposed method can achieve guaranteed performance under heterophilic graph structure distribution shifts. Extensive experiments on various benchmarks and backbones can also demonstrate the effectiveness of our method compared with existing state-of-the-art baselines.

  • 6 authors
·
Aug 18, 2024

FlowAR: Scale-wise Autoregressive Image Generation Meets Flow Matching

Autoregressive (AR) modeling has achieved remarkable success in natural language processing by enabling models to generate text with coherence and contextual understanding through next token prediction. Recently, in image generation, VAR proposes scale-wise autoregressive modeling, which extends the next token prediction to the next scale prediction, preserving the 2D structure of images. However, VAR encounters two primary challenges: (1) its complex and rigid scale design limits generalization in next scale prediction, and (2) the generator's dependence on a discrete tokenizer with the same complex scale structure restricts modularity and flexibility in updating the tokenizer. To address these limitations, we introduce FlowAR, a general next scale prediction method featuring a streamlined scale design, where each subsequent scale is simply double the previous one. This eliminates the need for VAR's intricate multi-scale residual tokenizer and enables the use of any off-the-shelf Variational AutoEncoder (VAE). Our simplified design enhances generalization in next scale prediction and facilitates the integration of Flow Matching for high-quality image synthesis. We validate the effectiveness of FlowAR on the challenging ImageNet-256 benchmark, demonstrating superior generation performance compared to previous methods. Codes will be available at https://github.com/OliverRensu/FlowAR.

  • 6 authors
·
Dec 19, 2024

YuE: Scaling Open Foundation Models for Long-Form Music Generation

We tackle the task of long-form music generation--particularly the challenging lyrics-to-song problem--by introducing YuE, a family of open foundation models based on the LLaMA2 architecture. Specifically, YuE scales to trillions of tokens and generates up to five minutes of music while maintaining lyrical alignment, coherent musical structure, and engaging vocal melodies with appropriate accompaniment. It achieves this through (1) track-decoupled next-token prediction to overcome dense mixture signals, (2) structural progressive conditioning for long-context lyrical alignment, and (3) a multitask, multiphase pre-training recipe to converge and generalize. In addition, we redesign the in-context learning technique for music generation, enabling versatile style transfer (e.g., converting Japanese city pop into an English rap while preserving the original accompaniment) and bidirectional generation. Through extensive evaluation, we demonstrate that YuE matches or even surpasses some of the proprietary systems in musicality and vocal agility. In addition, fine-tuning YuE enables additional controls and enhanced support for tail languages. Furthermore, beyond generation, we show that YuE's learned representations can perform well on music understanding tasks, where the results of YuE match or exceed state-of-the-art methods on the MARBLE benchmark. Keywords: lyrics2song, song generation, long-form, foundation model, music generation

  • 57 authors
·
Mar 11 3

Light4GS: Lightweight Compact 4D Gaussian Splatting Generation via Context Model

3D Gaussian Splatting (3DGS) has emerged as an efficient and high-fidelity paradigm for novel view synthesis. To adapt 3DGS for dynamic content, deformable 3DGS incorporates temporally deformable primitives with learnable latent embeddings to capture complex motions. Despite its impressive performance, the high-dimensional embeddings and vast number of primitives lead to substantial storage requirements. In this paper, we introduce a Lightweight 4DGS framework, called Light4GS, that employs significance pruning with a deep context model to provide a lightweight storage-efficient dynamic 3DGS representation. The proposed Light4GS is based on 4DGS that is a typical representation of deformable 3DGS. Specifically, our framework is built upon two core components: (1) a spatio-temporal significance pruning strategy that eliminates over 64\% of the deformable primitives, followed by an entropy-constrained spherical harmonics compression applied to the remainder; and (2) a deep context model that integrates intra- and inter-prediction with hyperprior into a coarse-to-fine context structure to enable efficient multiscale latent embedding compression. Our approach achieves over 120x compression and increases rendering FPS up to 20\% compared to the baseline 4DGS, and also superior to frame-wise state-of-the-art 3DGS compression methods, revealing the effectiveness of our Light4GS in terms of both intra- and inter-prediction methods without sacrificing rendering quality.

