Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeGLaMa: Joint Spatial and Frequency Loss for General Image Inpainting
The purpose of image inpainting is to recover scratches and damaged areas using context information from remaining parts. In recent years, thanks to the resurgence of convolutional neural networks (CNNs), image inpainting task has made great breakthroughs. However, most of the work consider insufficient types of mask, and their performance will drop dramatically when encountering unseen masks. To combat these challenges, we propose a simple yet general method to solve this problem based on the LaMa image inpainting framework, dubbed GLaMa. Our proposed GLaMa can better capture different types of missing information by using more types of masks. By incorporating more degraded images in the training phase, we can expect to enhance the robustness of the model with respect to various masks. In order to yield more reasonable results, we further introduce a frequency-based loss in addition to the traditional spatial reconstruction loss and adversarial loss. In particular, we introduce an effective reconstruction loss both in the spatial and frequency domain to reduce the chessboard effect and ripples in the reconstructed image. Extensive experiments demonstrate that our method can boost the performance over the original LaMa method for each type of mask on FFHQ, ImageNet, Places2 and WikiArt dataset. The proposed GLaMa was ranked first in terms of PSNR, LPIPS and SSIM in the NTIRE 2022 Image Inpainting Challenge Track 1 Unsupervised.
WikiDes: A Wikipedia-Based Dataset for Generating Short Descriptions from Paragraphs
As free online encyclopedias with massive volumes of content, Wikipedia and Wikidata are key to many Natural Language Processing (NLP) tasks, such as information retrieval, knowledge base building, machine translation, text classification, and text summarization. In this paper, we introduce WikiDes, a novel dataset to generate short descriptions of Wikipedia articles for the problem of text summarization. The dataset consists of over 80k English samples on 6987 topics. We set up a two-phase summarization method - description generation (Phase I) and candidate ranking (Phase II) - as a strong approach that relies on transfer and contrastive learning. For description generation, T5 and BART show their superiority compared to other small-scale pre-trained models. By applying contrastive learning with the diverse input from beam search, the metric fusion-based ranking models outperform the direct description generation models significantly up to 22 ROUGE in topic-exclusive split and topic-independent split. Furthermore, the outcome descriptions in Phase II are supported by human evaluation in over 45.33% chosen compared to 23.66% in Phase I against the gold descriptions. In the aspect of sentiment analysis, the generated descriptions cannot effectively capture all sentiment polarities from paragraphs while doing this task better from the gold descriptions. The automatic generation of new descriptions reduces the human efforts in creating them and enriches Wikidata-based knowledge graphs. Our paper shows a practical impact on Wikipedia and Wikidata since there are thousands of missing descriptions. Finally, we expect WikiDes to be a useful dataset for related works in capturing salient information from short paragraphs. The curated dataset is publicly available at: https://github.com/declare-lab/WikiDes.
Free-Lunch Color-Texture Disentanglement for Stylized Image Generation
Recent advances in Text-to-Image (T2I) diffusion models have transformed image generation, enabling significant progress in stylized generation using only a few style reference images. However, current diffusion-based methods struggle with fine-grained style customization due to challenges in controlling multiple style attributes, such as color and texture. This paper introduces the first tuning-free approach to achieve free-lunch color-texture disentanglement in stylized T2I generation, addressing the need for independently controlled style elements for the Disentangled Stylized Image Generation (DisIG) problem. Our approach leverages the Image-Prompt Additivity property in the CLIP image embedding space to develop techniques for separating and extracting Color-Texture Embeddings (CTE) from individual color and texture reference images. To ensure that the color palette of the generated image aligns closely with the color reference, we apply a whitening and coloring transformation to enhance color consistency. Additionally, to prevent texture loss due to the signal-leak bias inherent in diffusion training, we introduce a noise term that preserves textural fidelity during the Regularized Whitening and Coloring Transformation (RegWCT). Through these methods, our Style Attributes Disentanglement approach (SADis) delivers a more precise and customizable solution for stylized image generation. Experiments on images from the WikiArt and StyleDrop datasets demonstrate that, both qualitatively and quantitatively, SADis surpasses state-of-the-art stylization methods in the DisIG task.Code will be released at https://deepffff.github.io/sadis.github.io/.
WikiOmnia: generative QA corpus on the whole Russian Wikipedia
The General QA field has been developing the methodology referencing the Stanford Question answering dataset (SQuAD) as the significant benchmark. However, compiling factual questions is accompanied by time- and labour-consuming annotation, limiting the training data's potential size. We present the WikiOmnia dataset, a new publicly available set of QA-pairs and corresponding Russian Wikipedia article summary sections, composed with a fully automated generative pipeline. The dataset includes every available article from Wikipedia for the Russian language. The WikiOmnia pipeline is available open-source and is also tested for creating SQuAD-formatted QA on other domains, like news texts, fiction, and social media. The resulting dataset includes two parts: raw data on the whole Russian Wikipedia (7,930,873 QA pairs with paragraphs for ruGPT-3 XL and 7,991,040 QA pairs with paragraphs for ruT5-large) and cleaned data with strict automatic verification (over 160,000 QA pairs with paragraphs for ruGPT-3 XL and over 3,400,000 QA pairs with paragraphs for ruT5-large).
Speech Wikimedia: A 77 Language Multilingual Speech Dataset
The Speech Wikimedia Dataset is a publicly available compilation of audio with transcriptions extracted from Wikimedia Commons. It includes 1780 hours (195 GB) of CC-BY-SA licensed transcribed speech from a diverse set of scenarios and speakers, in 77 different languages. Each audio file has one or more transcriptions in different languages, making this dataset suitable for training speech recognition, speech translation, and machine translation models.
WikiTableEdit: A Benchmark for Table Editing by Natural Language Instruction
Tabular data, as a crucial form of data representation, exists in diverse formats on the Web. When confronted with complex and irregular tables, manual modification becomes a laborious task. This paper investigates the performance of Large Language Models (LLMs) in the context of table editing tasks. Existing research mainly focuses on regular-shaped tables, wherein instructions are used to generate code in SQL, Python, or Excel Office-script for manipulating the tables. Nevertheless, editing tables with irregular structures, particularly those containing merged cells spanning multiple rows, poses a challenge when using code. To address this, we introduce the WikiTableEdit dataset. Leveraging 26,531 tables from the WikiSQL dataset, we automatically generate natural language instructions for six distinct basic operations and the corresponding outcomes, resulting in over 200,000 instances. Subsequently, we evaluate several representative large language models on the WikiTableEdit dataset to demonstrate the challenge of this task. The dataset will be released to the community to promote related researches.
Named Entity Disambiguation using Deep Learning on Graphs
We tackle NED by comparing entities in short sentences with graphs. Creating a context vector from graphs through deep learning is a challenging problem that has never been applied to NED. Our main contribution is to present an experimental study of recent neural techniques, as well as a discussion about which graph features are most important for the disambiguation task. In addition, a new dataset () is created to allow a clean and scalable evaluation of NED with entries, and to be used as a reference in future research. In the end our results show that a Bi-LSTM encoding of the graph triplets performs best, improving upon the baseline models and scoring an F1 value of 91.6% on the test set
IMDB-WIKI-SbS: An Evaluation Dataset for Crowdsourced Pairwise Comparisons
Today, comprehensive evaluation of large-scale machine learning models is possible thanks to the open datasets produced using crowdsourcing, such as SQuAD, MS COCO, ImageNet, SuperGLUE, etc. These datasets capture objective responses, assuming the single correct answer, which does not allow to capture the subjective human perception. In turn, pairwise comparison tasks, in which one has to choose between only two options, allow taking peoples' preferences into account for very challenging artificial intelligence tasks, such as information retrieval and recommender system evaluation. Unfortunately, the available datasets are either small or proprietary, slowing down progress in gathering better feedback from human users. In this paper, we present IMDB-WIKI-SbS, a new large-scale dataset for evaluating pairwise comparisons. It contains 9,150 images appearing in 250,249 pairs annotated on a crowdsourcing platform. Our dataset has balanced distributions of age and gender using the well-known IMDB-WIKI dataset as ground truth. We describe how our dataset is built and then compare several baseline methods, indicating its suitability for model evaluation.
DataFinder: Scientific Dataset Recommendation from Natural Language Descriptions
Modern machine learning relies on datasets to develop and validate research ideas. Given the growth of publicly available data, finding the right dataset to use is increasingly difficult. Any research question imposes explicit and implicit constraints on how well a given dataset will enable researchers to answer this question, such as dataset size, modality, and domain. We operationalize the task of recommending datasets given a short natural language description of a research idea, to help people find relevant datasets for their needs. Dataset recommendation poses unique challenges as an information retrieval problem; datasets are hard to directly index for search and there are no corpora readily available for this task. To facilitate this task, we build the DataFinder Dataset which consists of a larger automatically-constructed training set (17.5K queries) and a smaller expert-annotated evaluation set (392 queries). Using this data, we compare various information retrieval algorithms on our test set and present a superior bi-encoder retriever for text-based dataset recommendation. This system, trained on the DataFinder Dataset, finds more relevant search results than existing third-party dataset search engines. To encourage progress on dataset recommendation, we release our dataset and models to the public.
unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including Structured Full-Text and Citation Network
Large-scale data sets on scholarly publications are the basis for a variety of bibliometric analyses and natural language processing (NLP) applications. Especially data sets derived from publication's full-text have recently gained attention. While several such data sets already exist, we see key shortcomings in terms of their domain and time coverage, citation network completeness, and representation of full-text content. To address these points, we propose a new version of the data set unarXive. We base our data processing pipeline and output format on two existing data sets, and improve on each of them. Our resulting data set comprises 1.9 M publications spanning multiple disciplines and 32 years. It furthermore has a more complete citation network than its predecessors and retains a richer representation of document structure as well as non-textual publication content such as mathematical notation. In addition to the data set, we provide ready-to-use training/test data for citation recommendation and IMRaD classification. All data and source code is publicly available at https://github.com/IllDepence/unarXive.
Crowdsourcing Dermatology Images with Google Search Ads: Creating a Real-World Skin Condition Dataset
Background: Health datasets from clinical sources do not reflect the breadth and diversity of disease in the real world, impacting research, medical education, and artificial intelligence (AI) tool development. Dermatology is a suitable area to develop and test a new and scalable method to create representative health datasets. Methods: We used Google Search advertisements to invite contributions to an open access dataset of images of dermatology conditions, demographic and symptom information. With informed contributor consent, we describe and release this dataset containing 10,408 images from 5,033 contributions from internet users in the United States over 8 months starting March 2023. The dataset includes dermatologist condition labels as well as estimated Fitzpatrick Skin Type (eFST) and Monk Skin Tone (eMST) labels for the images. Results: We received a median of 22 submissions/day (IQR 14-30). Female (66.72%) and younger (52% < age 40) contributors had a higher representation in the dataset compared to the US population, and 32.6% of contributors reported a non-White racial or ethnic identity. Over 97.5% of contributions were genuine images of skin conditions. Dermatologist confidence in assigning a differential diagnosis increased with the number of available variables, and showed a weaker correlation with image sharpness (Spearman's P values <0.001 and 0.01 respectively). Most contributions were short-duration (54% with onset < 7 days ago ) and 89% were allergic, infectious, or inflammatory conditions. eFST and eMST distributions reflected the geographical origin of the dataset. The dataset is available at github.com/google-research-datasets/scin . Conclusion: Search ads are effective at crowdsourcing images of health conditions. The SCIN dataset bridges important gaps in the availability of representative images of common skin conditions.
Alloprof: a new French question-answer education dataset and its use in an information retrieval case study
Teachers and students are increasingly relying on online learning resources to supplement the ones provided in school. This increase in the breadth and depth of available resources is a great thing for students, but only provided they are able to find answers to their queries. Question-answering and information retrieval systems have benefited from public datasets to train and evaluate their algorithms, but most of these datasets have been in English text written by and for adults. We introduce a new public French question-answering dataset collected from Alloprof, a Quebec-based primary and high-school help website, containing 29 349 questions and their explanations in a variety of school subjects from 10 368 students, with more than half of the explanations containing links to other questions or some of the 2 596 reference pages on the website. We also present a case study of this dataset in an information retrieval task. This dataset was collected on the Alloprof public forum, with all questions verified for their appropriateness and the explanations verified both for their appropriateness and their relevance to the question. To predict relevant documents, architectures using pre-trained BERT models were fine-tuned and evaluated. This dataset will allow researchers to develop question-answering, information retrieval and other algorithms specifically for the French speaking education context. Furthermore, the range of language proficiency, images, mathematical symbols and spelling mistakes will necessitate algorithms based on a multimodal comprehension. The case study we present as a baseline shows an approach that relies on recent techniques provides an acceptable performance level, but more work is necessary before it can reliably be used and trusted in a production setting.
Data Collection of Real-Life Knowledge Work in Context: The RLKWiC Dataset
Over the years, various approaches have been employed to enhance the productivity of knowledge workers, from addressing psychological well-being to the development of personal knowledge assistants. A significant challenge in this research area has been the absence of a comprehensive, publicly accessible dataset that mirrors real-world knowledge work. Although a handful of datasets exist, many are restricted in access or lack vital information dimensions, complicating meaningful comparison and benchmarking in the domain. This paper presents RLKWiC, a novel dataset of Real-Life Knowledge Work in Context, derived from monitoring the computer interactions of eight participants over a span of two months. As the first publicly available dataset offering a wealth of essential information dimensions (such as explicated contexts, textual contents, and semantics), RLKWiC seeks to address the research gap in the personal information management domain, providing valuable insights for modeling user behavior.
OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents
Large multimodal models trained on natural documents, which interleave images and text, outperform models trained on image-text pairs on various multimodal benchmarks. However, the datasets used to train these models have not been released, and the collection process has not been fully specified. We introduce the OBELICS dataset, an open web-scale filtered dataset of interleaved image-text documents comprising 141 million web pages extracted from Common Crawl, 353 million associated images, and 115 billion text tokens. We describe the dataset creation process, present comprehensive filtering rules, and provide an analysis of the dataset's content. To show the viability of OBELICS, we train vision and language models of 9 and 80 billion parameters named IDEFICS, and obtain competitive performance on different multimodal benchmarks. We release our dataset, models and code.
