Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeProgram Synthesis Benchmark for Visual Programming in XLogoOnline Environment
Large language and multimodal models have shown remarkable successes on various benchmarks focused on specific skills such as general-purpose programming, natural language understanding, math word problem-solving, and visual question answering. However, it is unclear how well these models perform on tasks that require a combination of these skills. In this paper, we curate a novel program synthesis benchmark based on the XLogoOnline visual programming environment. The benchmark comprises 85 real-world tasks from the Mini-level of the XLogoOnline environment, each requiring a combination of different skills such as spatial planning, basic programming, and logical reasoning. Our evaluation shows that current state-of-the-art models like GPT-4V and Llama3-70B struggle to solve these tasks, achieving only 20% and 2.35% success rates. Next, we develop a fine-tuning pipeline to boost the performance of models by leveraging a large-scale synthetic training dataset with over 80000 tasks. Moreover, we showcase how emulator-driven feedback can be used to design a curriculum over training data distribution. We showcase that a fine-tuned Llama3-8B drastically outperforms GPT-4V and Llama3-70B models, and provide an in-depth analysis of the models' expertise across different skill dimensions. We will publicly release the benchmark for future research on program synthesis in visual programming.
Once Upon an Input: Reasoning via Per-Instance Program Synthesis
Large language models (LLMs) excel at zero-shot inference but continue to struggle with complex, multi-step reasoning. Recent methods that augment LLMs with intermediate reasoning steps such as Chain of Thought (CoT) and Program of Thought (PoT) improve performance but often produce undesirable solutions, especially in algorithmic domains. We introduce Per-Instance Program Synthesis (PIPS), a method that generates and refines programs at the instance-level using structural feedback without relying on task-specific guidance or explicit test cases. To further improve performance, PIPS incorporates a confidence metric that dynamically chooses between direct inference and program synthesis on a per-instance basis. Experiments across three frontier LLMs and 30 benchmarks including all tasks of Big Bench Extra Hard (BBEH), visual question answering tasks, relational reasoning tasks, and mathematical reasoning tasks show that PIPS improves the absolute harmonic mean accuracy by up to 8.6% and 9.4% compared to PoT and CoT respectively, and reduces undesirable program generations by 65.1% on the algorithmic tasks compared to PoT with Gemini-2.0-Flash.
Visual Agentic AI for Spatial Reasoning with a Dynamic API
Visual reasoning -- the ability to interpret the visual world -- is crucial for embodied agents that operate within three-dimensional scenes. Progress in AI has led to vision and language models capable of answering questions from images. However, their performance declines when tasked with 3D spatial reasoning. To tackle the complexity of such reasoning problems, we introduce an agentic program synthesis approach where LLM agents collaboratively generate a Pythonic API with new functions to solve common subproblems. Our method overcomes limitations of prior approaches that rely on a static, human-defined API, allowing it to handle a wider range of queries. To assess AI capabilities for 3D understanding, we introduce a new benchmark of queries involving multiple steps of grounding and inference. We show that our method outperforms prior zero-shot models for visual reasoning in 3D and empirically validate the effectiveness of our agentic framework for 3D spatial reasoning tasks. Project website: https://glab-caltech.github.io/vadar/
VCode: a Multimodal Coding Benchmark with SVG as Symbolic Visual Representation
Code has emerged as a precise and executable medium for reasoning and action in the agent era. Yet, progress has largely focused on language-centric tasks such as program synthesis and debugging, leaving visual-centric coding underexplored. Inspired by how humans reason over sketches, we advocate SVG code as a compact, interpretable, and executable visual representation. We introduce VCode, a benchmark that reframes multimodal understanding as code generation: given an image, a model must produce SVG that preserves symbolic meaning for downstream reasoning. VCode covers three domains - general commonsense (MM-Vet), professional disciplines (MMMU), and visual-centric perception (CV-Bench). To assess symbolic fidelity, we propose CodeVQA, a novel evaluation protocol in which a policy model answers questions over rendered SVGs; correct answers indicate faithful symbolic preservation. Empirically, frontier VLMs struggle to generate faithful SVGs, revealing a persistent gap between language-centric and visual-centric coding. To close this gap, we introduce VCoder, an agentic framework that augments VLMs along two axes: (i) Thinking with Revision, which iteratively analyzes discrepancies and refines SVG code; and (ii) Acting with Visual Tools, where detectors and parsers supply structured cues such as objects, shapes, and text beyond the model's intrinsic capacity. Across benchmarks, frontier VLMs with strong reasoning capabilities score well overall yet remain limited in professional knowledge and 3D reasoning. VCoder delivers a 12.3-point overall gain over the top-performing Claude-4-Opus. Human studies show that both humans and VLMs perform worse on rendered SVGs, their consistency reveals the promise of symbolic visual representation. The benchmark and code are available at https://github.com/CSU-JPG/VCode.