  • 7 authors
·
Mar 18

Quantize More, Lose Less: Autoregressive Generation from Residually Quantized Speech Representations

Text-to-speech (TTS) synthesis has seen renewed progress under the discrete modeling paradigm. Existing autoregressive approaches often rely on single-codebook representations, which suffer from significant information loss. Even with post-hoc refinement techniques such as flow matching, these methods fail to recover fine-grained details (e.g., prosodic nuances, speaker-specific timbres), especially in challenging scenarios like singing voice or music synthesis. We propose QTTS, a novel TTS framework built upon our new audio codec, QDAC. The core innovation of QDAC lies in its end-to-end training of an ASR-based auto-regressive network with a GAN, which achieves superior semantic feature disentanglement for scalable, near-lossless compression. QTTS models these discrete codes using two innovative strategies: the Hierarchical Parallel architecture, which uses a dual-AR structure to model inter-codebook dependencies for higher-quality synthesis, and the Delay Multihead approach, which employs parallelized prediction with a fixed delay to accelerate inference speed. Our experiments demonstrate that the proposed framework achieves higher synthesis quality and better preserves expressive content compared to baseline. This suggests that scaling up compression via multi-codebook modeling is a promising direction for high-fidelity, general-purpose speech and audio generation.

  • 28 authors
·
Jul 16

VQA-Diff: Exploiting VQA and Diffusion for Zero-Shot Image-to-3D Vehicle Asset Generation in Autonomous Driving

Generating 3D vehicle assets from in-the-wild observations is crucial to autonomous driving. Existing image-to-3D methods cannot well address this problem because they learn generation merely from image RGB information without a deeper understanding of in-the-wild vehicles (such as car models, manufacturers, etc.). This leads to their poor zero-shot prediction capability to handle real-world observations with occlusion or tricky viewing angles. To solve this problem, in this work, we propose VQA-Diff, a novel framework that leverages in-the-wild vehicle images to create photorealistic 3D vehicle assets for autonomous driving. VQA-Diff exploits the real-world knowledge inherited from the Large Language Model in the Visual Question Answering (VQA) model for robust zero-shot prediction and the rich image prior knowledge in the Diffusion model for structure and appearance generation. In particular, we utilize a multi-expert Diffusion Models strategy to generate the structure information and employ a subject-driven structure-controlled generation mechanism to model appearance information. As a result, without the necessity to learn from a large-scale image-to-3D vehicle dataset collected from the real world, VQA-Diff still has a robust zero-shot image-to-novel-view generation ability. We conduct experiments on various datasets, including Pascal 3D+, Waymo, and Objaverse, to demonstrate that VQA-Diff outperforms existing state-of-the-art methods both qualitatively and quantitatively.

  • 8 authors
·
Jul 8, 2024

GL-Fusion: Rethinking the Combination of Graph Neural Network and Large Language model

Recent research on integrating Large Language Models (LLMs) with Graph Neural Networks (GNNs) typically follows two approaches: LLM-centered models, which convert graph data into tokens for LLM processing, and GNN-centered models, which use LLMs to encode text features into node and edge representations for GNN input. LLM-centered models often struggle to capture graph structures effectively, while GNN-centered models compress variable-length textual data into fixed-size vectors, limiting their ability to understand complex semantics. Additionally, GNN-centered approaches require converting tasks into a uniform, manually-designed format, restricting them to classification tasks and preventing language output. To address these limitations, we introduce a new architecture that deeply integrates GNN with LLM, featuring three key innovations: (1) Structure-Aware Transformers, which incorporate GNN's message-passing capabilities directly into LLM's transformer layers, allowing simultaneous processing of textual and structural information and generating outputs from both GNN and LLM; (2) Graph-Text Cross-Attention, which processes full, uncompressed text from graph nodes and edges, ensuring complete semantic integration; and (3) GNN-LLM Twin Predictor, enabling LLM's flexible autoregressive generation alongside GNN's scalable one-pass prediction. GL-Fusion achieves outstand performance on various tasks. Notably, it achieves state-of-the-art performance on OGBN-Arxiv and OGBG-Code2.