Automatically Annotated Turkish Corpus for Named Entity Recognition and Text Categorization using Large-Scale Gazetteers
Turkish Wikipedia Named-Entity Recognition and Text Categorization (TWNERTC) dataset is a collection of automatically categorized and annotated sentences obtained from Wikipedia. We constructed large-scale gazetteers by using a graph crawler algorithm to extract relevant entity and domain information from a semantic knowledge base, Freebase. The constructed gazetteers contains approximately 300K entities with thousands of fine-grained entity types under 77 different domains. Since automated processes are prone to ambiguity, we also introduce two new content specific noise reduction methodologies. Moreover, we map fine-grained entity types to the equivalent four coarse-grained types: person, loc, org, misc. Eventually, we construct six different dataset versions and evaluate the quality of annotations by comparing ground truths from human annotators. We make these datasets publicly available to support studies on Turkish named-entity recognition (NER) and text categorization (TC).
QUEST: A Retrieval Dataset of Entity-Seeking Queries with Implicit Set Operations
Formulating selective information needs results in queries that implicitly specify set operations, such as intersection, union, and difference. For instance, one might search for "shorebirds that are not sandpipers" or "science-fiction films shot in England". To study the ability of retrieval systems to meet such information needs, we construct QUEST, a dataset of 3357 natural language queries with implicit set operations, that map to a set of entities corresponding to Wikipedia documents. The dataset challenges models to match multiple constraints mentioned in queries with corresponding evidence in documents and correctly perform various set operations. The dataset is constructed semi-automatically using Wikipedia category names. Queries are automatically composed from individual categories, then paraphrased and further validated for naturalness and fluency by crowdworkers. Crowdworkers also assess the relevance of entities based on their documents and highlight attribution of query constraints to spans of document text. We analyze several modern retrieval systems, finding that they often struggle on such queries. Queries involving negation and conjunction are particularly challenging and systems are further challenged with combinations of these operations.
Breaking Common Sense: WHOOPS! A Vision-and-Language Benchmark of Synthetic and Compositional Images
Weird, unusual, and uncanny images pique the curiosity of observers because they challenge commonsense. For example, an image released during the 2022 world cup depicts the famous soccer stars Lionel Messi and Cristiano Ronaldo playing chess, which playfully violates our expectation that their competition should occur on the football field. Humans can easily recognize and interpret these unconventional images, but can AI models do the same? We introduce WHOOPS!, a new dataset and benchmark for visual commonsense. The dataset is comprised of purposefully commonsense-defying images created by designers using publicly-available image generation tools like Midjourney. We consider several tasks posed over the dataset. In addition to image captioning, cross-modal matching, and visual question answering, we introduce a difficult explanation generation task, where models must identify and explain why a given image is unusual. Our results show that state-of-the-art models such as GPT3 and BLIP2 still lag behind human performance on WHOOPS!. We hope our dataset will inspire the development of AI models with stronger visual commonsense reasoning abilities. Data, models and code are available at the project website: whoops-benchmark.github.io
WikiMuTe: A web-sourced dataset of semantic descriptions for music audio
Multi-modal deep learning techniques for matching free-form text with music have shown promising results in the field of Music Information Retrieval (MIR). Prior work is often based on large proprietary data while publicly available datasets are few and small in size. In this study, we present WikiMuTe, a new and open dataset containing rich semantic descriptions of music. The data is sourced from Wikipedia's rich catalogue of articles covering musical works. Using a dedicated text-mining pipeline, we extract both long and short-form descriptions covering a wide range of topics related to music content such as genre, style, mood, instrumentation, and tempo. To show the use of this data, we train a model that jointly learns text and audio representations and performs cross-modal retrieval. The model is evaluated on two tasks: tag-based music retrieval and music auto-tagging. The results show that while our approach has state-of-the-art performance on multiple tasks, but still observe a difference in performance depending on the data used for training.
Wikidata-lite for Knowledge Extraction and Exploration
Wikidata is the largest collaborative general knowledge graph supported by a worldwide community. It includes many helpful topics for knowledge exploration and data science applications. However, due to the enormous size of Wikidata, it is challenging to retrieve a large amount of data with millions of results, make complex queries requiring large aggregation operations, or access too many statement references. This paper introduces our preliminary works on Wikidata-lite, a toolkit to build a database offline for knowledge extraction and exploration, e.g., retrieving item information, statements, provenances, or searching entities by their keywords and attributes. Wikidata-lite has high performance and memory efficiency, much faster than the official Wikidata SPARQL endpoint for big queries. The Wikidata-lite repository is available at https://github.com/phucty/wikidb.
ArtELingo: A Million Emotion Annotations of WikiArt with Emphasis on Diversity over Language and Culture
This paper introduces ArtELingo, a new benchmark and dataset, designed to encourage work on diversity across languages and cultures. Following ArtEmis, a collection of 80k artworks from WikiArt with 0.45M emotion labels and English-only captions, ArtELingo adds another 0.79M annotations in Arabic and Chinese, plus 4.8K in Spanish to evaluate "cultural-transfer" performance. More than 51K artworks have 5 annotations or more in 3 languages. This diversity makes it possible to study similarities and differences across languages and cultures. Further, we investigate captioning tasks, and find diversity improves the performance of baseline models. ArtELingo is publicly available at https://www.artelingo.org/ with standard splits and baseline models. We hope our work will help ease future research on multilinguality and culturally-aware AI.
PhantomWiki: On-Demand Datasets for Reasoning and Retrieval Evaluation
High-quality benchmarks are essential for evaluating reasoning and retrieval capabilities of large language models (LLMs). However, curating datasets for this purpose is not a permanent solution as they are prone to data leakage and inflated performance results. To address these challenges, we propose PhantomWiki: a pipeline to generate unique, factually consistent document corpora with diverse question-answer pairs. Unlike prior work, PhantomWiki is neither a fixed dataset, nor is it based on any existing data. Instead, a new PhantomWiki instance is generated on demand for each evaluation. We vary the question difficulty and corpus size to disentangle reasoning and retrieval capabilities respectively, and find that PhantomWiki datasets are surprisingly challenging for frontier LLMs. Thus, we contribute a scalable and data leakage-resistant framework for disentangled evaluation of reasoning, retrieval, and tool-use abilities. Our code is available at https://github.com/kilian-group/phantom-wiki.
WIT: Wikipedia-based Image Text Dataset for Multimodal Multilingual Machine Learning
The milestone improvements brought about by deep representation learning and pre-training techniques have led to large performance gains across downstream NLP, IR and Vision tasks. Multimodal modeling techniques aim to leverage large high-quality visio-linguistic datasets for learning complementary information (across image and text modalities). In this paper, we introduce the Wikipedia-based Image Text (WIT) Dataset (https://github.com/google-research-datasets/wit) to better facilitate multimodal, multilingual learning. WIT is composed of a curated set of 37.6 million entity rich image-text examples with 11.5 million unique images across 108 Wikipedia languages. Its size enables WIT to be used as a pretraining dataset for multimodal models, as we show when applied to downstream tasks such as image-text retrieval. WIT has four main and unique advantages. First, WIT is the largest multimodal dataset by the number of image-text examples by 3x (at the time of writing). Second, WIT is massively multilingual (first of its kind) with coverage over 100+ languages (each of which has at least 12K examples) and provides cross-lingual texts for many images. Third, WIT represents a more diverse set of concepts and real world entities relative to what previous datasets cover. Lastly, WIT provides a very challenging real-world test set, as we empirically illustrate using an image-text retrieval task as an example.
How Graph Structure and Label Dependencies Contribute to Node Classification in a Large Network of Documents
We introduce a new dataset named WikiVitals which contains a large graph of 48k mutually referred Wikipedia articles classified into 32 categories and connected by 2.3M edges. Our aim is to rigorously evaluate the contributions of three distinct sources of information to the label prediction in a semi-supervised node classification setting, namely the content of the articles, their connections with each other and the correlations among their labels. We perform this evaluation using a Graph Markov Neural Network which provides a theoretically principled model for this task and we conduct a detailed evaluation of the contributions of each sources of information using a clear separation of model selection and model assessment. One interesting observation is that including the effect of label dependencies is more relevant for sparse train sets than it is for dense train sets.
DatasetResearch: Benchmarking Agent Systems for Demand-Driven Dataset Discovery
The rapid advancement of large language models has fundamentally shifted the bottleneck in AI development from computational power to data availability-with countless valuable datasets remaining hidden across specialized repositories, research appendices, and domain platforms. As reasoning capabilities and deep research methodologies continue to evolve, a critical question emerges: can AI agents transcend conventional search to systematically discover any dataset that meets specific user requirements, enabling truly autonomous demand-driven data curation? We introduce DatasetResearch, the first comprehensive benchmark evaluating AI agents' ability to discover and synthesize datasets from 208 real-world demands across knowledge-intensive and reasoning-intensive tasks. Our tri-dimensional evaluation framework reveals a stark reality: even advanced deep research systems achieve only 22% score on our challenging DatasetResearch-pro subset, exposing the vast gap between current capabilities and perfect dataset discovery. Our analysis uncovers a fundamental dichotomy-search agents excel at knowledge tasks through retrieval breadth, while synthesis agents dominate reasoning challenges via structured generation-yet both catastrophically fail on "corner cases" outside existing distributions. These findings establish the first rigorous baseline for dataset discovery agents and illuminate the path toward AI systems capable of finding any dataset in the digital universe. Our benchmark and comprehensive analysis provide the foundation for the next generation of self-improving AI systems and are publicly available at https://github.com/GAIR-NLP/DatasetResearch.
MentalChat16K: A Benchmark Dataset for Conversational Mental Health Assistance
We introduce MentalChat16K, an English benchmark dataset combining a synthetic mental health counseling dataset and a dataset of anonymized transcripts from interventions between Behavioral Health Coaches and Caregivers of patients in palliative or hospice care. Covering a diverse range of conditions like depression, anxiety, and grief, this curated dataset is designed to facilitate the development and evaluation of large language models for conversational mental health assistance. By providing a high-quality resource tailored to this critical domain, MentalChat16K aims to advance research on empathetic, personalized AI solutions to improve access to mental health support services. The dataset prioritizes patient privacy, ethical considerations, and responsible data usage. MentalChat16K presents a valuable opportunity for the research community to innovate AI technologies that can positively impact mental well-being. The dataset is available at https://huggingface.co/datasets/ShenLab/MentalChat16K and the code and documentation are hosted on GitHub at https://github.com/ChiaPatricia/MentalChat16K.
AnnoPage Dataset: Dataset of Non-Textual Elements in Documents with Fine-Grained Categorization
We introduce the AnnoPage Dataset, a novel collection of 7550 pages from historical documents, primarily in Czech and German, spanning from 1485 to the present, focusing on the late 19th and early 20th centuries. The dataset is designed to support research in document layout analysis and object detection. Each page is annotated with axis-aligned bounding boxes (AABB) representing elements of 25 categories of non-textual elements, such as images, maps, decorative elements, or charts, following the Czech Methodology of image document processing. The annotations were created by expert librarians to ensure accuracy and consistency. The dataset also incorporates pages from multiple, mainly historical, document datasets to enhance variability and maintain continuity. The dataset is divided into development and test subsets, with the test set carefully selected to maintain the category distribution. We provide baseline results using YOLO and DETR object detectors, offering a reference point for future research. The AnnoPage Dataset is publicly available on Zenodo (https://doi.org/10.5281/zenodo.12788419), along with ground-truth annotations in YOLO format.
ScIRGen: Synthesize Realistic and Large-Scale RAG Dataset for Scientific Research
Scientific researchers need intensive information about datasets to effectively evaluate and develop theories and methodologies. The information needs regarding datasets are implicitly embedded in particular research tasks, rather than explicitly expressed in search queries. However, existing scientific retrieval and question-answering (QA) datasets typically address straightforward questions, which do not align with the distribution of real-world research inquiries. To bridge this gap, we developed ScIRGen, a dataset generation framework for scientific QA \& retrieval that more accurately reflects the information needs of professional science researchers, and uses it to create a large-scale scientific retrieval-augmented generation (RAG) dataset with realistic queries, datasets and papers. Technically, we designed a dataset-oriented information extraction method that leverages academic papers to augment the dataset representation. We then proposed a question generation framework by employing cognitive taxonomy to ensure the quality of synthesized questions. We also design a method to automatically filter synthetic answers based on the perplexity shift of LLMs, which is highly aligned with human judgment of answers' validity. Collectively, these methodologies culminated in the creation of the 61k QA dataset, ScIRGen-Geo. We benchmarked representative methods on the ScIRGen-Geo dataset for their question-answering and retrieval capabilities, finding out that current methods still suffer from reasoning from complex questions. This work advances the development of more sophisticated tools to support the intricate information needs of the scientific community.
FAIR Jupyter: a knowledge graph approach to semantic sharing and granular exploration of a computational notebook reproducibility dataset
The way in which data are shared can affect their utility and reusability. Here, we demonstrate how data that we had previously shared in bulk can be mobilized further through a knowledge graph that allows for much more granular exploration and interrogation. The original dataset is about the computational reproducibility of GitHub-hosted Jupyter notebooks associated with biomedical publications. It contains rich metadata about the publications, associated GitHub repositories and Jupyter notebooks, and the notebooks' reproducibility. We took this dataset, converted it into semantic triples and loaded these into a triple store to create a knowledge graph, FAIR Jupyter, that we made accessible via a web service. This enables granular data exploration and analysis through queries that can be tailored to specific use cases. Such queries may provide details about any of the variables from the original dataset, highlight relationships between them or combine some of the graph's content with materials from corresponding external resources. We provide a collection of example queries addressing a range of use cases in research and education. We also outline how sets of such queries can be used to profile specific content types, either individually or by class. We conclude by discussing how such a semantically enhanced sharing of complex datasets can both enhance their FAIRness, i.e., their findability, accessibility, interoperability, and reusability, and help identify and communicate best practices, particularly with regards to data quality, standardization, automation and reproducibility.
Datasets: A Community Library for Natural Language Processing
The scale, variety, and quantity of publicly-available NLP datasets has grown rapidly as researchers propose new tasks, larger models, and novel benchmarks. Datasets is a community library for contemporary NLP designed to support this ecosystem. Datasets aims to standardize end-user interfaces, versioning, and documentation, while providing a lightweight front-end that behaves similarly for small datasets as for internet-scale corpora. The design of the library incorporates a distributed, community-driven approach to adding datasets and documenting usage. After a year of development, the library now includes more than 650 unique datasets, has more than 250 contributors, and has helped support a variety of novel cross-dataset research projects and shared tasks. The library is available at https://github.com/huggingface/datasets.