No Labels, No Problem: Training Visual Reasoners with Multimodal Verifiers
Visual reasoning is challenging, requiring both precise object grounding and understanding complex spatial relationships. Existing methods fall into two camps: language-only chain-of-thought approaches, which demand large-scale (image, query, answer) supervision, and program-synthesis approaches which use pre-trained models and avoid training, but suffer from flawed logic and erroneous grounding. We propose an annotation-free training framework that improves both reasoning and grounding. Our framework uses AI-powered verifiers: an LLM verifier refines LLM reasoning via reinforcement learning, while a VLM verifier strengthens visual grounding through automated hard-negative mining, eliminating the need for ground truth labels. This design combines the strengths of modern AI systems: advanced language-only reasoning models for decomposing spatial queries into simpler subtasks, and strong vision specialist models improved via performant VLM critics. We evaluate our approach across diverse spatial reasoning tasks, and show that our method improves visual reasoning and surpasses open-source and proprietary models, while with our improved visual grounding model we further outperform recent text-only visual reasoning methods. Project webpage: https://glab-caltech.github.io/valor/
Symbolic Graphics Programming with Large Language Models
Large language models (LLMs) excel at program synthesis, yet their ability to produce symbolic graphics programs (SGPs) that render into precise visual content remains underexplored. We study symbolic graphics programming, where the goal is to generate an SGP from a natural-language description. This task also serves as a lens into how LLMs understand the visual world by prompting them to generate images rendered from SGPs. Among various SGPs, our paper sticks to scalable vector graphics (SVGs). We begin by examining the extent to which LLMs can generate SGPs. To this end, we introduce SGP-GenBench, a comprehensive benchmark covering object fidelity, scene fidelity, and compositionality (attribute binding, spatial relations, numeracy). On SGP-GenBench, we discover that frontier proprietary models substantially outperform open-source models, and performance correlates well with general coding capabilities. Motivated by this gap, we aim to improve LLMs' ability to generate SGPs. We propose a reinforcement learning (RL) with verifiable rewards approach, where a format-validity gate ensures renderable SVG, and a cross-modal reward aligns text and the rendered image via strong vision encoders (e.g., SigLIP for text-image and DINO for image-image). Applied to Qwen-2.5-7B, our method substantially improves SVG generation quality and semantics, achieving performance on par with frontier systems. We further analyze training dynamics, showing that RL induces (i) finer decomposition of objects into controllable primitives and (ii) contextual details that improve scene coherence. Our results demonstrate that symbolic graphics programming offers a precise and interpretable lens on cross-modal grounding.
MMFactory: A Universal Solution Search Engine for Vision-Language Tasks
With advances in foundational and vision-language models, and effective fine-tuning techniques, a large number of both general and special-purpose models have been developed for a variety of visual tasks. Despite the flexibility and accessibility of these models, no single model is able to handle all tasks and/or applications that may be envisioned by potential users. Recent approaches, such as visual programming and multimodal LLMs with integrated tools aim to tackle complex visual tasks, by way of program synthesis. However, such approaches overlook user constraints (e.g., performance / computational needs), produce test-time sample-specific solutions that are difficult to deploy, and, sometimes, require low-level instructions that maybe beyond the abilities of a naive user. To address these limitations, we introduce MMFactory, a universal framework that includes model and metrics routing components, acting like a solution search engine across various available models. Based on a task description and few sample input-output pairs and (optionally) resource and/or performance constraints, MMFactory can suggest a diverse pool of programmatic solutions by instantiating and combining visio-lingual tools from its model repository. In addition to synthesizing these solutions, MMFactory also proposes metrics and benchmarks performance / resource characteristics, allowing users to pick a solution that meets their unique design constraints. From the technical perspective, we also introduced a committee-based solution proposer that leverages multi-agent LLM conversation to generate executable, diverse, universal, and robust solutions for the user. Experimental results show that MMFactory outperforms existing methods by delivering state-of-the-art solutions tailored to user problem specifications. Project page is available at https://davidhalladay.github.io/mmfactory_demo.
JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence
The scope of neural code intelligence is rapidly expanding beyond text-based source code to encompass the rich visual outputs that programs generate. This visual dimension is critical for advanced applications like flexible content generation and precise, program-driven editing of visualizations. However, progress has been impeded by the scarcity of high-quality multimodal code data, a bottleneck stemming from challenges in synthesis and quality assessment. To address these challenges, we make contributions from both a data and modeling perspective. We first introduce a complete synthesis toolkit that leverages reciprocal synergies between data modalities to efficiently produce a large-scale, high-quality corpus spanning from standard charts to complex interactive web UIs and code-driven animations. Leveraging this toolkit, we construct JanusCode-800K, the largest multimodal code corpus to date. This powers the training of our models, JanusCoder and JanusCoderV, which establish a visual-programmatic interface for generating code from textual instructions, visual inputs, or a combination of both. Our unified model is a departure from existing approaches that build specialized models for isolated tasks. Extensive experiments on both text-centric and vision-centric coding tasks demonstrate the superior performance of the JanusCoder series, with our 7B to 14B scale models approaching or even exceeding the performance of commercial models. Furthermore, extensive analysis provides key insights into harmonizing programmatic logic with its visual expression. Our code and checkpoints will are available at https://github.com/InternLM/JanusCoder.