  • 6 authors
·
Dec 8, 2024

Foundational Large Language Models for Materials Research

Materials discovery and development are critical for addressing global challenges. Yet, the exponential growth in materials science literature comprising vast amounts of textual data has created significant bottlenecks in knowledge extraction, synthesis, and scientific reasoning. Large Language Models (LLMs) offer unprecedented opportunities to accelerate materials research through automated analysis and prediction. Still, their effective deployment requires domain-specific adaptation for understanding and solving domain-relevant tasks. Here, we present LLaMat, a family of foundational models for materials science developed through continued pretraining of LLaMA models on an extensive corpus of materials literature and crystallographic data. Through systematic evaluation, we demonstrate that LLaMat excels in materials-specific NLP and structured information extraction while maintaining general linguistic capabilities. The specialized LLaMat-CIF variant demonstrates unprecedented capabilities in crystal structure generation, predicting stable crystals with high coverage across the periodic table. Intriguingly, despite LLaMA-3's superior performance in comparison to LLaMA-2, we observe that LLaMat-2 demonstrates unexpectedly enhanced domain-specific performance across diverse materials science tasks, including structured information extraction from text and tables, more particularly in crystal structure generation, a potential adaptation rigidity in overtrained LLMs. Altogether, the present work demonstrates the effectiveness of domain adaptation towards developing practically deployable LLM copilots for materials research. Beyond materials science, our findings reveal important considerations for domain adaptation of LLMs, such as model selection, training methodology, and domain-specific performance, which may influence the development of specialized scientific AI systems.

  • 10 authors
·
Dec 12, 2024

SQLNet: Generating Structured Queries From Natural Language Without Reinforcement Learning

Synthesizing SQL queries from natural language is a long-standing open problem and has been attracting considerable interest recently. Toward solving the problem, the de facto approach is to employ a sequence-to-sequence-style model. Such an approach will necessarily require the SQL queries to be serialized. Since the same SQL query may have multiple equivalent serializations, training a sequence-to-sequence-style model is sensitive to the choice from one of them. This phenomenon is documented as the "order-matters" problem. Existing state-of-the-art approaches rely on reinforcement learning to reward the decoder when it generates any of the equivalent serializations. However, we observe that the improvement from reinforcement learning is limited. In this paper, we propose a novel approach, i.e., SQLNet, to fundamentally solve this problem by avoiding the sequence-to-sequence structure when the order does not matter. In particular, we employ a sketch-based approach where the sketch contains a dependency graph so that one prediction can be done by taking into consideration only the previous predictions that it depends on. In addition, we propose a sequence-to-set model as well as the column attention mechanism to synthesize the query based on the sketch. By combining all these novel techniques, we show that SQLNet can outperform the prior art by 9% to 13% on the WikiSQL task.

  • 3 authors
·
Nov 13, 2017

PAC Prediction Sets for Large Language Models of Code

Prediction sets have recently been shown to be a promising strategy for quantifying the uncertainty of deep neural networks in a way that provides theoretical guarantees. However, existing techniques have largely targeted settings where the space of labels is simple, so prediction sets can be arbitrary subsets of labels. For structured prediction problems where the space of labels is exponential in size, even prediction sets containing a small fraction of all labels can be exponentially large. In the context of code generation, we propose a solution that considers a restricted set of prediction sets that can compactly be represented as partial programs, which are programs with portions replaced with holes. Given a trained code generation model, our algorithm leverages a programming language's abstract syntax tree to generate a set of programs such that the correct program is in the set with high-confidence. Valuable applications of our algorithm include a Codex-style code generator with holes in uncertain parts of the generated code, which provides a partial program with theoretical guarantees. We evaluate our approach on PICARD (a T5 model for SQL semantic parsing) and Codex (a GPT model for over a dozen programming languages, including Python), demonstrating that our approach generates compact PAC prediction sets. This is the first research contribution that generates PAC prediction sets for generative code models.