Google Landmarks Dataset v2 -- A Large-Scale Benchmark for Instance-Level Recognition and Retrieval
While image retrieval and instance recognition techniques are progressing rapidly, there is a need for challenging datasets to accurately measure their performance -- while posing novel challenges that are relevant for practical applications. We introduce the Google Landmarks Dataset v2 (GLDv2), a new benchmark for large-scale, fine-grained instance recognition and image retrieval in the domain of human-made and natural landmarks. GLDv2 is the largest such dataset to date by a large margin, including over 5M images and 200k distinct instance labels. Its test set consists of 118k images with ground truth annotations for both the retrieval and recognition tasks. The ground truth construction involved over 800 hours of human annotator work. Our new dataset has several challenging properties inspired by real world applications that previous datasets did not consider: An extremely long-tailed class distribution, a large fraction of out-of-domain test photos and large intra-class variability. The dataset is sourced from Wikimedia Commons, the world's largest crowdsourced collection of landmark photos. We provide baseline results for both recognition and retrieval tasks based on state-of-the-art methods as well as competitive results from a public challenge. We further demonstrate the suitability of the dataset for transfer learning by showing that image embeddings trained on it achieve competitive retrieval performance on independent datasets. The dataset images, ground-truth and metric scoring code are available at https://github.com/cvdfoundation/google-landmark.
WikiLingua: A New Benchmark Dataset for Cross-Lingual Abstractive Summarization
We introduce WikiLingua, a large-scale, multilingual dataset for the evaluation of crosslingual abstractive summarization systems. We extract article and summary pairs in 18 languages from WikiHow, a high quality, collaborative resource of how-to guides on a diverse set of topics written by human authors. We create gold-standard article-summary alignments across languages by aligning the images that are used to describe each how-to step in an article. As a set of baselines for further studies, we evaluate the performance of existing cross-lingual abstractive summarization methods on our dataset. We further propose a method for direct crosslingual summarization (i.e., without requiring translation at inference time) by leveraging synthetic data and Neural Machine Translation as a pre-training step. Our method significantly outperforms the baseline approaches, while being more cost efficient during inference.
Wikimedia data for AI: a review of Wikimedia datasets for NLP tasks and AI-assisted editing
Wikimedia content is used extensively by the AI community and within the language modeling community in particular. In this paper, we provide a review of the different ways in which Wikimedia data is curated to use in NLP tasks across pre-training, post-training, and model evaluations. We point to opportunities for greater use of Wikimedia content but also identify ways in which the language modeling community could better center the needs of Wikimedia editors. In particular, we call for incorporating additional sources of Wikimedia data, a greater focus on benchmarks for LLMs that encode Wikimedia principles, and greater multilingualism in Wikimedia-derived datasets.
WanJuanSiLu: A High-Quality Open-Source Webtext Dataset for Low-Resource Languages
This paper introduces the open-source dataset WanJuanSiLu, designed to provide high-quality training corpora for low-resource languages, thereby advancing the research and development of multilingual models. To achieve this, we have developed a systematic data processing framework tailored for low-resource languages. This framework encompasses key stages such as data extraction, corpus cleaning, content deduplication, security filtering, quality evaluation, and theme classification. Through the implementation of this framework, we have significantly improved both the quality and security of the dataset, while maintaining its linguistic diversity. As of now, data for all five languages have been fully open-sourced. The dataset can be accessed at https://opendatalab.com/applyMultilingualCorpus, and GitHub repository is available at https://github.com/opendatalab/WanJuan3.0
BIKED++: A Multimodal Dataset of 1.4 Million Bicycle Image and Parametric CAD Designs
This paper introduces a public dataset of 1.4 million procedurally-generated bicycle designs represented parametrically, as JSON files, and as rasterized images. The dataset is created through the use of a rendering engine which harnesses the BikeCAD software to generate vector graphics from parametric designs. This rendering engine is discussed in the paper and also released publicly alongside the dataset. Though this dataset has numerous applications, a principal motivation is the need to train cross-modal predictive models between parametric and image-based design representations. For example, we demonstrate that a predictive model can be trained to accurately estimate Contrastive Language-Image Pretraining (CLIP) embeddings from a parametric representation directly. This allows similarity relations to be established between parametric bicycle designs and text strings or reference images. Trained predictive models are also made public. The dataset joins the BIKED dataset family which includes thousands of mixed-representation human-designed bicycle models and several datasets quantifying design performance. The code and dataset can be found at: https://github.com/Lyleregenwetter/BIKED_multimodal/tree/main
Rapidly Bootstrapping a Question Answering Dataset for COVID-19
We present CovidQA, the beginnings of a question answering dataset specifically designed for COVID-19, built by hand from knowledge gathered from Kaggle's COVID-19 Open Research Dataset Challenge. To our knowledge, this is the first publicly available resource of its type, and intended as a stopgap measure for guiding research until more substantial evaluation resources become available. While this dataset, comprising 124 question-article pairs as of the present version 0.1 release, does not have sufficient examples for supervised machine learning, we believe that it can be helpful for evaluating the zero-shot or transfer capabilities of existing models on topics specifically related to COVID-19. This paper describes our methodology for constructing the dataset and presents the effectiveness of a number of baselines, including term-based techniques and various transformer-based models. The dataset is available at http://covidqa.ai/
WikiWeb2M: A Page-Level Multimodal Wikipedia Dataset
Webpages have been a rich resource for language and vision-language tasks. Yet only pieces of webpages are kept: image-caption pairs, long text articles, or raw HTML, never all in one place. Webpage tasks have resultingly received little attention and structured image-text data underused. To study multimodal webpage understanding, we introduce the Wikipedia Webpage 2M (WikiWeb2M) suite; the first to retain the full set of images, text, and structure data available in a page. WikiWeb2M can be used for tasks like page description generation, section summarization, and contextual image captioning.
MultiWikiQA: A Reading Comprehension Benchmark in 300+ Languages
We introduce a new reading comprehension dataset, dubbed MultiWikiQA, which covers 306 languages. The context data comes from Wikipedia articles, with questions generated by an LLM and the answers appearing verbatim in the Wikipedia articles. We conduct a crowdsourced human evaluation of the fluency of the generated questions across 30 of the languages, providing evidence that the questions are of good quality. We evaluate 6 different language models, both decoder and encoder models of varying sizes, showing that the benchmark is sufficiently difficult and that there is a large performance discrepancy amongst the languages. The dataset and survey evaluations are freely available.
Revisiting Table Detection Datasets for Visually Rich Documents
Table Detection has become a fundamental task for visually rich document understanding with the surging number of electronic documents. However, popular public datasets widely used in related studies have inherent limitations, including noisy and inconsistent samples, limited training samples, and limited data sources. These limitations make these datasets unreliable to evaluate the model performance and cannot reflect the actual capacity of models. Therefore, this study revisits some open datasets with high-quality annotations, identifies and cleans the noise, and aligns the annotation definitions of these datasets to merge a larger dataset, termed Open-Tables. Moreover, to enrich the data sources, we propose a new ICT-TD dataset using the PDF files of Information and Communication Technologies (ICT) commodities, a different domain containing unique samples that hardly appear in open datasets. To ensure the label quality of the dataset, we annotated the dataset manually following the guidance of a domain expert. The proposed dataset is challenging and can be a sample of actual cases in the business context. We built strong baselines using various state-of-the-art object detection models. Our experimental results show that the domain differences among existing open datasets are minor despite having different data sources. Our proposed Open-Tables and ICT-TD can provide a more reliable evaluation for models because of their high quality and consistent annotations. Besides, they are more suitable for cross-domain settings. Our experimental results show that in the cross-domain setting, benchmark models trained with cleaned Open-Tables dataset can achieve 0.6\%-2.6\% higher weighted average F1 than the corresponding ones trained with the noisy version of Open-Tables, demonstrating the reliability of the proposed datasets. The datasets are public available.
WikiHow: A Large Scale Text Summarization Dataset
Sequence-to-sequence models have recently gained the state of the art performance in summarization. However, not too many large-scale high-quality datasets are available and almost all the available ones are mainly news articles with specific writing style. Moreover, abstractive human-style systems involving description of the content at a deeper level require data with higher levels of abstraction. In this paper, we present WikiHow, a dataset of more than 230,000 article and summary pairs extracted and constructed from an online knowledge base written by different human authors. The articles span a wide range of topics and therefore represent high diversity styles. We evaluate the performance of the existing methods on WikiHow to present its challenges and set some baselines to further improve it.
Kvasir-VQA: A Text-Image Pair GI Tract Dataset
We introduce Kvasir-VQA, an extended dataset derived from the HyperKvasir and Kvasir-Instrument datasets, augmented with question-and-answer annotations to facilitate advanced machine learning tasks in Gastrointestinal (GI) diagnostics. This dataset comprises 6,500 annotated images spanning various GI tract conditions and surgical instruments, and it supports multiple question types including yes/no, choice, location, and numerical count. The dataset is intended for applications such as image captioning, Visual Question Answering (VQA), text-based generation of synthetic medical images, object detection, and classification. Our experiments demonstrate the dataset's effectiveness in training models for three selected tasks, showcasing significant applications in medical image analysis and diagnostics. We also present evaluation metrics for each task, highlighting the usability and versatility of our dataset. The dataset and supporting artifacts are available at https://datasets.simula.no/kvasir-vqa.
ToTTo: A Controlled Table-To-Text Generation Dataset
We present ToTTo, an open-domain English table-to-text dataset with over 120,000 training examples that proposes a controlled generation task: given a Wikipedia table and a set of highlighted table cells, produce a one-sentence description. To obtain generated targets that are natural but also faithful to the source table, we introduce a dataset construction process where annotators directly revise existing candidate sentences from Wikipedia. We present systematic analyses of our dataset and annotation process as well as results achieved by several state-of-the-art baselines. While usually fluent, existing methods often hallucinate phrases that are not supported by the table, suggesting that this dataset can serve as a useful research benchmark for high-precision conditional text generation.
SciCat: A Curated Dataset of Scientific Software Repositories
The proliferation of open-source scientific software for science and research presents opportunities and challenges. In this paper, we introduce the SciCat dataset -- a comprehensive collection of Free-Libre Open Source Software (FLOSS) projects, designed to address the need for a curated repository of scientific and research software. This collection is crucial for understanding the creation of scientific software and aiding in its development. To ensure extensive coverage, our approach involves selecting projects from a pool of 131 million deforked repositories from the World of Code data source. Subsequently, we analyze README.md files using OpenAI's advanced language models. Our classification focuses on software designed for scientific purposes, research-related projects, and research support software. The SciCat dataset aims to become an invaluable tool for researching science-related software, shedding light on emerging trends, prevalent practices, and challenges in the field of scientific software development. Furthermore, it includes data that can be linked to the World of Code, GitHub, and other platforms, providing a solid foundation for conducting comparative studies between scientific and non-scientific software.
A Dataset for Answering Time-Sensitive Questions
Time is an important dimension in our physical world. Lots of facts can evolve with respect to time. For example, the U.S. President might change every four years. Therefore, it is important to consider the time dimension and empower the existing QA models to reason over time. However, the existing QA datasets contain rather few time-sensitive questions, hence not suitable for diagnosing or benchmarking the model's temporal reasoning capability. In order to promote research in this direction, we propose to construct a time-sensitive QA dataset. The dataset is constructed by 1) mining time-evolving facts from WikiData and aligning them to their corresponding Wikipedia page, 2) employing crowd workers to verify and calibrate these noisy facts, 3) generating question-answer pairs based on the annotated time-sensitive facts. Our dataset poses challenges in the aspect of both temporal understanding and temporal reasoning. We evaluate different SoTA long-document QA systems like BigBird and FiD on our dataset. The best-performing model FiD can only achieve 46\% accuracy, still far behind the human performance of 87\%. We demonstrate that these models are still lacking the ability to perform consistent temporal reasoning. Therefore, we believe that our dataset could serve as a benchmark to develop NLP models more sensitive to temporal shifts. The dataset and code are released in~https://github.com/wenhuchen/Time-Sensitive-QA.
DEArt: Dataset of European Art
Large datasets that were made publicly available to the research community over the last 20 years have been a key enabling factor for the advances in deep learning algorithms for NLP or computer vision. These datasets are generally pairs of aligned image / manually annotated metadata, where images are photographs of everyday life. Scholarly and historical content, on the other hand, treat subjects that are not necessarily popular to a general audience, they may not always contain a large number of data points, and new data may be difficult or impossible to collect. Some exceptions do exist, for instance, scientific or health data, but this is not the case for cultural heritage (CH). The poor performance of the best models in computer vision - when tested over artworks - coupled with the lack of extensively annotated datasets for CH, and the fact that artwork images depict objects and actions not captured by photographs, indicate that a CH-specific dataset would be highly valuable for this community. We propose DEArt, at this point primarily an object detection and pose classification dataset meant to be a reference for paintings between the XIIth and the XVIIIth centuries. It contains more than 15000 images, about 80% non-iconic, aligned with manual annotations for the bounding boxes identifying all instances of 69 classes as well as 12 possible poses for boxes identifying human-like objects. Of these, more than 50 classes are CH-specific and thus do not appear in other datasets; these reflect imaginary beings, symbolic entities and other categories related to art. Additionally, existing datasets do not include pose annotations. Our results show that object detectors for the cultural heritage domain can achieve a level of precision comparable to state-of-art models for generic images via transfer learning.
HISTAI: An Open-Source, Large-Scale Whole Slide Image Dataset for Computational Pathology
Recent advancements in Digital Pathology (DP), particularly through artificial intelligence and Foundation Models, have underscored the importance of large-scale, diverse, and richly annotated datasets. Despite their critical role, publicly available Whole Slide Image (WSI) datasets often lack sufficient scale, tissue diversity, and comprehensive clinical metadata, limiting the robustness and generalizability of AI models. In response, we introduce the HISTAI dataset, a large, multimodal, open-access WSI collection comprising over 60,000 slides from various tissue types. Each case in the HISTAI dataset is accompanied by extensive clinical metadata, including diagnosis, demographic information, detailed pathological annotations, and standardized diagnostic coding. The dataset aims to fill gaps identified in existing resources, promoting innovation, reproducibility, and the development of clinically relevant computational pathology solutions. The dataset can be accessed at https://github.com/HistAI/HISTAI.
Aria-MIDI: A Dataset of Piano MIDI Files for Symbolic Music Modeling
We introduce an extensive new dataset of MIDI files, created by transcribing audio recordings of piano performances into their constituent notes. The data pipeline we use is multi-stage, employing a language model to autonomously crawl and score audio recordings from the internet based on their metadata, followed by a stage of pruning and segmentation using an audio classifier. The resulting dataset contains over one million distinct MIDI files, comprising roughly 100,000 hours of transcribed audio. We provide an in-depth analysis of our techniques, offering statistical insights, and investigate the content by extracting metadata tags, which we also provide. Dataset available at https://github.com/loubbrad/aria-midi.