Visual Programming: Compositional visual reasoning without training
We present VISPROG, a neuro-symbolic approach to solving complex and compositional visual tasks given natural language instructions. VISPROG avoids the need for any task-specific training. Instead, it uses the in-context learning ability of large language models to generate python-like modular programs, which are then executed to get both the solution and a comprehensive and interpretable rationale. Each line of the generated program may invoke one of several off-the-shelf computer vision models, image processing routines, or python functions to produce intermediate outputs that may be consumed by subsequent parts of the program. We demonstrate the flexibility of VISPROG on 4 diverse tasks - compositional visual question answering, zero-shot reasoning on image pairs, factual knowledge object tagging, and language-guided image editing. We believe neuro-symbolic approaches like VISPROG are an exciting avenue to easily and effectively expand the scope of AI systems to serve the long tail of complex tasks that people may wish to perform.
VDebugger: Harnessing Execution Feedback for Debugging Visual Programs
Visual programs are executable code generated by large language models to address visual reasoning problems. They decompose complex questions into multiple reasoning steps and invoke specialized models for each step to solve the problems. However, these programs are prone to logic errors, with our preliminary evaluation showing that 58% of the total errors are caused by program logic errors. Debugging complex visual programs remains a major bottleneck for visual reasoning. To address this, we introduce VDebugger, a novel critic-refiner framework trained to localize and debug visual programs by tracking execution step by step. VDebugger identifies and corrects program errors leveraging detailed execution feedback, improving interpretability and accuracy. The training data is generated through an automated pipeline that injects errors into correct visual programs using a novel mask-best decoding technique. Evaluations on six datasets demonstrate VDebugger's effectiveness, showing performance improvements of up to 3.2% in downstream task accuracy. Further studies show VDebugger's ability to generalize to unseen tasks, bringing a notable improvement of 2.3% on the unseen COVR task. Code, data and models are made publicly available at https://github.com/shirley-wu/vdebugger/
ORES: Open-vocabulary Responsible Visual Synthesis
Avoiding synthesizing specific visual concepts is an essential challenge in responsible visual synthesis. However, the visual concept that needs to be avoided for responsible visual synthesis tends to be diverse, depending on the region, context, and usage scenarios. In this work, we formalize a new task, Open-vocabulary Responsible Visual Synthesis (ORES), where the synthesis model is able to avoid forbidden visual concepts while allowing users to input any desired content. To address this problem, we present a Two-stage Intervention (TIN) framework. By introducing 1) rewriting with learnable instruction through a large-scale language model (LLM) and 2) synthesizing with prompt intervention on a diffusion synthesis model, it can effectively synthesize images avoiding any concepts but following the user's query as much as possible. To evaluate on ORES, we provide a publicly available dataset, baseline models, and benchmark. Experimental results demonstrate the effectiveness of our method in reducing risks of image generation. Our work highlights the potential of LLMs in responsible visual synthesis. Our code and dataset is public available.
Visual Program Distillation: Distilling Tools and Programmatic Reasoning into Vision-Language Models
Solving complex visual tasks such as "Who invented the musical instrument on the right?" involves a composition of skills: understanding space, recognizing instruments, and also retrieving prior knowledge. Recent work shows promise by decomposing such tasks using a large language model (LLM) into an executable program that invokes specialized vision models. However, generated programs are error-prone: they omit necessary steps, include spurious ones, and are unable to recover when the specialized models give incorrect outputs. Moreover, they require loading multiple models, incurring high latency and computation costs. We propose Visual Program Distillation (VPD), an instruction tuning framework that produces a vision-language model (VLM) capable of solving complex visual tasks with a single forward pass. VPD distills the reasoning ability of LLMs by using them to sample multiple candidate programs, which are then executed and verified to identify a correct one. It translates each correct program into a language description of the reasoning steps, which are then distilled into a VLM. Extensive experiments show that VPD improves the VLM's ability to count, understand spatial relations, and reason compositionally. Our VPD-trained PaLI-X outperforms all prior VLMs, achieving state-of-the-art performance across complex vision tasks, including MMBench, OK-VQA, A-OKVQA, TallyQA, POPE, and Hateful Memes. An evaluation with human annotators also confirms that VPD improves model response factuality and consistency. Finally, experiments on content moderation demonstrate that VPD is also helpful for adaptation to real-world applications with limited data.
Advancing vision-language models in front-end development via data synthesis
Modern front-end (FE) development, especially when leveraging the unique features of frameworks like React and Vue, presents distinctive challenges. These include managing modular architectures, ensuring synchronization between data and visual outputs for declarative rendering, and adapting reusable components to various scenarios. Such complexities make it particularly difficult for state-of-the-art large vision-language models (VLMs) to generate accurate and functional code directly from design images. To address these challenges, we propose a reflective agentic workflow that synthesizes high-quality image-text data to capture the diverse characteristics of FE development. This workflow automates the extraction of self-containedA \textbf{self-contained code snippet is one that encapsulates all necessary logic, styling, and dependencies, ensuring it functions independently without requiring external imports or context.} code snippets from real-world projects, renders the corresponding visual outputs, and generates detailed descriptions that link design elements to functional code. To further expand the scope and utility of the synthesis, we introduce three data synthesis strategies: Evolution-based synthesis, which enables scalable and diverse dataset expansion; Waterfall-Model-based synthesis, which generates logically coherent code derived from system requirements; and Additive Development synthesis, which iteratively increases the complexity of human-authored components. We build a large vision-language model, Flame, trained on the synthesized datasets and demonstrate its effectiveness in generating React code via the pass@k metric. Our results suggest that a code VLM trained to interpret images before code generation may achieve better performance.