  • 3 authors
·
Feb 17, 2023

Structured Legal Document Generation in India: A Model-Agnostic Wrapper Approach with VidhikDastaavej

Automating legal document drafting can significantly enhance efficiency, reduce manual effort, and streamline legal workflows. While prior research has explored tasks such as judgment prediction and case summarization, the structured generation of private legal documents in the Indian legal domain remains largely unaddressed. To bridge this gap, we introduce VidhikDastaavej, a novel, anonymized dataset of private legal documents, and develop NyayaShilp, a fine-tuned legal document generation model specifically adapted to Indian legal texts. We propose a Model-Agnostic Wrapper (MAW), a two-step framework that first generates structured section titles and then iteratively produces content while leveraging retrieval-based mechanisms to ensure coherence and factual accuracy. We benchmark multiple open-source LLMs, including instruction-tuned and domain-adapted versions, alongside proprietary models for comparison. Our findings indicate that while direct fine-tuning on small datasets does not always yield improvements, our structured wrapper significantly enhances coherence, factual adherence, and overall document quality while mitigating hallucinations. To ensure real-world applicability, we developed a Human-in-the-Loop (HITL) Document Generation System, an interactive user interface that enables users to specify document types, refine section details, and generate structured legal drafts. This tool allows legal professionals and researchers to generate, validate, and refine AI-generated legal documents efficiently. Extensive evaluations, including expert assessments, confirm that our framework achieves high reliability in structured legal drafting. This research establishes a scalable and adaptable foundation for AI-assisted legal drafting in India, offering an effective approach to structured legal document generation.

  • 6 authors
·
Apr 4

PepMLM: Target Sequence-Conditioned Generation of Peptide Binders via Masked Language Modeling

Target proteins that lack accessible binding pockets and conformational stability have posed increasing challenges for drug development. Induced proximity strategies, such as PROTACs and molecular glues, have thus gained attention as pharmacological alternatives, but still require small molecule docking at binding pockets for targeted protein degradation (TPD). The computational design of protein-based binders presents unique opportunities to access undruggable targets, but have often relied on stable 3D structures or predictions for effective binder generation. Recently, we have leveraged the expressive latent spaces of protein language models (pLMs) for the prioritization of peptide binders from sequence alone, which we have then fused to E3 ubiquitin ligase domains, creating a CRISPR-analogous TPD system for target proteins. However, our methods rely on training discriminator models for ranking heuristically or unconditionally-derived guide peptides for their target binding capability. In this work, we introduce PepMLM, a purely target sequence-conditioned de novo generator of linear peptide binders. By employing a novel masking strategy that uniquely positions cognate peptide sequences at the terminus of target protein sequences, PepMLM tasks the state-of-the-art ESM-2 pLM to fully reconstruct the binder region, achieving low perplexities matching or improving upon previously-validated peptide-protein sequence pairs. After successful in silico benchmarking with AlphaFold-Multimer, we experimentally verify PepMLM's efficacy via fusion of model-derived peptides to E3 ubiquitin ligase domains, demonstrating endogenous degradation of target substrates in cellular models. In total, PepMLM enables the generative design of candidate binders to any target protein, without the requirement of target structure, empowering downstream programmable proteome editing applications.

  • 13 authors
·
Oct 5, 2023

PathOrchestra: A Comprehensive Foundation Model for Computational Pathology with Over 100 Diverse Clinical-Grade Tasks

The complexity and variability inherent in high-resolution pathological images present significant challenges in computational pathology. While pathology foundation models leveraging AI have catalyzed transformative advancements, their development demands large-scale datasets, considerable storage capacity, and substantial computational resources. Furthermore, ensuring their clinical applicability and generalizability requires rigorous validation across a broad spectrum of clinical tasks. Here, we present PathOrchestra, a versatile pathology foundation model trained via self-supervised learning on a dataset comprising 300K pathological slides from 20 tissue and organ types across multiple centers. The model was rigorously evaluated on 112 clinical tasks using a combination of 61 private and 51 public datasets. These tasks encompass digital slide preprocessing, pan-cancer classification, lesion identification, multi-cancer subtype classification, biomarker assessment, gene expression prediction, and the generation of structured reports. PathOrchestra demonstrated exceptional performance across 27,755 WSIs and 9,415,729 ROIs, achieving over 0.950 accuracy in 47 tasks, including pan-cancer classification across various organs, lymphoma subtype diagnosis, and bladder cancer screening. Notably, it is the first model to generate structured reports for high-incidence colorectal cancer and diagnostically complex lymphoma-areas that are infrequently addressed by foundational models but hold immense clinical potential. Overall, PathOrchestra exemplifies the feasibility and efficacy of a large-scale, self-supervised pathology foundation model, validated across a broad range of clinical-grade tasks. Its high accuracy and reduced reliance on extensive data annotation underline its potential for clinical integration, offering a pathway toward more efficient and high-quality medical services.