Connecting a French Dictionary from the Beginning of the 20th Century to Wikidata
The Petit Larousse illustr\'e is a French dictionary first published in 1905. Its division in two main parts on language and on history and geography corresponds to a major milestone in French lexicography as well as a repository of general knowledge from this period. Although the value of many entries from 1905 remains intact, some descriptions now have a dimension that is more historical than contemporary. They are nonetheless significant to analyze and understand cultural representations from this time. A comparison with more recent information or a verification of these entries would require a tedious manual work. In this paper, we describe a new lexical resource, where we connected all the dictionary entries of the history and geography part to current data sources. For this, we linked each of these entries to a wikidata identifier. Using the wikidata links, we can automate more easily the identification, comparison, and verification of historically-situated representations. We give a few examples on how to process wikidata identifiers and we carried out a small analysis of the entities described in the dictionary to outline possible applications. The resource, i.e. the annotation of 20,245 dictionary entries with wikidata links, is available from GitHub url{https://github.com/pnugues/petit_larousse_1905/
WCLD: Curated Large Dataset of Criminal Cases from Wisconsin Circuit Courts
Machine learning based decision-support tools in criminal justice systems are subjects of intense discussions and academic research. There are important open questions about the utility and fairness of such tools. Academic researchers often rely on a few small datasets that are not sufficient to empirically study various real-world aspects of these questions. In this paper, we contribute WCLD, a curated large dataset of 1.5 million criminal cases from circuit courts in the U.S. state of Wisconsin. We used reliable public data from 1970 to 2020 to curate attributes like prior criminal counts and recidivism outcomes. The dataset contains large number of samples from five racial groups, in addition to information like sex and age (at judgment and first offense). Other attributes in this dataset include neighborhood characteristics obtained from census data, detailed types of offense, charge severity, case decisions, sentence lengths, year of filing etc. We also provide pseudo-identifiers for judge, county and zipcode. The dataset will not only enable researchers to more rigorously study algorithmic fairness in the context of criminal justice, but also relate algorithmic challenges with various systemic issues. We also discuss in detail the process of constructing the dataset and provide a datasheet. The WCLD dataset is available at https://clezdata.github.io/wcld/.
CSMeD: Bridging the Dataset Gap in Automated Citation Screening for Systematic Literature Reviews
Systematic literature reviews (SLRs) play an essential role in summarising, synthesising and validating scientific evidence. In recent years, there has been a growing interest in using machine learning techniques to automate the identification of relevant studies for SLRs. However, the lack of standardised evaluation datasets makes comparing the performance of such automated literature screening systems difficult. In this paper, we analyse the citation screening evaluation datasets, revealing that many of the available datasets are either too small, suffer from data leakage or have limited applicability to systems treating automated literature screening as a classification task, as opposed to, for example, a retrieval or question-answering task. To address these challenges, we introduce CSMeD, a meta-dataset consolidating nine publicly released collections, providing unified access to 325 SLRs from the fields of medicine and computer science. CSMeD serves as a comprehensive resource for training and evaluating the performance of automated citation screening models. Additionally, we introduce CSMeD-FT, a new dataset designed explicitly for evaluating the full text publication screening task. To demonstrate the utility of CSMeD, we conduct experiments and establish baselines on new datasets.
Shopping Queries Dataset: A Large-Scale ESCI Benchmark for Improving Product Search
Improving the quality of search results can significantly enhance users experience and engagement with search engines. In spite of several recent advancements in the fields of machine learning and data mining, correctly classifying items for a particular user search query has been a long-standing challenge, which still has a large room for improvement. This paper introduces the "Shopping Queries Dataset", a large dataset of difficult Amazon search queries and results, publicly released with the aim of fostering research in improving the quality of search results. The dataset contains around 130 thousand unique queries and 2.6 million manually labeled (query,product) relevance judgements. The dataset is multilingual with queries in English, Japanese, and Spanish. The Shopping Queries Dataset is being used in one of the KDDCup'22 challenges. In this paper, we describe the dataset and present three evaluation tasks along with baseline results: (i) ranking the results list, (ii) classifying product results into relevance categories, and (iii) identifying substitute products for a given query. We anticipate that this data will become the gold standard for future research in the topic of product search.
GIRT-Data: Sampling GitHub Issue Report Templates
GitHub's issue reports provide developers with valuable information that is essential to the evolution of a software development project. Contributors can use these reports to perform software engineering tasks like submitting bugs, requesting features, and collaborating on ideas. In the initial versions of issue reports, there was no standard way of using them. As a result, the quality of issue reports varied widely. To improve the quality of issue reports, GitHub introduced issue report templates (IRTs), which pre-fill issue descriptions when a new issue is opened. An IRT usually contains greeting contributors, describing project guidelines, and collecting relevant information. However, despite of effectiveness of this feature which was introduced in 2016, only nearly 5% of GitHub repositories (with more than 10 stars) utilize it. There are currently few articles on IRTs, and the available ones only consider a small number of repositories. In this work, we introduce GIRT-Data, the first and largest dataset of IRTs in both YAML and Markdown format. This dataset and its corresponding open-source crawler tool are intended to support research in this area and to encourage more developers to use IRTs in their repositories. The stable version of the dataset contains 1,084,300 repositories and 50,032 of them support IRTs. The stable version of the dataset and crawler is available here: https://github.com/kargaranamir/girt-data
FRUIT: Faithfully Reflecting Updated Information in Text
Textual knowledge bases such as Wikipedia require considerable effort to keep up to date and consistent. While automated writing assistants could potentially ease this burden, the problem of suggesting edits grounded in external knowledge has been under-explored. In this paper, we introduce the novel generation task of *faithfully reflecting updated information in text* (FRUIT) where the goal is to update an existing article given new evidence. We release the FRUIT-WIKI dataset, a collection of over 170K distantly supervised data produced from pairs of Wikipedia snapshots, along with our data generation pipeline and a gold evaluation set of 914 instances whose edits are guaranteed to be supported by the evidence. We provide benchmark results for popular generation systems as well as EDIT5 -- a T5-based approach tailored to editing we introduce that establishes the state of the art. Our analysis shows that developing models that can update articles faithfully requires new capabilities for neural generation models, and opens doors to many new applications.
Analyzing the Influence of Fake News in the 2024 Elections: A Comprehensive Dataset
This work introduces a dataset focused on fake news in US political speeches, specifically examining racial slurs and biases. By scraping and annotating 40,000 news articles, using advanced NLP tools and human verification, we provide a nuanced understanding of misinformation in political discourse. The dataset, designed for machine learning and bias analysis, is a critical resource for researchers, policymakers, and educators. It facilitates the development of strategies against misinformation and enhances media literacy, marking a significant contribution to the study of fake news and political communication. Our dataset, focusing on the analysis of fake news in the context of the 2024 elections, is publicly accessible for community to work on fake news identification. Our dataset, focusing on the analysis of fake news in the context of the 2024 elections, is publicly accessible.
WikiSQE: A Large-Scale Dataset for Sentence Quality Estimation in Wikipedia
Wikipedia can be edited by anyone and thus contains various quality sentences. Therefore, Wikipedia includes some poor-quality edits, which are often marked up by other editors. While editors' reviews enhance the credibility of Wikipedia, it is hard to check all edited text. Assisting in this process is very important, but a large and comprehensive dataset for studying it does not currently exist. Here, we propose WikiSQE, the first large-scale dataset for sentence quality estimation in Wikipedia. Each sentence is extracted from the entire revision history of English Wikipedia, and the target quality labels were carefully investigated and selected. WikiSQE has about 3.4 M sentences with 153 quality labels. In the experiment with automatic classification using competitive machine learning models, sentences that had problems with citation, syntax/semantics, or propositions were found to be more difficult to detect. In addition, by performing human annotation, we found that the model we developed performed better than the crowdsourced workers. WikiSQE is expected to be a valuable resource for other tasks in NLP.
WikiWhy: Answering and Explaining Cause-and-Effect Questions
As large language models (LLMs) grow larger and more sophisticated, assessing their "reasoning" capabilities in natural language grows more challenging. Recent question answering (QA) benchmarks that attempt to assess reasoning are often limited by a narrow scope of covered situations and subject matters. We introduce WikiWhy, a QA dataset built around a novel auxiliary task: explaining why an answer is true in natural language. WikiWhy contains over 9,000 "why" question-answer-rationale triples, grounded on Wikipedia facts across a diverse set of topics. Each rationale is a set of supporting statements connecting the question to the answer. WikiWhy serves as a benchmark for the reasoning capabilities of LLMs because it demands rigorous explicit rationales for each answer to demonstrate the acquisition of implicit commonsense knowledge, which is unlikely to be easily memorized. GPT-3 baselines achieve only 38.7% human-evaluated correctness in the end-to-end answer & explain condition, leaving significant room for future improvements.
A ground-truth dataset of real security patches
Training machine learning approaches for vulnerability identification and producing reliable tools to assist developers in implementing quality software -- free of vulnerabilities -- is challenging due to the lack of large datasets and real data. Researchers have been looking at these issues and building datasets. However, these datasets usually miss natural language artifacts and programming language diversity. We scraped the entire CVE details database for GitHub references and augmented the data with 3 security-related datasets. We used the data to create a ground-truth dataset of natural language artifacts (such as commit messages, commits comments, and summaries), meta-data and code changes. Our dataset integrates a total of 8057 security-relevant commits -- the equivalent to 5942 security patches -- from 1339 different projects spanning 146 different types of vulnerabilities and 20 languages. A dataset of 110k non-security-related commits is also provided. Data and scripts are all available on GitHub. Data is stored in a .CSV file. Codebases can be downloaded using our scripts. Our dataset is a valuable asset to answer research questions on different topics such as the identification of security-relevant information using NLP models; software engineering and security best practices; and, vulnerability detection and patching; and, security program analysis.
Raiders of the Lost Kek: 3.5 Years of Augmented 4chan Posts from the Politically Incorrect Board
This paper presents a dataset with over 3.3M threads and 134.5M posts from the Politically Incorrect board (/pol/) of the imageboard forum 4chan, posted over a period of almost 3.5 years (June 2016-November 2019). To the best of our knowledge, this represents the largest publicly available 4chan dataset, providing the community with an archive of posts that have been permanently deleted from 4chan and are otherwise inaccessible. We augment the data with a set of additional labels, including toxicity scores and the named entities mentioned in each post. We also present a statistical analysis of the dataset, providing an overview of what researchers interested in using it can expect, as well as a simple content analysis, shedding light on the most prominent discussion topics, the most popular entities mentioned, and the toxicity level of each post. Overall, we are confident that our work will motivate and assist researchers in studying and understanding 4chan, as well as its role on the greater Web. For instance, we hope this dataset may be used for cross-platform studies of social media, as well as being useful for other types of research like natural language processing. Finally, our dataset can assist qualitative work focusing on in-depth case studies of specific narratives, events, or social theories.
Fine-tuned LLMs Know More, Hallucinate Less with Few-Shot Sequence-to-Sequence Semantic Parsing over Wikidata
While large language models (LLMs) can answer many questions correctly, they can also hallucinate and give wrong answers. Wikidata, with its over 12 billion facts, can be used to ground LLMs to improve their factuality. This paper presents WikiWebQuestions, a high-quality question answering benchmark for Wikidata. Ported over from WebQuestions for Freebase, it consists of real-world data with SPARQL annotation. This paper presents a few-shot sequence-to-sequence semantic parser for Wikidata. We modify SPARQL to use the unique domain and property names instead of their IDs. We train the parser to use either the results from an entity linker or mentions in the query. We fine-tune LLaMA by adding the few-shot training data to that used to fine-tune Alpaca. Our experimental results demonstrate the effectiveness of this methodology, establishing a strong baseline of 76% and 65% answer accuracy in the dev and test sets of WikiWebQuestions, respectively. By pairing our semantic parser with GPT-3, we combine verifiable results with qualified GPT-3 guesses to provide useful answers to 96% of the questions in dev. We also show that our method outperforms the state-of-the-art for the QALD-7 Wikidata dataset by 3.6% in F1 score.
Addressing "Documentation Debt" in Machine Learning Research: A Retrospective Datasheet for BookCorpus
Recent literature has underscored the importance of dataset documentation work for machine learning, and part of this work involves addressing "documentation debt" for datasets that have been used widely but documented sparsely. This paper aims to help address documentation debt for BookCorpus, a popular text dataset for training large language models. Notably, researchers have used BookCorpus to train OpenAI's GPT-N models and Google's BERT models, even though little to no documentation exists about the dataset's motivation, composition, collection process, etc. We offer a preliminary datasheet that provides key context and information about BookCorpus, highlighting several notable deficiencies. In particular, we find evidence that (1) BookCorpus likely violates copyright restrictions for many books, (2) BookCorpus contains thousands of duplicated books, and (3) BookCorpus exhibits significant skews in genre representation. We also find hints of other potential deficiencies that call for future research, including problematic content, potential skews in religious representation, and lopsided author contributions. While more work remains, this initial effort to provide a datasheet for BookCorpus adds to growing literature that urges more careful and systematic documentation for machine learning datasets.
A Large-scale Dataset with Behavior, Attributes, and Content of Mobile Short-video Platform
Short-video platforms show an increasing impact on people's daily lives nowadays, with billions of active users spending plenty of time each day. The interactions between users and online platforms give rise to many scientific problems across computational social science and artificial intelligence. However, despite the rapid development of short-video platforms, currently there are serious shortcomings in existing relevant datasets on three aspects: inadequate user-video feedback, limited user attributes and lack of video content. To address these problems, we provide a large-scale dataset with rich user behavior, attributes and video content from a real mobile short-video platform. This dataset covers 10,000 voluntary users and 153,561 videos, and we conduct four-fold technical validations of the dataset. First, we verify the richness of the behavior and attribute data. Second, we confirm the representing ability of the content features. Third, we provide benchmarking results on recommendation algorithms with our dataset. Finally, we explore the filter bubble phenomenon on the platform using the dataset. We believe the dataset could support the broad research community, including but not limited to user modeling, social science, human behavior understanding, etc. The dataset and code is available at https://github.com/tsinghua-fib-lab/ShortVideo_dataset.
YAGO 4.5: A Large and Clean Knowledge Base with a Rich Taxonomy
Knowledge Bases (KBs) find applications in many knowledge-intensive tasks and, most notably, in information retrieval. Wikidata is one of the largest public general-purpose KBs. Yet, its collaborative nature has led to a convoluted schema and taxonomy. The YAGO 4 KB cleaned up the taxonomy by incorporating the ontology of Schema.org, resulting in a cleaner structure amenable to automated reasoning. However, it also cut away large parts of the Wikidata taxonomy, which is essential for information retrieval. In this paper, we extend YAGO 4 with a large part of the Wikidata taxonomy - while respecting logical constraints and the distinction between classes and instances. This yields YAGO 4.5, a new, logically consistent version of YAGO that adds a rich layer of informative classes. An intrinsic and an extrinsic evaluation show the value of the new resource.