From Perception to Programs: Regularize, Overparameterize, and Amortize
Toward combining inductive reasoning with perception abilities, we develop techniques for neurosymbolic program synthesis where perceptual input is first parsed by neural nets into a low-dimensional interpretable representation, which is then processed by a synthesized program. We explore several techniques for relaxing the problem and jointly learning all modules end-to-end with gradient descent: multitask learning; amortized inference; overparameterization; and a differentiable strategy for penalizing lengthy programs. Collectedly this toolbox improves the stability of gradient-guided program search, and suggests ways of learning both how to perceive input as discrete abstractions, and how to symbolically process those abstractions as programs.
VLMaterial: Procedural Material Generation with Large Vision-Language Models
Procedural materials, represented as functional node graphs, are ubiquitous in computer graphics for photorealistic material appearance design. They allow users to perform intuitive and precise editing to achieve desired visual appearances. However, creating a procedural material given an input image requires professional knowledge and significant effort. In this work, we leverage the ability to convert procedural materials into standard Python programs and fine-tune a large pre-trained vision-language model (VLM) to generate such programs from input images. To enable effective fine-tuning, we also contribute an open-source procedural material dataset and propose to perform program-level augmentation by prompting another pre-trained large language model (LLM). Through extensive evaluation, we show that our method outperforms previous methods on both synthetic and real-world examples.
DreamStruct: Understanding Slides and User Interfaces via Synthetic Data Generation
Enabling machines to understand structured visuals like slides and user interfaces is essential for making them accessible to people with disabilities. However, achieving such understanding computationally has required manual data collection and annotation, which is time-consuming and labor-intensive. To overcome this challenge, we present a method to generate synthetic, structured visuals with target labels using code generation. Our method allows people to create datasets with built-in labels and train models with a small number of human-annotated examples. We demonstrate performance improvements in three tasks for understanding slides and UIs: recognizing visual elements, describing visual content, and classifying visual content types.
ScreenCoder: Advancing Visual-to-Code Generation for Front-End Automation via Modular Multimodal Agents
Automating the transformation of user interface (UI) designs into front-end code holds significant promise for accelerating software development and democratizing design workflows. While recent large language models (LLMs) have demonstrated progress in text-to-code generation, many existing approaches rely solely on natural language prompts, limiting their effectiveness in capturing spatial layout and visual design intent. In contrast, UI development in practice is inherently multimodal, often starting from visual sketches or mockups. To address this gap, we introduce a modular multi-agent framework that performs UI-to-code generation in three interpretable stages: grounding, planning, and generation. The grounding agent uses a vision-language model to detect and label UI components, the planning agent constructs a hierarchical layout using front-end engineering priors, and the generation agent produces HTML/CSS code via adaptive prompt-based synthesis. This design improves robustness, interpretability, and fidelity over end-to-end black-box methods. Furthermore, we extend the framework into a scalable data engine that automatically produces large-scale image-code pairs. Using these synthetic examples, we fine-tune and reinforce an open-source VLM, yielding notable gains in UI understanding and code quality. Extensive experiments demonstrate that our approach achieves state-of-the-art performance in layout accuracy, structural coherence, and code correctness. Our code is made publicly available at https://github.com/leigest519/ScreenCoder.
Image Translation as Diffusion Visual Programmers
We introduce the novel Diffusion Visual Programmer (DVP), a neuro-symbolic image translation framework. Our proposed DVP seamlessly embeds a condition-flexible diffusion model within the GPT architecture, orchestrating a coherent sequence of visual programs (i.e., computer vision models) for various pro-symbolic steps, which span RoI identification, style transfer, and position manipulation, facilitating transparent and controllable image translation processes. Extensive experiments demonstrate DVP's remarkable performance, surpassing concurrent arts. This success can be attributed to several key features of DVP: First, DVP achieves condition-flexible translation via instance normalization, enabling the model to eliminate sensitivity caused by the manual guidance and optimally focus on textual descriptions for high-quality content generation. Second, the framework enhances in-context reasoning by deciphering intricate high-dimensional concepts in feature spaces into more accessible low-dimensional symbols (e.g., [Prompt], [RoI object]), allowing for localized, context-free editing while maintaining overall coherence. Last but not least, DVP improves systemic controllability and explainability by offering explicit symbolic representations at each programming stage, empowering users to intuitively interpret and modify results. Our research marks a substantial step towards harmonizing artificial image translation processes with cognitive intelligence, promising broader applications.
BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration
Program synthesis is challenging largely because of the difficulty of search in a large space of programs. Human programmers routinely tackle the task of writing complex programs by writing sub-programs and then analyzing their intermediate results to compose them in appropriate ways. Motivated by this intuition, we present a new synthesis approach that leverages learning to guide a bottom-up search over programs. In particular, we train a model to prioritize compositions of intermediate values during search conditioned on a given set of input-output examples. This is a powerful combination because of several emergent properties. First, in bottom-up search, intermediate programs can be executed, providing semantic information to the neural network. Second, given the concrete values from those executions, we can exploit rich features based on recent work on property signatures. Finally, bottom-up search allows the system substantial flexibility in what order to generate the solution, allowing the synthesizer to build up a program from multiple smaller sub-programs. Overall, our empirical evaluation finds that the combination of learning and bottom-up search is remarkably effective, even with simple supervised learning approaches. We demonstrate the effectiveness of our technique on two datasets, one from the SyGuS competition and one of our own creation.
Program Synthesis via Test-Time Transduction
We introduce transductive program synthesis, a new formulation of the program synthesis task that explicitly leverages test inputs during synthesis. While prior approaches to program synthesis--whether based on natural language descriptions or input-output examples--typically aim to generalize from training examples, they often struggle with robustness, especially in real-world settings where training examples are limited and test inputs involve various edge cases. To address this, we propose a novel framework that improves robustness by treating synthesis as an active learning over a finite hypothesis class defined by programs' outputs. We use an LLM to predict outputs for selected test inputs and eliminate inconsistent hypotheses, where the inputs are chosen via a greedy maximin algorithm to minimize the number of LLM queries required. We evaluate our approach on four benchmarks: Playgol, MBPP+, 1D-ARC, and programmatic world modeling on MiniGrid. We demonstrate that our method significantly improves program synthesis in both accuracy and efficiency. We release our code at https://github.com/klee972/SYNTRA.
Can Large Language Models Understand Symbolic Graphics Programs?
Assessing the capabilities of large language models (LLMs) is often challenging, in part, because it is hard to find tasks to which they have not been exposed during training. We take one step to address this challenge by turning to a new task: focusing on symbolic graphics programs, which are a popular representation for graphics content that procedurally generates visual data. LLMs have shown exciting promise towards program synthesis, but do they understand symbolic graphics programs? Unlike conventional programs, symbolic graphics programs can be translated to graphics content. Here, we characterize an LLM's understanding of symbolic programs in terms of their ability to answer questions related to the graphics content. This task is challenging as the questions are difficult to answer from the symbolic programs alone -- yet, they would be easy to answer from the corresponding graphics content as we verify through a human experiment. To understand symbolic programs, LLMs may need to possess the ability to imagine how the corresponding graphics content would look without directly accessing the rendered visual content. We use this task to evaluate LLMs by creating a large benchmark for the semantic understanding of symbolic graphics programs. This benchmark is built via program-graphics correspondence, hence requiring minimal human efforts. We evaluate current LLMs on our benchmark to elucidate a preliminary assessment of their ability to reason about visual scenes from programs. We find that this task distinguishes existing LLMs and models considered good at reasoning perform better. Lastly, we introduce Symbolic Instruction Tuning (SIT) to improve this ability. Specifically, we query GPT4-o with questions and images generated by symbolic programs. Such data are then used to finetune an LLM. We also find that SIT data can improve the general instruction following ability of LLMs.
Inferring and Executing Programs for Visual Reasoning
Existing methods for visual reasoning attempt to directly map inputs to outputs using black-box architectures without explicitly modeling the underlying reasoning processes. As a result, these black-box models often learn to exploit biases in the data rather than learning to perform visual reasoning. Inspired by module networks, this paper proposes a model for visual reasoning that consists of a program generator that constructs an explicit representation of the reasoning process to be performed, and an execution engine that executes the resulting program to produce an answer. Both the program generator and the execution engine are implemented by neural networks, and are trained using a combination of backpropagation and REINFORCE. Using the CLEVR benchmark for visual reasoning, we show that our model significantly outperforms strong baselines and generalizes better in a variety of settings.
Multilingual Multimodal Software Developer for Code Generation
The rapid advancement of Large Language Models (LLMs) has significantly improved code generation, yet most models remain text-only, neglecting crucial visual aids like diagrams and flowcharts used in real-world software development. To bridge this gap, we introduce MM-Coder, a Multilingual Multimodal software developer. MM-Coder integrates visual design inputs-Unified Modeling Language (UML) diagrams and flowcharts (termed Visual Workflow)-with textual instructions to enhance code generation accuracy and architectural alignment. To enable this, we developed MMc-Instruct, a diverse multimodal instruction-tuning dataset including visual-workflow-based code generation, allowing MM-Coder to synthesize textual and graphical information like human developers, distinct from prior work on narrow tasks. Furthermore, we introduce MMEval, a new benchmark for evaluating multimodal code generation, addressing existing text-only limitations. Our evaluations using MMEval highlight significant remaining challenges for models in precise visual information capture, instruction following, and advanced programming knowledge. Our work aims to revolutionize industrial programming by enabling LLMs to interpret and implement complex specifications conveyed through both text and visual designs.
CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis
Program synthesis strives to generate a computer program as a solution to a given problem specification, expressed with input-output examples or natural language descriptions. The prevalence of large language models advances the state-of-the-art for program synthesis, though limited training resources and data impede open access to such models. To democratize this, we train and release a family of large language models up to 16.1B parameters, called CODEGEN, on natural language and programming language data, and open source the training library JAXFORMER. We show the utility of the trained model by demonstrating that it is competitive with the previous state-of-the-art on zero-shot Python code generation on HumanEval. We further investigate the multi-step paradigm for program synthesis, where a single program is factorized into multiple prompts specifying subproblems. To this end, we construct an open benchmark, Multi-Turn Programming Benchmark (MTPB), consisting of 115 diverse problem sets that are factorized into multi-turn prompts. Our analysis on MTPB shows that the same intent provided to CODEGEN in multi-turn fashion significantly improves program synthesis over that provided as a single turn. We make the training library JAXFORMER and model checkpoints available as open source contribution: https://github.com/salesforce/CodeGen.
Video Perception Models for 3D Scene Synthesis
Traditionally, 3D scene synthesis requires expert knowledge and significant manual effort. Automating this process could greatly benefit fields such as architectural design, robotics simulation, virtual reality, and gaming. Recent approaches to 3D scene synthesis often rely on the commonsense reasoning of large language models (LLMs) or strong visual priors of modern image generation models. However, current LLMs demonstrate limited 3D spatial reasoning ability, which restricts their ability to generate realistic and coherent 3D scenes. Meanwhile, image generation-based methods often suffer from constraints in viewpoint selection and multi-view inconsistencies. In this work, we present Video Perception models for 3D Scene synthesis (VIPScene), a novel framework that exploits the encoded commonsense knowledge of the 3D physical world in video generation models to ensure coherent scene layouts and consistent object placements across views. VIPScene accepts both text and image prompts and seamlessly integrates video generation, feedforward 3D reconstruction, and open-vocabulary perception models to semantically and geometrically analyze each object in a scene. This enables flexible scene synthesis with high realism and structural consistency. For more precise analysis, we further introduce First-Person View Score (FPVScore) for coherence and plausibility evaluation, utilizing continuous first-person perspective to capitalize on the reasoning ability of multimodal large language models. Extensive experiments show that VIPScene significantly outperforms existing methods and generalizes well across diverse scenarios. The code will be released.
Procedural Image Programs for Representation Learning
Learning image representations using synthetic data allows training neural networks without some of the concerns associated with real images, such as privacy and bias. Existing work focuses on a handful of curated generative processes which require expert knowledge to design, making it hard to scale up. To overcome this, we propose training with a large dataset of twenty-one thousand programs, each one generating a diverse set of synthetic images. These programs are short code snippets, which are easy to modify and fast to execute using OpenGL. The proposed dataset can be used for both supervised and unsupervised representation learning, and reduces the gap between pre-training with real and procedurally generated images by 38%.
From the Least to the Most: Building a Plug-and-Play Visual Reasoner via Data Synthesis
We explore multi-step reasoning in vision-language models (VLMs). The problem is challenging, as reasoning data consisting of multiple steps of visual and language processing are barely available. To overcome the challenge, we first introduce a least-to-most visual reasoning paradigm, which interleaves steps of decomposing a question into sub-questions and invoking external tools for resolving sub-questions. Based on the paradigm, we further propose a novel data synthesis approach that can automatically create questions and multi-step reasoning paths for an image in a bottom-up manner. Our approach divides the complex synthesis task into a few simple sub-tasks, and (almost entirely) relies on open-sourced models to accomplish the sub-tasks. Therefore, the entire synthesis process is reproducible and cost-efficient, and the synthesized data is quality guaranteed. With the approach, we construct 50k visual reasoning examples. Then, we develop a visual reasoner through supervised fine-tuning, which is capable of generally enhancing the reasoning abilities of a wide range of existing VLMs in a plug-and-play fashion. Extensive experiments indicate that the visual reasoner can consistently and significantly improve four VLMs on four VQA benchmarks. Our code and dataset are available at https://github.com/steven-ccq/VisualReasoner.
Searching Latent Program Spaces
Program synthesis methods aim to automatically generate programs restricted to a language that can explain a given specification of input-output pairs. While purely symbolic approaches suffer from a combinatorial search space, recent methods leverage neural networks to learn distributions over program structures to narrow this search space significantly, enabling more efficient search. However, for challenging problems, it remains difficult to train models to perform program synthesis in one shot, making test-time search essential. Most neural methods lack structured search mechanisms during inference, relying instead on stochastic sampling or gradient updates, which can be inefficient. In this work, we propose the Latent Program Network (LPN), a general algorithm for program induction that learns a distribution over latent programs in a continuous space, enabling efficient search and test-time adaptation. We explore how to train these networks to optimize for test-time computation and demonstrate the use of gradient-based search both during training and at test time. We evaluate LPN on ARC-AGI, a program synthesis benchmark that evaluates performance by generalizing programs to new inputs rather than explaining the underlying specification. We show that LPN can generalize beyond its training distribution and adapt to unseen tasks by utilizing test-time computation, outperforming algorithms without test-time adaptation mechanisms.