  • 27 authors
·
Mar 31

A Data-Efficient Pan-Tumor Foundation Model for Oncology CT Interpretation

Artificial intelligence-assisted imaging analysis has made substantial strides in tumor diagnosis and management. Here we present PASTA, a pan-tumor CT foundation model that achieves state-of-the-art performance on 45 of 46 representative oncology tasks -- including lesion segmentation, tumor detection in plain CT, tumor staging, survival prediction, structured report generation, and cross-modality transfer learning, significantly outperforming the second-best models on 35 tasks. This remarkable advancement is driven by our development of PASTA-Gen, an innovative synthetic tumor generation framework that produces a comprehensive dataset of 30,000 CT scans with pixel-level annotated lesions and paired structured reports, encompassing malignancies across ten organs and five benign lesion types. By leveraging this rich, high-quality synthetic data, we overcome a longstanding bottleneck in the development of CT foundation models -- specifically, the scarcity of publicly available, high-quality annotated datasets due to privacy constraints and the substantial labor required for scaling precise data annotation. Encouragingly, PASTA demonstrates exceptional data efficiency with promising practical value, markedly improving performance on various tasks with only a small amount of real-world data. The open release of both the synthetic dataset and PASTA foundation model effectively addresses the challenge of data scarcity, thereby advancing oncological research and clinical translation.

  • 16 authors
·
Feb 10

A Unified Predictive and Generative Solution for Liquid Electrolyte Formulation

Liquid electrolytes are critical components of next-generation energy storage systems, enabling fast ion transport, minimizing interfacial resistance, and ensuring electrochemical stability for long-term battery performance. However, measuring electrolyte properties and designing formulations remain experimentally and computationally expensive. In this work, we present a unified framework for designing liquid electrolyte formulation, integrating a forward predictive model with an inverse generative approach. Leveraging both computational and experimental data collected from literature and extensive molecular simulations, we train a predictive model capable of accurately estimating electrolyte properties from ionic conductivity to solvation structure. Our physics-informed architecture preserves permutation invariance and incorporates empirical dependencies on temperature and salt concentration, making it broadly applicable to property prediction tasks across molecular mixtures. Furthermore, we introduce -- to the best of our knowledge -- the first generative machine learning framework for molecular mixture design, demonstrated on electrolyte systems. This framework supports multi-condition-constrained generation, addressing the inherently multi-objective nature of materials design. As a proof of concept, we experimentally identified three liquid electrolytes with both high ionic conductivity and anion-concentrated solvation structure. This unified framework advances data-driven electrolyte design and can be readily extended to other complex chemical systems beyond electrolytes.

  • 13 authors
·
Apr 25

Beyond Next-Token: Next-X Prediction for Autoregressive Visual Generation

Autoregressive (AR) modeling, known for its next-token prediction paradigm, underpins state-of-the-art language and visual generative models. Traditionally, a ``token'' is treated as the smallest prediction unit, often a discrete symbol in language or a quantized patch in vision. However, the optimal token definition for 2D image structures remains an open question. Moreover, AR models suffer from exposure bias, where teacher forcing during training leads to error accumulation at inference. In this paper, we propose xAR, a generalized AR framework that extends the notion of a token to an entity X, which can represent an individual patch token, a cell (a ktimes k grouping of neighboring patches), a subsample (a non-local grouping of distant patches), a scale (coarse-to-fine resolution), or even a whole image. Additionally, we reformulate discrete token classification as continuous entity regression, leveraging flow-matching methods at each AR step. This approach conditions training on noisy entities instead of ground truth tokens, leading to Noisy Context Learning, which effectively alleviates exposure bias. As a result, xAR offers two key advantages: (1) it enables flexible prediction units that capture different contextual granularity and spatial structures, and (2) it mitigates exposure bias by avoiding reliance on teacher forcing. On ImageNet-256 generation benchmark, our base model, xAR-B (172M), outperforms DiT-XL/SiT-XL (675M) while achieving 20times faster inference. Meanwhile, xAR-H sets a new state-of-the-art with an FID of 1.24, running 2.2times faster than the previous best-performing model without relying on vision foundation modules (\eg, DINOv2) or advanced guidance interval sampling.