Quati: A Brazilian Portuguese Information Retrieval Dataset from Native Speakers
Despite Portuguese being one of the most spoken languages in the world, there is a lack of high-quality information retrieval datasets in that language. We present Quati, a dataset specifically designed for the Brazilian Portuguese language. It comprises a collection of queries formulated by native speakers and a curated set of documents sourced from a selection of high-quality Brazilian Portuguese websites. These websites are frequented more likely by real users compared to those randomly scraped, ensuring a more representative and relevant corpus. To label the query-document pairs, we use a state-of-the-art LLM, which shows inter-annotator agreement levels comparable to human performance in our assessments. We provide a detailed description of our annotation methodology to enable others to create similar datasets for other languages, providing a cost-effective way of creating high-quality IR datasets with an arbitrary number of labeled documents per query. Finally, we evaluate a diverse range of open-source and commercial retrievers to serve as baseline systems. Quati is publicly available at https://huggingface.co/datasets/unicamp-dl/quati and all scripts at https://github.com/unicamp-dl/quati .
A diverse Multilingual News Headlines Dataset from around the World
Babel Briefings is a novel dataset featuring 4.7 million news headlines from August 2020 to November 2021, across 30 languages and 54 locations worldwide with English translations of all articles included. Designed for natural language processing and media studies, it serves as a high-quality dataset for training or evaluating language models as well as offering a simple, accessible collection of articles, for example, to analyze global news coverage and cultural narratives. As a simple demonstration of the analyses facilitated by this dataset, we use a basic procedure using a TF-IDF weighted similarity metric to group articles into clusters about the same event. We then visualize the event signatures of the event showing articles of which languages appear over time, revealing intuitive features based on the proximity of the event and unexpectedness of the event. The dataset is available on https://www.kaggle.com/datasets/felixludos/babel-briefings{Kaggle} and https://huggingface.co/datasets/felixludos/babel-briefings{HuggingFace} with accompanying https://github.com/felixludos/babel-briefings{GitHub} code.
Ad-datasets: a meta-collection of data sets for autonomous driving
Autonomous driving is among the largest domains in which deep learning has been fundamental for progress within the last years. The rise of datasets went hand in hand with this development. All the more striking is the fact that researchers do not have a tool available that provides a quick, comprehensive and up-to-date overview of data sets and their features in the domain of autonomous driving. In this paper, we present ad-datasets, an online tool that provides such an overview for more than 150 data sets. The tool enables users to sort and filter the data sets according to currently 16 different categories. ad-datasets is an open-source project with community contributions. It is in constant development, ensuring that the content stays up-to-date.
CINIC-10 is not ImageNet or CIFAR-10
In this brief technical report we introduce the CINIC-10 dataset as a plug-in extended alternative for CIFAR-10. It was compiled by combining CIFAR-10 with images selected and downsampled from the ImageNet database. We present the approach to compiling the dataset, illustrate the example images for different classes, give pixel distributions for each part of the repository, and give some standard benchmarks for well known models. Details for download, usage, and compilation can be found in the associated github repository.
Benchmarking Filtered Approximate Nearest Neighbor Search Algorithms on Transformer-based Embedding Vectors
Advances in embedding models for text, image, audio, and video drive progress across multiple domains, including retrieval-augmented generation, recommendation systems, vehicle/person reidentification, and face recognition. Many applications in these domains require an efficient method to retrieve items that are close to a given query in the embedding space while satisfying a filter condition based on the item's attributes, a problem known as Filtered Approximate Nearest Neighbor Search (FANNS). In this work, we present a comprehensive survey and taxonomy of FANNS methods and analyze how they are benchmarked in the literature. By doing so, we identify a key challenge in the current FANNS landscape: the lack of diverse and realistic datasets, particularly ones derived from the latest transformer-based text embedding models. To address this, we introduce a novel dataset consisting of embedding vectors for the abstracts of over 2.7 million research articles from the arXiv repository, accompanied by 11 real-world attributes such as authors and categories. We benchmark a wide range of FANNS methods on our novel dataset and find that each method has distinct strengths and limitations; no single approach performs best across all scenarios. ACORN, for example, supports various filter types and performs reliably across dataset scales but is often outperformed by more specialized methods. SeRF shows excellent performance for range filtering on ordered attributes but cannot handle categorical attributes. Filtered-DiskANN and UNG excel on the medium-scale dataset but fail on the large-scale dataset, highlighting the challenge posed by transformer-based embeddings, which are often more than an order of magnitude larger than earlier embeddings. We conclude that no universally best method exists.
QALD-9-plus: A Multilingual Dataset for Question Answering over DBpedia and Wikidata Translated by Native Speakers
The ability to have the same experience for different user groups (i.e., accessibility) is one of the most important characteristics of Web-based systems. The same is true for Knowledge Graph Question Answering (KGQA) systems that provide the access to Semantic Web data via natural language interface. While following our research agenda on the multilingual aspect of accessibility of KGQA systems, we identified several ongoing challenges. One of them is the lack of multilingual KGQA benchmarks. In this work, we extend one of the most popular KGQA benchmarks - QALD-9 by introducing high-quality questions' translations to 8 languages provided by native speakers, and transferring the SPARQL queries of QALD-9 from DBpedia to Wikidata, s.t., the usability and relevance of the dataset is strongly increased. Five of the languages - Armenian, Ukrainian, Lithuanian, Bashkir and Belarusian - to our best knowledge were never considered in KGQA research community before. The latter two of the languages are considered as "endangered" by UNESCO. We call the extended dataset QALD-9-plus and made it available online https://github.com/Perevalov/qald_9_plus.
MMSci: A Multimodal Multi-Discipline Dataset for PhD-Level Scientific Comprehension
The rapid advancement of Large Language Models (LLMs) and Large Multimodal Models (LMMs) has heightened the demand for AI-based scientific assistants capable of understanding scientific articles and figures. Despite progress, there remains a significant gap in evaluating models' comprehension of professional, graduate-level, and even PhD-level scientific content. Current datasets and benchmarks primarily focus on relatively simple scientific tasks and figures, lacking comprehensive assessments across diverse advanced scientific disciplines. To bridge this gap, we collected a multimodal, multidisciplinary dataset from open-access scientific articles published in Nature Communications journals. This dataset spans 72 scientific disciplines, ensuring both diversity and quality. We created benchmarks with various tasks and settings to comprehensively evaluate LMMs' capabilities in understanding scientific figures and content. Our evaluation revealed that these tasks are highly challenging: many open-source models struggled significantly, and even GPT-4V and GPT-4o faced difficulties. We also explored using our dataset as training resources by constructing visual instruction-following data, enabling the 7B LLaVA model to achieve performance comparable to GPT-4V/o on our benchmark. Additionally, we investigated the use of our interleaved article texts and figure images for pre-training LMMs, resulting in improvements on the material generation task. The source dataset, including articles, figures, constructed benchmarks, and visual instruction-following data, is open-sourced.
RuBQ: A Russian Dataset for Question Answering over Wikidata
The paper presents RuBQ, the first Russian knowledge base question answering (KBQA) dataset. The high-quality dataset consists of 1,500 Russian questions of varying complexity, their English machine translations, SPARQL queries to Wikidata, reference answers, as well as a Wikidata sample of triples containing entities with Russian labels. The dataset creation started with a large collection of question-answer pairs from online quizzes. The data underwent automatic filtering, crowd-assisted entity linking, automatic generation of SPARQL queries, and their subsequent in-house verification.
Dataset of Quotation Attribution in German News Articles
Extracting who says what to whom is a crucial part in analyzing human communication in today's abundance of data such as online news articles. Yet, the lack of annotated data for this task in German news articles severely limits the quality and usability of possible systems. To remedy this, we present a new, freely available, creative-commons-licensed dataset for quotation attribution in German news articles based on WIKINEWS. The dataset provides curated, high-quality annotations across 1000 documents (250,000 tokens) in a fine-grained annotation schema enabling various downstream uses for the dataset. The annotations not only specify who said what but also how, in which context, to whom and define the type of quotation. We specify our annotation schema, describe the creation of the dataset and provide a quantitative analysis. Further, we describe suitable evaluation metrics, apply two existing systems for quotation attribution, discuss their results to evaluate the utility of our dataset and outline use cases of our dataset in downstream tasks.
Towards Safer Operations: An Expert-involved Dataset of High-Pressure Gas Incidents for Preventing Future Failures
This paper introduces a new IncidentAI dataset for safety prevention. Different from prior corpora that usually contain a single task, our dataset comprises three tasks: named entity recognition, cause-effect extraction, and information retrieval. The dataset is annotated by domain experts who have at least six years of practical experience as high-pressure gas conservation managers. We validate the contribution of the dataset in the scenario of safety prevention. Preliminary results on the three tasks show that NLP techniques are beneficial for analyzing incident reports to prevent future failures. The dataset facilitates future research in NLP and incident management communities. The access to the dataset is also provided (the IncidentAI dataset is available at: https://github.com/Cinnamon/incident-ai-dataset).
Arboretum: A Large Multimodal Dataset Enabling AI for Biodiversity
We introduce Arboretum, the largest publicly accessible dataset designed to advance AI for biodiversity applications. This dataset, curated from the iNaturalist community science platform and vetted by domain experts to ensure accuracy, includes 134.6 million images, surpassing existing datasets in scale by an order of magnitude. The dataset encompasses image-language paired data for a diverse set of species from birds (Aves), spiders/ticks/mites (Arachnida), insects (Insecta), plants (Plantae), fungus/mushrooms (Fungi), snails (Mollusca), and snakes/lizards (Reptilia), making it a valuable resource for multimodal vision-language AI models for biodiversity assessment and agriculture research. Each image is annotated with scientific names, taxonomic details, and common names, enhancing the robustness of AI model training. We showcase the value of Arboretum by releasing a suite of CLIP models trained using a subset of 40 million captioned images. We introduce several new benchmarks for rigorous assessment, report accuracy for zero-shot learning, and evaluations across life stages, rare species, confounding species, and various levels of the taxonomic hierarchy. We anticipate that Arboretum will spur the development of AI models that can enable a variety of digital tools ranging from pest control strategies, crop monitoring, and worldwide biodiversity assessment and environmental conservation. These advancements are critical for ensuring food security, preserving ecosystems, and mitigating the impacts of climate change. Arboretum is publicly available, easily accessible, and ready for immediate use. Please see the https://baskargroup.github.io/Arboretum/{project website} for links to our data, models, and code.
Linking Named Entities in Diderot's Encyclopédie to Wikidata
Diderot's Encyclop\'edie is a reference work from XVIIIth century in Europe that aimed at collecting the knowledge of its era. Wikipedia has the same ambition with a much greater scope. However, the lack of digital connection between the two encyclopedias may hinder their comparison and the study of how knowledge has evolved. A key element of Wikipedia is Wikidata that backs the articles with a graph of structured data. In this paper, we describe the annotation of more than 10,300 of the Encyclop\'edie entries with Wikidata identifiers enabling us to connect these entries to the graph. We considered geographic and human entities. The Encyclop\'edie does not contain biographic entries as they mostly appear as subentries of locations. We extracted all the geographic entries and we completely annotated all the entries containing a description of human entities. This represents more than 2,600 links referring to locations or human entities. In addition, we annotated more than 9,500 entries having a geographic content only. We describe the annotation process as well as application examples. This resource is available at https://github.com/pnugues/encyclopedie_1751
Aya Dataset: An Open-Access Collection for Multilingual Instruction Tuning
Datasets are foundational to many breakthroughs in modern artificial intelligence. Many recent achievements in the space of natural language processing (NLP) can be attributed to the finetuning of pre-trained models on a diverse set of tasks that enables a large language model (LLM) to respond to instructions. Instruction fine-tuning (IFT) requires specifically constructed and annotated datasets. However, existing datasets are almost all in the English language. In this work, our primary goal is to bridge the language gap by building a human-curated instruction-following dataset spanning 65 languages. We worked with fluent speakers of languages from around the world to collect natural instances of instructions and completions. Furthermore, we create the most extensive multilingual collection to date, comprising 513 million instances through templating and translating existing datasets across 114 languages. In total, we contribute four key resources: we develop and open-source the Aya Annotation Platform, the Aya Dataset, the Aya Collection, and the Aya Evaluation Suite. The Aya initiative also serves as a valuable case study in participatory research, involving collaborators from 119 countries. We see this as a valuable framework for future research collaborations that aim to bridge gaps in resources.
SurGen: 1020 H&E-stained Whole Slide Images With Survival and Genetic Markers
Background: Cancer remains one of the leading causes of morbidity and mortality worldwide. Comprehensive datasets that combine histopathological images with genetic and survival data across various tumour sites are essential for advancing computational pathology and personalised medicine. Results: We present SurGen, a dataset comprising 1,020 H&E-stained whole slide images (WSIs) from 843 colorectal cancer cases. The dataset includes detailed annotations for key genetic mutations (KRAS, NRAS, BRAF) and mismatch repair status, as well as survival data for 426 cases. To demonstrate SurGen's practical utility, we conducted a proof-of-concept machine learning experiment predicting mismatch repair status from the WSIs, achieving a test AUROC of 0.8316. These preliminary results underscore the dataset's potential to facilitate research in biomarker discovery, prognostic modelling, and advanced machine learning applications in colorectal cancer. Conclusions: SurGen offers a valuable resource for the scientific community, enabling studies that require high-quality WSIs linked with comprehensive clinical and genetic information on colorectal cancer. Our initial findings affirm the dataset's capacity to advance diagnostic precision and foster the development of personalised treatment strategies in colorectal oncology. Data available online at https://doi.org/10.6019/S-BIAD1285.