Vision-Driven Prompt Optimization for Large Language Models in Multimodal Generative Tasks
Vision generation remains a challenging frontier in artificial intelligence, requiring seamless integration of visual understanding and generative capabilities. In this paper, we propose a novel framework, Vision-Driven Prompt Optimization (VDPO), that leverages Large Language Models (LLMs) to dynamically generate textual prompts from visual inputs, guiding high-fidelity image synthesis. VDPO combines a visual embedding prompt tuner, a textual instruction generator, and a vision generation module to achieve state-of-the-art performance in diverse vision generation tasks. Extensive experiments on benchmarks such as COCO and Sketchy demonstrate that VDPO consistently outperforms existing methods, achieving significant improvements in FID, LPIPS, and BLEU/CIDEr scores. Additional analyses reveal the scalability, robustness, and generalization capabilities of VDPO, making it a versatile solution for in-domain and out-of-domain tasks. Human evaluations further validate the practical superiority of VDPO in generating visually appealing and semantically coherent outputs.
StarFlow: Generating Structured Workflow Outputs From Sketch Images
Workflows are a fundamental component of automation in enterprise platforms, enabling the orchestration of tasks, data processing, and system integrations. Despite being widely used, building workflows can be complex, often requiring manual configuration through low-code platforms or visual programming tools. To simplify this process, we explore the use of generative foundation models, particularly vision-language models (VLMs), to automatically generate structured workflows from visual inputs. Translating hand-drawn sketches or computer-generated diagrams into executable workflows is challenging due to the ambiguity of free-form drawings, variations in diagram styles, and the difficulty of inferring execution logic from visual elements. To address this, we introduce StarFlow, a framework for generating structured workflow outputs from sketches using vision-language models. We curate a diverse dataset of workflow diagrams -- including synthetic, manually annotated, and real-world samples -- to enable robust training and evaluation. We finetune and benchmark multiple vision-language models, conducting a series of ablation studies to analyze the strengths and limitations of our approach. Our results show that finetuning significantly enhances structured workflow generation, outperforming large vision-language models on this task.
Adaptive Fast-and-Slow Visual Program Reasoning for Long-Form VideoQA
Large language models (LLMs) have shown promise in generating program workflows for visual tasks. However, previous approaches often rely on closed-source models, lack systematic reasoning, and struggle with long-form video question answering (videoQA). To address these challenges, we introduce the FS-VisPR framework, an adaptive visual program reasoning approach that balances fast reasoning for simple queries with slow reasoning for difficult ones. First, we design efficient visual modules (e.g., key clip retrieval and subtitle retrieval) to support long-form video tasks. Then, we construct a diverse and high-quality fast-slow reasoning dataset with a strong LLM to align open-source language models' ability to generate visual program workflows as FS-LLM. Next, we design a fast-slow reasoning framework with FS-LLM: Simple queries are directly solved by VideoLLMs, while difficult ones invoke visual program reasoning, motivated by human-like reasoning processes. During this process, low-confidence fast-thinking answers will trigger a second-stage slow-reasoning process, and a fallback mechanism to fast reasoning is activated if the program execution fails. Moreover, we improve visual programs through parameter search during both training and inference. By adjusting the parameters of the visual modules within the program, multiple variants are generated: during training, programs that yield correct answers are selected, while during inference, the program with the highest confidence result is applied. Experiments show that FS-VisPR improves both efficiency and reliability in visual program workflows. It achieves 50.4% accuracy on LVBench, surpassing GPT-4o, matching the performance of Qwen2.5VL-72B on VideoMME.
Exploring Visual Prompts for Adapting Large-Scale Models
We investigate the efficacy of visual prompting to adapt large-scale models in vision. Following the recent approach from prompt tuning and adversarial reprogramming, we learn a single image perturbation such that a frozen model prompted with this perturbation performs a new task. Through comprehensive experiments, we demonstrate that visual prompting is particularly effective for CLIP and robust to distribution shift, achieving performance competitive with standard linear probes. We further analyze properties of the downstream dataset, prompt design, and output transformation in regard to adaptation performance. The surprising effectiveness of visual prompting provides a new perspective on adapting pre-trained models in vision. Code is available at http://hjbahng.github.io/visual_prompting .
TikZero: Zero-Shot Text-Guided Graphics Program Synthesis
With the rise of generative AI, synthesizing figures from text captions becomes a compelling application. However, achieving high geometric precision and editability requires representing figures as graphics programs in languages like TikZ, and aligned training data (i.e., graphics programs with captions) remains scarce. Meanwhile, large amounts of unaligned graphics programs and captioned raster images are more readily available. We reconcile these disparate data sources by presenting TikZero, which decouples graphics program generation from text understanding by using image representations as an intermediary bridge. It enables independent training on graphics programs and captioned images and allows for zero-shot text-guided graphics program synthesis during inference. We show that our method substantially outperforms baselines that can only operate with caption-aligned graphics programs. Furthermore, when leveraging caption-aligned graphics programs as a complementary training signal, TikZero matches or exceeds the performance of much larger models, including commercial systems like GPT-4o. Our code, datasets, and select models are publicly available.