  • 6 authors
·
Feb 27 2

T-Rex: Text-assisted Retrosynthesis Prediction

As a fundamental task in computational chemistry, retrosynthesis prediction aims to identify a set of reactants to synthesize a target molecule. Existing template-free approaches only consider the graph structures of the target molecule, which often cannot generalize well to rare reaction types and large molecules. Here, we propose T-Rex, a text-assisted retrosynthesis prediction approach that exploits pre-trained text language models, such as ChatGPT, to assist the generation of reactants. T-Rex first exploits ChatGPT to generate a description for the target molecule and rank candidate reaction centers based both the description and the molecular graph. It then re-ranks these candidates by querying the descriptions for each reactants and examines which group of reactants can best synthesize the target molecule. We observed that T-Rex substantially outperformed graph-based state-of-the-art approaches on two datasets, indicating the effectiveness of considering text information. We further found that T-Rex outperformed the variant that only use ChatGPT-based description without the re-ranking step, demonstrate how our framework outperformed a straightforward integration of ChatGPT and graph information. Collectively, we show that text generated by pre-trained language models can substantially improve retrosynthesis prediction, opening up new avenues for exploiting ChatGPT to advance computational chemistry. And the codes can be found at https://github.com/lauyikfung/T-Rex.

  • 8 authors
·
Jan 25, 2024

OCR Hinders RAG: Evaluating the Cascading Impact of OCR on Retrieval-Augmented Generation

Retrieval-augmented Generation (RAG) enhances Large Language Models (LLMs) by integrating external knowledge to reduce hallucinations and incorporate up-to-date information without retraining. As an essential part of RAG, external knowledge bases are commonly built by extracting structured data from unstructured PDF documents using Optical Character Recognition (OCR). However, given the imperfect prediction of OCR and the inherent non-uniform representation of structured data, knowledge bases inevitably contain various OCR noises. In this paper, we introduce OHRBench, the first benchmark for understanding the cascading impact of OCR on RAG systems. OHRBench includes 350 carefully selected unstructured PDF documents from six real-world RAG application domains, along with Q&As derived from multimodal elements in documents, challenging existing OCR solutions used for RAG To better understand OCR's impact on RAG systems, we identify two primary types of OCR noise: Semantic Noise and Formatting Noise and apply perturbation to generate a set of structured data with varying degrees of each OCR noise. Using OHRBench, we first conduct a comprehensive evaluation of current OCR solutions and reveal that none is competent for constructing high-quality knowledge bases for RAG systems. We then systematically evaluate the impact of these two noise types and demonstrate the vulnerability of RAG systems. Furthermore, we discuss the potential of employing Vision-Language Models (VLMs) without OCR in RAG systems. Code: https://github.com/opendatalab/OHR-Bench

  • 9 authors
·
Dec 3, 2024 2

OctGPT: Octree-based Multiscale Autoregressive Models for 3D Shape Generation

Autoregressive models have achieved remarkable success across various domains, yet their performance in 3D shape generation lags significantly behind that of diffusion models. In this paper, we introduce OctGPT, a novel multiscale autoregressive model for 3D shape generation that dramatically improves the efficiency and performance of prior 3D autoregressive approaches, while rivaling or surpassing state-of-the-art diffusion models. Our method employs a serialized octree representation to efficiently capture the hierarchical and spatial structures of 3D shapes. Coarse geometry is encoded via octree structures, while fine-grained details are represented by binary tokens generated using a vector quantized variational autoencoder (VQVAE), transforming 3D shapes into compact multiscale binary sequences suitable for autoregressive prediction. To address the computational challenges of handling long sequences, we incorporate octree-based transformers enhanced with 3D rotary positional encodings, scale-specific embeddings, and token-parallel generation schemes. These innovations reduce training time by 13 folds and generation time by 69 folds, enabling the efficient training of high-resolution 3D shapes, e.g.,1024^3, on just four NVIDIA 4090 GPUs only within days. OctGPT showcases exceptional versatility across various tasks, including text-, sketch-, and image-conditioned generation, as well as scene-level synthesis involving multiple objects. Extensive experiments demonstrate that OctGPT accelerates convergence and improves generation quality over prior autoregressive methods, offering a new paradigm for high-quality, scalable 3D content creation.