Captioning Images Taken by People Who Are Blind
While an important problem in the vision community is to design algorithms that can automatically caption images, few publicly-available datasets for algorithm development directly address the interests of real users. Observing that people who are blind have relied on (human-based) image captioning services to learn about images they take for nearly a decade, we introduce the first image captioning dataset to represent this real use case. This new dataset, which we call VizWiz-Captions, consists of over 39,000 images originating from people who are blind that are each paired with five captions. We analyze this dataset to (1) characterize the typical captions, (2) characterize the diversity of content found in the images, and (3) compare its content to that found in eight popular vision datasets. We also analyze modern image captioning algorithms to identify what makes this new dataset challenging for the vision community. We publicly-share the dataset with captioning challenge instructions at https://vizwiz.org
Machine Learning meets Algebraic Combinatorics: A Suite of Datasets Capturing Research-level Conjecturing Ability in Pure Mathematics
With recent dramatic increases in AI system capabilities, there has been growing interest in utilizing machine learning for reasoning-heavy, quantitative tasks, particularly mathematics. While there are many resources capturing mathematics at the high-school, undergraduate, and graduate level, there are far fewer resources available that align with the level of difficulty and open endedness encountered by professional mathematicians working on open problems. To address this, we introduce a new collection of datasets, the Algebraic Combinatorics Dataset Repository (ACD Repo), representing either foundational results or open problems in algebraic combinatorics, a subfield of mathematics that studies discrete structures arising from abstract algebra. Further differentiating our dataset collection is the fact that it aims at the conjecturing process. Each dataset includes an open-ended research-level question and a large collection of examples (up to 10M in some cases) from which conjectures should be generated. We describe all nine datasets, the different ways machine learning models can be applied to them (e.g., training with narrow models followed by interpretability analysis or program synthesis with LLMs), and discuss some of the challenges involved in designing datasets like these.
A Guide to Misinformation Detection Datasets
Misinformation is a complex societal issue, and mitigating solutions are difficult to create due to data deficiencies. To address this problem, we have curated the largest collection of (mis)information datasets in the literature, totaling 75. From these, we evaluated the quality of all of the 36 datasets that consist of statements or claims. We assess these datasets to identify those with solid foundations for empirical work and those with flaws that could result in misleading and non-generalizable results, such as insufficient label quality, spurious correlations, or political bias. We further provide state-of-the-art baselines on all these datasets, but show that regardless of label quality, categorical labels may no longer give an accurate evaluation of detection model performance. We discuss alternatives to mitigate this problem. Overall, this guide aims to provide a roadmap for obtaining higher quality data and conducting more effective evaluations, ultimately improving research in misinformation detection. All datasets and other artifacts are available at https://misinfo-datasets.complexdatalab.com/.
Exploring the Potential of AI-Generated Synthetic Datasets: A Case Study on Telematics Data with ChatGPT
This research delves into the construction and utilization of synthetic datasets, specifically within the telematics sphere, leveraging OpenAI's powerful language model, ChatGPT. Synthetic datasets present an effective solution to challenges pertaining to data privacy, scarcity, and control over variables - characteristics that make them particularly valuable for research pursuits. The utility of these datasets, however, largely depends on their quality, measured through the lenses of diversity, relevance, and coherence. To illustrate this data creation process, a hands-on case study is conducted, focusing on the generation of a synthetic telematics dataset. The experiment involved an iterative guidance of ChatGPT, progressively refining prompts and culminating in the creation of a comprehensive dataset for a hypothetical urban planning scenario in Columbus, Ohio. Upon generation, the synthetic dataset was subjected to an evaluation, focusing on the previously identified quality parameters and employing descriptive statistics and visualization techniques for a thorough analysis. Despite synthetic datasets not serving as perfect replacements for actual world data, their potential in specific use-cases, when executed with precision, is significant. This research underscores the potential of AI models like ChatGPT in enhancing data availability for complex sectors like telematics, thus paving the way for a myriad of new research opportunities.
HumSet: Dataset of Multilingual Information Extraction and Classification for Humanitarian Crisis Response
Timely and effective response to humanitarian crises requires quick and accurate analysis of large amounts of text data - a process that can highly benefit from expert-assisted NLP systems trained on validated and annotated data in the humanitarian response domain. To enable creation of such NLP systems, we introduce and release HumSet, a novel and rich multilingual dataset of humanitarian response documents annotated by experts in the humanitarian response community. The dataset provides documents in three languages (English, French, Spanish) and covers a variety of humanitarian crises from 2018 to 2021 across the globe. For each document, HUMSET provides selected snippets (entries) as well as assigned classes to each entry annotated using common humanitarian information analysis frameworks. HUMSET also provides novel and challenging entry extraction and multi-label entry classification tasks. In this paper, we take a first step towards approaching these tasks and conduct a set of experiments on Pre-trained Language Models (PLM) to establish strong baselines for future research in this domain. The dataset is available at https://blog.thedeep.io/humset/.
Commonsense Reasoning in Arab Culture
Despite progress in Arabic large language models, such as Jais and AceGPT, their evaluation on commonsense reasoning has largely relied on machine-translated datasets, which lack cultural depth and may introduce Anglocentric biases. Commonsense reasoning is shaped by geographical and cultural contexts, and existing English datasets fail to capture the diversity of the Arab world. To address this, we introduce \datasetname, a commonsense reasoning dataset in Modern Standard Arabic (MSA), covering cultures of 13 countries across the Gulf, Levant, North Africa, and the Nile Valley. The dataset was built from scratch by engaging native speakers to write and validate culturally relevant questions for their respective countries. \datasetname spans 12 daily life domains with 54 fine-grained subtopics, reflecting various aspects of social norms, traditions, and everyday experiences. Zero-shot evaluations show that open-weight language models with up to 32B parameters struggle to comprehend diverse Arab cultures, with performance varying across regions. These findings highlight the need for more culturally aware models and datasets tailored to the Arabic-speaking world.
Cleaning and Structuring the Label Space of the iMet Collection 2020
The iMet 2020 dataset is a valuable resource in the space of fine-grained art attribution recognition, but we believe it has yet to reach its true potential. We document the unique properties of the dataset and observe that many of the attribute labels are noisy, more than is implied by the dataset description. Oftentimes, there are also semantic relationships between the labels (e.g., identical, mutual exclusion, subsumption, overlap with uncertainty) which we believe are underutilized. We propose an approach to cleaning and structuring the iMet 2020 labels, and discuss the implications and value of doing so. Further, we demonstrate the benefits of our proposed approach through several experiments. Our code and cleaned labels are available at https://github.com/sunniesuhyoung/iMet2020cleaned.
Multi-class Multilingual Classification of Wikipedia Articles Using Extended Named Entity Tag Set
Wikipedia is a great source of general world knowledge which can guide NLP models better understand their motivation to make predictions. Structuring Wikipedia is the initial step towards this goal which can facilitate fine-grain classification of articles. In this work, we introduce the Shinra 5-Language Categorization Dataset (SHINRA-5LDS), a large multi-lingual and multi-labeled set of annotated Wikipedia articles in Japanese, English, French, German, and Farsi using Extended Named Entity (ENE) tag set. We evaluate the dataset using the best models provided for ENE label set classification and show that the currently available classification models struggle with large datasets using fine-grained tag sets.
DataComp: In search of the next generation of multimodal datasets
Large multimodal datasets have been instrumental in recent breakthroughs such as CLIP, Stable Diffusion, and GPT-4. At the same time, datasets rarely receive the same research attention as model architectures or training algorithms. To address this shortcoming in the machine learning ecosystem, we introduce DataComp, a benchmark where the training code is fixed and researchers innovate by proposing new training sets. We provide a testbed for dataset experiments centered around a new candidate pool of 12.8B image-text pairs from Common Crawl. Participants in our benchmark design new filtering techniques or curate new data sources and then evaluate their new dataset by running our standardized CLIP training code and testing on 38 downstream test sets. Our benchmark consists of multiple scales, with four candidate pool sizes and associated compute budgets ranging from 12.8M to 12.8B samples seen during training. This multi-scale design facilitates the study of scaling trends and makes the benchmark accessible to researchers with varying resources. Our baseline experiments show that the DataComp workflow is a promising way of improving multimodal datasets. We introduce DataComp-1B, a dataset created by applying a simple filtering algorithm to the 12.8B candidate pool. The resulting 1.4B subset enables training a CLIP ViT-L/14 from scratch to 79.2% zero-shot accuracy on ImageNet. Our new ViT-L/14 model outperforms a larger ViT-g/14 trained on LAION-2B by 0.7 percentage points while requiring 9x less training compute. We also outperform OpenAI's CLIP ViT-L/14 by 3.7 percentage points, which is trained with the same compute budget as our model. These gains highlight the potential for improving model performance by carefully curating training sets. We view DataComp-1B as only the first step and hope that DataComp paves the way toward the next generation of multimodal datasets.
Android in the Wild: A Large-Scale Dataset for Android Device Control
There is a growing interest in device-control systems that can interpret human natural language instructions and execute them on a digital device by directly controlling its user interface. We present a dataset for device-control research, Android in the Wild (AITW), which is orders of magnitude larger than current datasets. The dataset contains human demonstrations of device interactions, including the screens and actions, and corresponding natural language instructions. It consists of 715k episodes spanning 30k unique instructions, four versions of Android (v10-13),and eight device types (Pixel 2 XL to Pixel 6) with varying screen resolutions. It contains multi-step tasks that require semantic understanding of language and visual context. This dataset poses a new challenge: actions available through the user interface must be inferred from their visual appearance. And, instead of simple UI element-based actions, the action space consists of precise gestures (e.g., horizontal scrolls to operate carousel widgets). We organize our dataset to encourage robustness analysis of device-control systems, i.e., how well a system performs in the presence of new task descriptions, new applications, or new platform versions. We develop two agents and report performance across the dataset. The dataset is available at https://github.com/google-research/google-research/tree/master/android_in_the_wild.
Cross-Lingual Knowledge Distillation for Answer Sentence Selection in Low-Resource Languages
While impressive performance has been achieved on the task of Answer Sentence Selection (AS2) for English, the same does not hold for languages that lack large labeled datasets. In this work, we propose Cross-Lingual Knowledge Distillation (CLKD) from a strong English AS2 teacher as a method to train AS2 models for low-resource languages in the tasks without the need of labeled data for the target language. To evaluate our method, we introduce 1) Xtr-WikiQA, a translation-based WikiQA dataset for 9 additional languages, and 2) TyDi-AS2, a multilingual AS2 dataset with over 70K questions spanning 8 typologically diverse languages. We conduct extensive experiments on Xtr-WikiQA and TyDi-AS2 with multiple teachers, diverse monolingual and multilingual pretrained language models (PLMs) as students, and both monolingual and multilingual training. The results demonstrate that CLKD either outperforms or rivals even supervised fine-tuning with the same amount of labeled data and a combination of machine translation and the teacher model. Our method can potentially enable stronger AS2 models for low-resource languages, while TyDi-AS2 can serve as the largest multilingual AS2 dataset for further studies in the research community.
ReXGradient-160K: A Large-Scale Publicly Available Dataset of Chest Radiographs with Free-text Reports
We present ReXGradient-160K, representing the largest publicly available chest X-ray dataset to date in terms of the number of patients. This dataset contains 160,000 chest X-ray studies with paired radiological reports from 109,487 unique patients across 3 U.S. health systems (79 medical sites). This comprehensive dataset includes multiple images per study and detailed radiology reports, making it particularly valuable for the development and evaluation of AI systems for medical imaging and automated report generation models. The dataset is divided into training (140,000 studies), validation (10,000 studies), and public test (10,000 studies) sets, with an additional private test set (10,000 studies) reserved for model evaluation on the ReXrank benchmark. By providing this extensive dataset, we aim to accelerate research in medical imaging AI and advance the state-of-the-art in automated radiological analysis. Our dataset will be open-sourced at https://huggingface.co/datasets/rajpurkarlab/ReXGradient-160K.
HashSet -- A Dataset For Hashtag Segmentation
Hashtag segmentation is the task of breaking a hashtag into its constituent tokens. Hashtags often encode the essence of user-generated posts, along with information like topic and sentiment, which are useful in downstream tasks. Hashtags prioritize brevity and are written in unique ways -- transliterating and mixing languages, spelling variations, creative named entities. Benchmark datasets used for the hashtag segmentation task -- STAN, BOUN -- are small in size and extracted from a single set of tweets. However, datasets should reflect the variations in writing styles of hashtags and also account for domain and language specificity, failing which the results will misrepresent model performance. We argue that model performance should be assessed on a wider variety of hashtags, and datasets should be carefully curated. To this end, we propose HashSet, a dataset comprising of: a) 1.9k manually annotated dataset; b) 3.3M loosely supervised dataset. HashSet dataset is sampled from a different set of tweets when compared to existing datasets and provides an alternate distribution of hashtags to build and validate hashtag segmentation models. We show that the performance of SOTA models for Hashtag Segmentation drops substantially on proposed dataset, indicating that the proposed dataset provides an alternate set of hashtags to train and assess models.
POLygraph: Polish Fake News Dataset
This paper presents the POLygraph dataset, a unique resource for fake news detection in Polish. The dataset, created by an interdisciplinary team, is composed of two parts: the "fake-or-not" dataset with 11,360 pairs of news articles (identified by their URLs) and corresponding labels, and the "fake-they-say" dataset with 5,082 news articles (identified by their URLs) and tweets commenting on them. Unlike existing datasets, POLygraph encompasses a variety of approaches from source literature, providing a comprehensive resource for fake news detection. The data was collected through manual annotation by expert and non-expert annotators. The project also developed a software tool that uses advanced machine learning techniques to analyze the data and determine content authenticity. The tool and dataset are expected to benefit various entities, from public sector institutions to publishers and fact-checking organizations. Further dataset exploration will foster fake news detection and potentially stimulate the implementation of similar models in other languages. The paper focuses on the creation and composition of the dataset, so it does not include a detailed evaluation of the software tool for content authenticity analysis, which is planned at a later stage of the project.
PTMTorrent: A Dataset for Mining Open-source Pre-trained Model Packages
Due to the cost of developing and training deep learning models from scratch, machine learning engineers have begun to reuse pre-trained models (PTMs) and fine-tune them for downstream tasks. PTM registries known as "model hubs" support engineers in distributing and reusing deep learning models. PTM packages include pre-trained weights, documentation, model architectures, datasets, and metadata. Mining the information in PTM packages will enable the discovery of engineering phenomena and tools to support software engineers. However, accessing this information is difficult - there are many PTM registries, and both the registries and the individual packages may have rate limiting for accessing the data. We present an open-source dataset, PTMTorrent, to facilitate the evaluation and understanding of PTM packages. This paper describes the creation, structure, usage, and limitations of the dataset. The dataset includes a snapshot of 5 model hubs and a total of 15,913 PTM packages. These packages are represented in a uniform data schema for cross-hub mining. We describe prior uses of this data and suggest research opportunities for mining using our dataset. The PTMTorrent dataset (v1) is available at: https://app.globus.org/file-manager?origin_id=55e17a6e-9d8f-11ed-a2a2-8383522b48d9&origin_path=%2F~%2F. Our dataset generation tools are available on GitHub: https://doi.org/10.5281/zenodo.7570357.
A Labelled Dataset for Sentiment Analysis of Videos on YouTube, TikTok, and Other Sources about the 2024 Outbreak of Measles
The work of this paper presents a dataset that contains the data of 4011 videos about the ongoing outbreak of measles published on 264 websites on the internet between January 1, 2024, and May 31, 2024. The dataset is available at https://dx.doi.org/10.21227/40s8-xf63. These websites primarily include YouTube and TikTok, which account for 48.6% and 15.2% of the videos, respectively. The remainder of the websites include Instagram and Facebook as well as the websites of various global and local news organizations. For each of these videos, the URL of the video, title of the post, description of the post, and the date of publication of the video are presented as separate attributes in the dataset. After developing this dataset, sentiment analysis (using VADER), subjectivity analysis (using TextBlob), and fine-grain sentiment analysis (using DistilRoBERTa-base) of the video titles and video descriptions were performed. This included classifying each video title and video description into (i) one of the sentiment classes i.e. positive, negative, or neutral, (ii) one of the subjectivity classes i.e. highly opinionated, neutral opinionated, or least opinionated, and (iii) one of the fine-grain sentiment classes i.e. fear, surprise, joy, sadness, anger, disgust, or neutral. These results are presented as separate attributes in the dataset for the training and testing of machine learning algorithms for performing sentiment analysis or subjectivity analysis in this field as well as for other applications. Finally, this paper also presents a list of open research questions that may be investigated using this dataset.
Virtual KITTI 2
This paper introduces an updated version of the well-known Virtual KITTI dataset which consists of 5 sequence clones from the KITTI tracking benchmark. In addition, the dataset provides different variants of these sequences such as modified weather conditions (e.g. fog, rain) or modified camera configurations (e.g. rotated by 15 degrees). For each sequence, we provide multiple sets of images containing RGB, depth, class segmentation, instance segmentation, flow, and scene flow data. Camera parameters and poses as well as vehicle locations are available as well. In order to showcase some of the dataset's capabilities, we ran multiple relevant experiments using state-of-the-art algorithms from the field of autonomous driving. The dataset is available for download at https://europe.naverlabs.com/Research/Computer-Vision/Proxy-Virtual-Worlds.
HelpSteer3-Preference: Open Human-Annotated Preference Data across Diverse Tasks and Languages
Preference datasets are essential for training general-domain, instruction-following language models with Reinforcement Learning from Human Feedback (RLHF). Each subsequent data release raises expectations for future data collection, meaning there is a constant need to advance the quality and diversity of openly available preference data. To address this need, we introduce HelpSteer3-Preference, a permissively licensed (CC-BY-4.0), high-quality, human-annotated preference dataset comprising of over 40,000 samples. These samples span diverse real-world applications of large language models (LLMs), including tasks relating to STEM, coding and multilingual scenarios. Using HelpSteer3-Preference, we train Reward Models (RMs) that achieve top performance on RM-Bench (82.4%) and JudgeBench (73.7%). This represents a substantial improvement (~10% absolute) over the previously best-reported results from existing RMs. We demonstrate HelpSteer3-Preference can also be applied to train Generative RMs and how policy models can be aligned with RLHF using our RMs. Dataset (CC-BY-4.0): https://huggingface.co/datasets/nvidia/HelpSteer3#preference
Easy Dataset: A Unified and Extensible Framework for Synthesizing LLM Fine-Tuning Data from Unstructured Documents
Large language models (LLMs) have shown impressive performance on general-purpose tasks, yet adapting them to specific domains remains challenging due to the scarcity of high-quality domain data. Existing data synthesis tools often struggle to extract reliable fine-tuning data from heterogeneous documents effectively. To address this limitation, we propose Easy Dataset, a unified framework for synthesizing fine-tuning data from unstructured documents via an intuitive graphical user interface (GUI). Specifically, Easy Dataset allows users to easily configure text extraction models and chunking strategies to transform raw documents into coherent text chunks. It then leverages a persona-driven prompting approach to generate diverse question-answer pairs using public-available LLMs. Throughout the pipeline, a human-in-the-loop visual interface facilitates the review and refinement of intermediate outputs to ensure data quality. Experiments on a financial question-answering task show that fine-tuning LLMs on the synthesized dataset significantly improves domain-specific performance while preserving general knowledge. The source code and installable package are available at https://github.com/ConardLi/easy-dataset and have garnered over 9,000 GitHub stars.
BiblioPage: A Dataset of Scanned Title Pages for Bibliographic Metadata Extraction
Manual digitization of bibliographic metadata is time consuming and labor intensive, especially for historical and real-world archives with highly variable formatting across documents. Despite advances in machine learning, the absence of dedicated datasets for metadata extraction hinders automation. To address this gap, we introduce BiblioPage, a dataset of scanned title pages annotated with structured bibliographic metadata. The dataset consists of approximately 2,000 monograph title pages collected from 14 Czech libraries, spanning a wide range of publication periods, typographic styles, and layout structures. Each title page is annotated with 16 bibliographic attributes, including title, contributors, and publication metadata, along with precise positional information in the form of bounding boxes. To extract structured information from this dataset, we valuated object detection models such as YOLO and DETR combined with transformer-based OCR, achieving a maximum mAP of 52 and an F1 score of 59. Additionally, we assess the performance of various visual large language models, including LlamA 3.2-Vision and GPT-4o, with the best model reaching an F1 score of 67. BiblioPage serves as a real-world benchmark for bibliographic metadata extraction, contributing to document understanding, document question answering, and document information extraction. Dataset and evaluation scripts are availible at: https://github.com/DCGM/biblio-dataset
ECG-QA: A Comprehensive Question Answering Dataset Combined With Electrocardiogram
Question answering (QA) in the field of healthcare has received much attention due to significant advancements in natural language processing. However, existing healthcare QA datasets primarily focus on medical images, clinical notes, or structured electronic health record tables. This leaves the vast potential of combining electrocardiogram (ECG) data with these systems largely untapped. To address this gap, we present ECG-QA, the first QA dataset specifically designed for ECG analysis. The dataset comprises a total of 70 question templates that cover a wide range of clinically relevant ECG topics, each validated by an ECG expert to ensure their clinical utility. As a result, our dataset includes diverse ECG interpretation questions, including those that require a comparative analysis of two different ECGs. In addition, we have conducted numerous experiments to provide valuable insights for future research directions. We believe that ECG-QA will serve as a valuable resource for the development of intelligent QA systems capable of assisting clinicians in ECG interpretations. Dataset URL: https://github.com/Jwoo5/ecg-qa
WikiAutoGen: Towards Multi-Modal Wikipedia-Style Article Generation
Knowledge discovery and collection are intelligence-intensive tasks that traditionally require significant human effort to ensure high-quality outputs. Recent research has explored multi-agent frameworks for automating Wikipedia-style article generation by retrieving and synthesizing information from the internet. However, these methods primarily focus on text-only generation, overlooking the importance of multimodal content in enhancing informativeness and engagement. In this work, we introduce WikiAutoGen, a novel system for automated multimodal Wikipedia-style article generation. Unlike prior approaches, WikiAutoGen retrieves and integrates relevant images alongside text, enriching both the depth and visual appeal of generated content. To further improve factual accuracy and comprehensiveness, we propose a multi-perspective self-reflection mechanism, which critically assesses retrieved content from diverse viewpoints to enhance reliability, breadth, and coherence, etc. Additionally, we introduce WikiSeek, a benchmark comprising Wikipedia articles with topics paired with both textual and image-based representations, designed to evaluate multimodal knowledge generation on more challenging topics. Experimental results show that WikiAutoGen outperforms previous methods by 8%-29% on our WikiSeek benchmark, producing more accurate, coherent, and visually enriched Wikipedia-style articles. We show some of our generated examples in https://wikiautogen.github.io/ .
QLEVR: A Diagnostic Dataset for Quantificational Language and Elementary Visual Reasoning
Synthetic datasets have successfully been used to probe visual question-answering datasets for their reasoning abilities. CLEVR (johnson2017clevr), for example, tests a range of visual reasoning abilities. The questions in CLEVR focus on comparisons of shapes, colors, and sizes, numerical reasoning, and existence claims. This paper introduces a minimally biased, diagnostic visual question-answering dataset, QLEVR, that goes beyond existential and numerical quantification and focus on more complex quantifiers and their combinations, e.g., asking whether there are more than two red balls that are smaller than at least three blue balls in an image. We describe how the dataset was created and present a first evaluation of state-of-the-art visual question-answering models, showing that QLEVR presents a formidable challenge to our current models. Code and Dataset are available at https://github.com/zechenli03/QLEVR
UKnow: A Unified Knowledge Protocol for Common-Sense Reasoning and Vision-Language Pre-training
This work presents a unified knowledge protocol, called UKnow, which facilitates knowledge-based studies from the perspective of data. Particularly focusing on visual and linguistic modalities, we categorize data knowledge into five unit types, namely, in-image, in-text, cross-image, cross-text, and image-text, and set up an efficient pipeline to help construct the multimodal knowledge graph from any data collection. Thanks to the logical information naturally contained in knowledge graph, organizing datasets under UKnow format opens up more possibilities of data usage compared to the commonly used image-text pairs. Following UKnow protocol, we collect, from public international news, a large-scale multimodal knowledge graph dataset that consists of 1,388,568 nodes (with 571,791 vision-related ones) and 3,673,817 triplets. The dataset is also annotated with rich event tags, including 11 coarse labels and 9,185 fine labels. Experiments on four benchmarks demonstrate the potential of UKnow in supporting common-sense reasoning and boosting vision-language pre-training with a single dataset, benefiting from its unified form of knowledge organization. Code, dataset, and models will be made publicly available.
Quasar: Datasets for Question Answering by Search and Reading
We present two new large-scale datasets aimed at evaluating systems designed to comprehend a natural language query and extract its answer from a large corpus of text. The Quasar-S dataset consists of 37000 cloze-style (fill-in-the-gap) queries constructed from definitions of software entity tags on the popular website Stack Overflow. The posts and comments on the website serve as the background corpus for answering the cloze questions. The Quasar-T dataset consists of 43000 open-domain trivia questions and their answers obtained from various internet sources. ClueWeb09 serves as the background corpus for extracting these answers. We pose these datasets as a challenge for two related subtasks of factoid Question Answering: (1) searching for relevant pieces of text that include the correct answer to a query, and (2) reading the retrieved text to answer the query. We also describe a retrieval system for extracting relevant sentences and documents from the corpus given a query, and include these in the release for researchers wishing to only focus on (2). We evaluate several baselines on both datasets, ranging from simple heuristics to powerful neural models, and show that these lag behind human performance by 16.4% and 32.1% for Quasar-S and -T respectively. The datasets are available at https://github.com/bdhingra/quasar .
Multimodal datasets: misogyny, pornography, and malignant stereotypes
We have now entered the era of trillion parameter machine learning models trained on billion-sized datasets scraped from the internet. The rise of these gargantuan datasets has given rise to formidable bodies of critical work that has called for caution while generating these large datasets. These address concerns surrounding the dubious curation practices used to generate these datasets, the sordid quality of alt-text data available on the world wide web, the problematic content of the CommonCrawl dataset often used as a source for training large language models, and the entrenched biases in large-scale visio-linguistic models (such as OpenAI's CLIP model) trained on opaque datasets (WebImageText). In the backdrop of these specific calls of caution, we examine the recently released LAION-400M dataset, which is a CLIP-filtered dataset of Image-Alt-text pairs parsed from the Common-Crawl dataset. We found that the dataset contains, troublesome and explicit images and text pairs of rape, pornography, malign stereotypes, racist and ethnic slurs, and other extremely problematic content. We outline numerous implications, concerns and downstream harms regarding the current state of large scale datasets while raising open questions for various stakeholders including the AI community, regulators, policy makers and data subjects.
Essential-Web v1.0: 24T tokens of organized web data
Data plays the most prominent role in how language models acquire skills and knowledge. The lack of massive, well-organized pre-training datasets results in costly and inaccessible data pipelines. We present Essential-Web v1.0, a 24-trillion-token dataset in which every document is annotated with a twelve-category taxonomy covering topic, format, content complexity, and quality. Taxonomy labels are produced by EAI-Distill-0.5b, a fine-tuned 0.5b-parameter model that achieves an annotator agreement within 3% of Qwen2.5-32B-Instruct. With nothing more than SQL-style filters, we obtain competitive web-curated datasets in math (-8.0% relative to SOTA), web code (+14.3%), STEM (+24.5%) and medical (+8.6%). Essential-Web v1.0 is available on HuggingFace: https://huggingface.co/datasets/EssentialAI/essential-web-v1.0
FUNSD: A Dataset for Form Understanding in Noisy Scanned Documents
We present a new dataset for form understanding in noisy scanned documents (FUNSD) that aims at extracting and structuring the textual content of forms. The dataset comprises 199 real, fully annotated, scanned forms. The documents are noisy and vary widely in appearance, making form understanding (FoUn) a challenging task. The proposed dataset can be used for various tasks, including text detection, optical character recognition, spatial layout analysis, and entity labeling/linking. To the best of our knowledge, this is the first publicly available dataset with comprehensive annotations to address FoUn task. We also present a set of baselines and introduce metrics to evaluate performance on the FUNSD dataset, which can be downloaded at https://guillaumejaume.github.io/FUNSD/.
MEDIC: A Multi-Task Learning Dataset for Disaster Image Classification
Recent research in disaster informatics demonstrates a practical and important use case of artificial intelligence to save human lives and suffering during natural disasters based on social media contents (text and images). While notable progress has been made using texts, research on exploiting the images remains relatively under-explored. To advance image-based approaches, we propose MEDIC (Available at: https://crisisnlp.qcri.org/medic/index.html), which is the largest social media image classification dataset for humanitarian response consisting of 71,198 images to address four different tasks in a multi-task learning setup. This is the first dataset of its kind: social media images, disaster response, and multi-task learning research. An important property of this dataset is its high potential to facilitate research on multi-task learning, which recently receives much interest from the machine learning community and has shown remarkable results in terms of memory, inference speed, performance, and generalization capability. Therefore, the proposed dataset is an important resource for advancing image-based disaster management and multi-task machine learning research. We experiment with different deep learning architectures and report promising results, which are above the majority baselines for all tasks. Along with the dataset, we also release all relevant scripts (https://github.com/firojalam/medic).