  • 5 authors
·
Apr 14

PhysX: Physical-Grounded 3D Asset Generation

3D modeling is moving from virtual to physical. Existing 3D generation primarily emphasizes geometries and textures while neglecting physical-grounded modeling. Consequently, despite the rapid development of 3D generative models, the synthesized 3D assets often overlook rich and important physical properties, hampering their real-world application in physical domains like simulation and embodied AI. As an initial attempt to address this challenge, we propose PhysX, an end-to-end paradigm for physical-grounded 3D asset generation. 1) To bridge the critical gap in physics-annotated 3D datasets, we present PhysXNet - the first physics-grounded 3D dataset systematically annotated across five foundational dimensions: absolute scale, material, affordance, kinematics, and function description. In particular, we devise a scalable human-in-the-loop annotation pipeline based on vision-language models, which enables efficient creation of physics-first assets from raw 3D assets.2) Furthermore, we propose PhysXGen, a feed-forward framework for physics-grounded image-to-3D asset generation, injecting physical knowledge into the pre-trained 3D structural space. Specifically, PhysXGen employs a dual-branch architecture to explicitly model the latent correlations between 3D structures and physical properties, thereby producing 3D assets with plausible physical predictions while preserving the native geometry quality. Extensive experiments validate the superior performance and promising generalization capability of our framework. All the code, data, and models will be released to facilitate future research in generative physical AI.

  • 4 authors
·
Jul 16 1

ProFSA: Self-supervised Pocket Pretraining via Protein Fragment-Surroundings Alignment

Pocket representations play a vital role in various biomedical applications, such as druggability estimation, ligand affinity prediction, and de novo drug design. While existing geometric features and pretrained representations have demonstrated promising results, they usually treat pockets independent of ligands, neglecting the fundamental interactions between them. However, the limited pocket-ligand complex structures available in the PDB database (less than 100 thousand non-redundant pairs) hampers large-scale pretraining endeavors for interaction modeling. To address this constraint, we propose a novel pocket pretraining approach that leverages knowledge from high-resolution atomic protein structures, assisted by highly effective pretrained small molecule representations. By segmenting protein structures into drug-like fragments and their corresponding pockets, we obtain a reasonable simulation of ligand-receptor interactions, resulting in the generation of over 5 million complexes. Subsequently, the pocket encoder is trained in a contrastive manner to align with the representation of pseudo-ligand furnished by some pretrained small molecule encoders. Our method, named ProFSA, achieves state-of-the-art performance across various tasks, including pocket druggability prediction, pocket matching, and ligand binding affinity prediction. Notably, ProFSA surpasses other pretraining methods by a substantial margin. Moreover, our work opens up a new avenue for mitigating the scarcity of protein-ligand complex data through the utilization of high-quality and diverse protein structure databases.

  • 7 authors
·
Oct 11, 2023

M$^{3}$-20M: A Large-Scale Multi-Modal Molecule Dataset for AI-driven Drug Design and Discovery

This paper introduces M^{3}-20M, a large-scale Multi-Modal Molecular dataset that contains over 20 million molecules. Designed to support AI-driven drug design and discovery, M^{3}-20M is 71 times more in the number of molecules than the largest existing dataset, providing an unprecedented scale that can highly benefit training or fine-tuning large (language) models with superior performance for drug design and discovery. This dataset integrates one-dimensional SMILES, two-dimensional molecular graphs, three-dimensional molecular structures, physicochemical properties, and textual descriptions collected through web crawling and generated by using GPT-3.5, offering a comprehensive view of each molecule. To demonstrate the power of M^{3}-20M in drug design and discovery, we conduct extensive experiments on two key tasks: molecule generation and molecular property prediction, using large language models including GLM4, GPT-3.5, and GPT-4. Our experimental results show that M^{3}-20M can significantly boost model performance in both tasks. Specifically, it enables the models to generate more diverse and valid molecular structures and achieve higher property prediction accuracy than the existing single-modal datasets, which validates the value and potential of M^{3}-20M in supporting AI-driven drug design and discovery. The dataset is available at https://github.com/bz99bz/M-3.

  • 9 authors
·
Dec 7, 2024