ParaNames 1.0: Creating an Entity Name Corpus for 400+ Languages using Wikidata
We introduce ParaNames, a massively multilingual parallel name resource consisting of 140 million names spanning over 400 languages. Names are provided for 16.8 million entities, and each entity is mapped from a complex type hierarchy to a standard type (PER/LOC/ORG). Using Wikidata as a source, we create the largest resource of this type to date. We describe our approach to filtering and standardizing the data to provide the best quality possible. ParaNames is useful for multilingual language processing, both in defining tasks for name translation/transliteration and as supplementary data for tasks such as named entity recognition and linking. We demonstrate the usefulness of ParaNames on two tasks. First, we perform canonical name translation between English and 17 other languages. Second, we use it as a gazetteer for multilingual named entity recognition, obtaining performance improvements on all 10 languages evaluated.
SQuAD: 100,000+ Questions for Machine Comprehension of Text
We present the Stanford Question Answering Dataset (SQuAD), a new reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles, where the answer to each question is a segment of text from the corresponding reading passage. We analyze the dataset to understand the types of reasoning required to answer the questions, leaning heavily on dependency and constituency trees. We build a strong logistic regression model, which achieves an F1 score of 51.0%, a significant improvement over a simple baseline (20%). However, human performance (86.8%) is much higher, indicating that the dataset presents a good challenge problem for future research. The dataset is freely available at https://stanford-qa.com
WikiAsp: A Dataset for Multi-domain Aspect-based Summarization
Aspect-based summarization is the task of generating focused summaries based on specific points of interest. Such summaries aid efficient analysis of text, such as quickly understanding reviews or opinions from different angles. However, due to large differences in the type of aspects for different domains (e.g., sentiment, product features), the development of previous models has tended to be domain-specific. In this paper, we propose WikiAsp, a large-scale dataset for multi-domain aspect-based summarization that attempts to spur research in the direction of open-domain aspect-based summarization. Specifically, we build the dataset using Wikipedia articles from 20 different domains, using the section titles and boundaries of each article as a proxy for aspect annotation. We propose several straightforward baseline models for this task and conduct experiments on the dataset. Results highlight key challenges that existing summarization models face in this setting, such as proper pronoun handling of quoted sources and consistent explanation of time-sensitive events.
The Data Provenance Initiative: A Large Scale Audit of Dataset Licensing & Attribution in AI
The race to train language models on vast, diverse, and inconsistently documented datasets has raised pressing concerns about the legal and ethical risks for practitioners. To remedy these practices threatening data transparency and understanding, we convene a multi-disciplinary effort between legal and machine learning experts to systematically audit and trace 1800+ text datasets. We develop tools and standards to trace the lineage of these datasets, from their source, creators, series of license conditions, properties, and subsequent use. Our landscape analysis highlights the sharp divides in composition and focus of commercially open vs closed datasets, with closed datasets monopolizing important categories: lower resource languages, more creative tasks, richer topic variety, newer and more synthetic training data. This points to a deepening divide in the types of data that are made available under different license conditions, and heightened implications for jurisdictional legal interpretations of copyright and fair use. We also observe frequent miscategorization of licenses on widely used dataset hosting sites, with license omission of 72%+ and error rates of 50%+. This points to a crisis in misattribution and informed use of the most popular datasets driving many recent breakthroughs. As a contribution to ongoing improvements in dataset transparency and responsible use, we release our entire audit, with an interactive UI, the Data Provenance Explorer, which allows practitioners to trace and filter on data provenance for the most popular open source finetuning data collections: www.dataprovenance.org.
VANiLLa : Verbalized Answers in Natural Language at Large Scale
In the last years, there have been significant developments in the area of Question Answering over Knowledge Graphs (KGQA). Despite all the notable advancements, current KGQA datasets only provide the answers as the direct output result of the formal query, rather than full sentences incorporating question context. For achieving coherent answers sentence with the question's vocabulary, template-based verbalization so are usually employed for a better representation of answers, which in turn require extensive expert intervention. Thus, making way for machine learning approaches; however, there is a scarcity of datasets that empower machine learning models in this area. Hence, we provide the VANiLLa dataset which aims at reducing this gap by offering answers in natural language sentences. The answer sentences in this dataset are syntactically and semantically closer to the question than to the triple fact. Our dataset consists of over 100k simple questions adapted from the CSQA and SimpleQuestionsWikidata datasets and generated using a semi-automatic framework. We also present results of training our dataset on multiple baseline models adapted from current state-of-the-art Natural Language Generation (NLG) architectures. We believe that this dataset will allow researchers to focus on finding suitable methodologies and architectures for answer verbalization.
I Dream My Painting: Connecting MLLMs and Diffusion Models via Prompt Generation for Text-Guided Multi-Mask Inpainting
Inpainting focuses on filling missing or corrupted regions of an image to blend seamlessly with its surrounding content and style. While conditional diffusion models have proven effective for text-guided inpainting, we introduce the novel task of multi-mask inpainting, where multiple regions are simultaneously inpainted using distinct prompts. Furthermore, we design a fine-tuning procedure for multimodal LLMs, such as LLaVA, to generate multi-mask prompts automatically using corrupted images as inputs. These models can generate helpful and detailed prompt suggestions for filling the masked regions. The generated prompts are then fed to Stable Diffusion, which is fine-tuned for the multi-mask inpainting problem using rectified cross-attention, enforcing prompts onto their designated regions for filling. Experiments on digitized paintings from WikiArt and the Densely Captioned Images dataset demonstrate that our pipeline delivers creative and accurate inpainting results. Our code, data, and trained models are available at https://cilabuniba.github.io/i-dream-my-painting.
Measuring Vision-Language STEM Skills of Neural Models
We introduce a new challenge to test the STEM skills of neural models. The problems in the real world often require solutions, combining knowledge from STEM (science, technology, engineering, and math). Unlike existing datasets, our dataset requires the understanding of multimodal vision-language information of STEM. Our dataset features one of the largest and most comprehensive datasets for the challenge. It includes 448 skills and 1,073,146 questions spanning all STEM subjects. Compared to existing datasets that often focus on examining expert-level ability, our dataset includes fundamental skills and questions designed based on the K-12 curriculum. We also add state-of-the-art foundation models such as CLIP and GPT-3.5-Turbo to our benchmark. Results show that the recent model advances only help master a very limited number of lower grade-level skills (2.5% in the third grade) in our dataset. In fact, these models are still well below (averaging 54.7%) the performance of elementary students, not to mention near expert-level performance. To understand and increase the performance on our dataset, we teach the models on a training split of our dataset. Even though we observe improved performance, the model performance remains relatively low compared to average elementary students. To solve STEM problems, we will need novel algorithmic innovations from the community.
Think you have Solved Direct-Answer Question Answering? Try ARC-DA, the Direct-Answer AI2 Reasoning Challenge
We present the ARC-DA dataset, a direct-answer ("open response", "freeform") version of the ARC (AI2 Reasoning Challenge) multiple-choice dataset. While ARC has been influential in the community, its multiple-choice format is unrepresentative of real-world questions, and multiple choice formats can be particularly susceptible to artifacts. The ARC-DA dataset addresses these concerns by converting questions to direct-answer format using a combination of crowdsourcing and expert review. The resulting dataset contains 2985 questions with a total of 8436 valid answers (questions typically have more than one valid answer). ARC-DA is one of the first DA datasets of natural questions that often require reasoning, and where appropriate question decompositions are not evident from the questions themselves. We describe the conversion approach taken, appropriate evaluation metrics, and several strong models. Although high, the best scores (81% GENIE, 61.4% F1, 63.2% ROUGE-L) still leave considerable room for improvement. In addition, the dataset provides a natural setting for new research on explanation, as many questions require reasoning to construct answers. We hope the dataset spurs further advances in complex question-answering by the community. ARC-DA is available at https://allenai.org/data/arc-da
TUDataset: A collection of benchmark datasets for learning with graphs
Recently, there has been an increasing interest in (supervised) learning with graph data, especially using graph neural networks. However, the development of meaningful benchmark datasets and standardized evaluation procedures is lagging, consequently hindering advancements in this area. To address this, we introduce the TUDataset for graph classification and regression. The collection consists of over 120 datasets of varying sizes from a wide range of applications. We provide Python-based data loaders, kernel and graph neural network baseline implementations, and evaluation tools. Here, we give an overview of the datasets, standardized evaluation procedures, and provide baseline experiments. All datasets are available at www.graphlearning.io. The experiments are fully reproducible from the code available at www.github.com/chrsmrrs/tudataset.
Single and Multi-Hop Question-Answering Datasets for Reticular Chemistry with GPT-4-Turbo
The rapid advancement in artificial intelligence and natural language processing has led to the development of large-scale datasets aimed at benchmarking the performance of machine learning models. Herein, we introduce 'RetChemQA,' a comprehensive benchmark dataset designed to evaluate the capabilities of such models in the domain of reticular chemistry. This dataset includes both single-hop and multi-hop question-answer pairs, encompassing approximately 45,000 Q&As for each type. The questions have been extracted from an extensive corpus of literature containing about 2,530 research papers from publishers including NAS, ACS, RSC, Elsevier, and Nature Publishing Group, among others. The dataset has been generated using OpenAI's GPT-4 Turbo, a cutting-edge model known for its exceptional language understanding and generation capabilities. In addition to the Q&A dataset, we also release a dataset of synthesis conditions extracted from the corpus of literature used in this study. The aim of RetChemQA is to provide a robust platform for the development and evaluation of advanced machine learning algorithms, particularly for the reticular chemistry community. The dataset is structured to reflect the complexities and nuances of real-world scientific discourse, thereby enabling nuanced performance assessments across a variety of tasks. The dataset is available at the following link: https://github.com/nakulrampal/RetChemQA
BOUQuET: dataset, Benchmark and Open initiative for Universal Quality Evaluation in Translation
This paper presents BOUQuET, a multicentric and multi-register/domain dataset and benchmark, and its broader collaborative extension initiative. This dataset is handcrafted in non-English languages first, each of these source languages being represented among the 23 languages commonly used by half of the world's population and therefore having the potential to serve as pivot languages that will enable more accurate translations. The dataset is specially designed to avoid contamination and be multicentric, so as to enforce representation of multilingual language features. In addition, the dataset goes beyond the sentence level, as it is organized in paragraphs of various lengths. Compared with related machine translation (MT) datasets, we show that BOUQuET has a broader representation of domains while simplifying the translation task for non-experts. Therefore, BOUQuET is specially suitable for the open initiative and call for translation participation that we are launching to extend it to a multi-way parallel corpus to any written language.
"ScatSpotter" 2024 -- A Distributed Dog Poop Detection Dataset
We introduce a new -- currently 42 gigabyte -- ``living'' dataset of phone images of dog feces, annotated with manually drawn or AI-assisted polygon labels. There are 6k full resolution images and 4k detailed polygon annotations. The collection and annotation of images started in late 2020 and the dataset grows by roughly 1GB a month. We train VIT and MaskRCNN baseline models to explore the difficulty of the dataset. The best model achieves a pixelwise average precision of 0.858 on a 691-image validation set and 0.847 on a small independently captured 30-image contributor test set. The most recent snapshot of dataset is made publicly available through three different distribution methods: one centralized (Girder) and two decentralized (IPFS and BitTorrent). We study of the trade-offs between distribution methods and discuss the feasibility of each with respect to reliably sharing open scientific data. The code to reproduce the experiments is hosted on GitHub, and the data is published under the Creative Commons Attribution 4.0 International license. Model weights are made publicly available with the dataset. Experimental hardware, time, energy, and emissions are quantified.
CPPE-5: Medical Personal Protective Equipment Dataset
We present a new challenging dataset, CPPE - 5 (Medical Personal Protective Equipment), with the goal to allow the study of subordinate categorization of medical personal protective equipments, which is not possible with other popular data sets that focus on broad-level categories (such as PASCAL VOC, ImageNet, Microsoft COCO, OpenImages, etc). To make it easy for models trained on this dataset to be used in practical scenarios in complex scenes, our dataset mainly contains images that show complex scenes with several objects in each scene in their natural context. The image collection for this dataset focuses on: obtaining as many non-iconic images as possible and making sure all the images are real-life images, unlike other existing datasets in this area. Our dataset includes 5 object categories (coveralls, face shields, gloves, masks, and goggles), and each image is annotated with a set of bounding boxes and positive labels. We present a detailed analysis of the dataset in comparison to other popular broad category datasets as well as datasets focusing on personal protective equipments, we also find that at present there exist no such publicly available datasets. Finally, we also analyze performance and compare model complexities on baseline and state-of-the-art models for bounding box results. Our code, data, and trained models are available at https://git.io/cppe5-dataset.
InteriorNet: Mega-scale Multi-sensor Photo-realistic Indoor Scenes Dataset
Datasets have gained an enormous amount of popularity in the computer vision community, from training and evaluation of Deep Learning-based methods to benchmarking Simultaneous Localization and Mapping (SLAM). Without a doubt, synthetic imagery bears a vast potential due to scalability in terms of amounts of data obtainable without tedious manual ground truth annotations or measurements. Here, we present a dataset with the aim of providing a higher degree of photo-realism, larger scale, more variability as well as serving a wider range of purposes compared to existing datasets. Our dataset leverages the availability of millions of professional interior designs and millions of production-level furniture and object assets -- all coming with fine geometric details and high-resolution texture. We render high-resolution and high frame-rate video sequences following realistic trajectories while supporting various camera types as well as providing inertial measurements. Together with the release of the dataset, we will make executable program of our interactive simulator software as well as our renderer available at https://interiornetdataset.github.io. To showcase the usability and uniqueness of our dataset, we show benchmarking results of both sparse and dense SLAM algorithms.
ChatGPT Asks, BLIP-2 Answers: Automatic Questioning Towards Enriched Visual Descriptions
Asking insightful questions is crucial for acquiring knowledge and expanding our understanding of the world. However, the importance of questioning has been largely overlooked in AI research, where models have been primarily developed to answer questions. With the recent advancements of large language models (LLMs) like ChatGPT, we discover their capability to ask high-quality questions when provided with a suitable prompt. This discovery presents a new opportunity to develop an automatic questioning system. In this paper, we introduce ChatCaptioner, a novel automatic-questioning method deployed in image captioning. Here, ChatGPT is prompted to ask a series of informative questions about images to BLIP-2, a strong vision question-answering model. By keeping acquiring new visual information from BLIP-2's answers, ChatCaptioner is able to generate more enriched image descriptions. We conduct human-subject evaluations on common image caption datasets such as COCO, Conceptual Caption, and WikiArt, and compare ChatCaptioner with BLIP-2 as well as ground truth. Our results demonstrate that ChatCaptioner's captions are significantly more informative, receiving three times as many votes from human evaluators for providing the most image information. Besides, ChatCaptioner identifies 53% more objects within the image than BLIP-2 alone measured by WordNet synset matching. Code is available at https://github.com/Vision-CAIR/ChatCaptioner