Open-Universe Indoor Scene Generation using LLM Program Synthesis and Uncurated Object Databases
We present a system for generating indoor scenes in response to text prompts. The prompts are not limited to a fixed vocabulary of scene descriptions, and the objects in generated scenes are not restricted to a fixed set of object categories -- we call this setting indoor scene generation. Unlike most prior work on indoor scene generation, our system does not require a large training dataset of existing 3D scenes. Instead, it leverages the world knowledge encoded in pre-trained large language models (LLMs) to synthesize programs in a domain-specific layout language that describe objects and spatial relations between them. Executing such a program produces a specification of a constraint satisfaction problem, which the system solves using a gradient-based optimization scheme to produce object positions and orientations. To produce object geometry, the system retrieves 3D meshes from a database. Unlike prior work which uses databases of category-annotated, mutually-aligned meshes, we develop a pipeline using vision-language models (VLMs) to retrieve meshes from massive databases of un-annotated, inconsistently-aligned meshes. Experimental evaluations show that our system outperforms generative models trained on 3D data for traditional, closed-universe scene generation tasks; it also outperforms a recent LLM-based layout generation method on open-universe scene generation.
V-GameGym: Visual Game Generation for Code Large Language Models
Code large language models have demonstrated remarkable capabilities in programming tasks, yet current benchmarks primarily focus on single modality rather than visual game development. Most existing code-related benchmarks evaluate syntax correctness and execution accuracy, overlooking critical game-specific metrics such as playability, visual aesthetics, and user engagement that are essential for real-world deployment. To address the gap between current LLM capabilities in algorithmic problem-solving and competitive programming versus the comprehensive requirements of practical game development, we present V-GameGym, a comprehensive benchmark comprising 2,219 high-quality samples across 100 thematic clusters derived from real-world repositories, adopting a novel clustering-based curation methodology to ensure both diversity and structural completeness. Further, we introduce a multimodal evaluation framework with an automated LLM-driven pipeline for visual code synthesis using complete UI sandbox environments. Our extensive analysis reveals that V-GameGym effectively bridges the gap between code generation accuracy and practical game development workflows, providing quantifiable quality metrics for visual programming and interactive element generation.
Outline, Then Details: Syntactically Guided Coarse-To-Fine Code Generation
For a complicated algorithm, its implementation by a human programmer usually starts with outlining a rough control flow followed by iterative enrichments, eventually yielding carefully generated syntactic structures and variables in a hierarchy. However, state-of-the-art large language models generate codes in a single pass, without intermediate warm-ups to reflect the structured thought process of "outline-then-detail". Inspired by the recent success of chain-of-thought prompting, we propose ChainCoder, a program synthesis language model that generates Python code progressively, i.e. from coarse to fine in multiple passes. We first decompose source code into layout frame components and accessory components via abstract syntax tree parsing to construct a hierarchical representation. We then reform our prediction target into a multi-pass objective, each pass generates a subsequence, which is concatenated in the hierarchy. Finally, a tailored transformer architecture is leveraged to jointly encode the natural language descriptions and syntactically aligned I/O data samples. Extensive evaluations show that ChainCoder outperforms state-of-the-arts, demonstrating that our progressive generation eases the reasoning procedure and guides the language model to generate higher-quality solutions. Our codes are available at: https://github.com/VITA-Group/ChainCoder.
Fact :Teaching MLLMs with Faithful, Concise and Transferable Rationales
The remarkable performance of Multimodal Large Language Models (MLLMs) has unequivocally demonstrated their proficient understanding capabilities in handling a wide array of visual tasks. Nevertheless, the opaque nature of their black-box reasoning processes persists as an enigma, rendering them uninterpretable and struggling with hallucination. Their ability to execute intricate compositional reasoning tasks is also constrained, culminating in a stagnation of learning progression for these models. In this work, we introduce Fact, a novel paradigm designed to generate multimodal rationales that are faithful, concise, and transferable for teaching MLLMs. This paradigm utilizes verifiable visual programming to generate executable code guaranteeing faithfulness and precision. Subsequently, through a series of operations including pruning, merging, and bridging, the rationale enhances its conciseness. Furthermore, we filter rationales that can be transferred to end-to-end paradigms from programming paradigms to guarantee transferability. Empirical evidence from experiments demonstrates the superiority of our method across models of varying parameter sizes, significantly enhancing their compositional reasoning and generalization ability. Our approach also reduces hallucinations owing to its high correlation between images and text.
3D-PreMise: Can Large Language Models Generate 3D Shapes with Sharp Features and Parametric Control?
Recent advancements in implicit 3D representations and generative models have markedly propelled the field of 3D object generation forward. However, it remains a significant challenge to accurately model geometries with defined sharp features under parametric controls, which is crucial in fields like industrial design and manufacturing. To bridge this gap, we introduce a framework that employs Large Language Models (LLMs) to generate text-driven 3D shapes, manipulating 3D software via program synthesis. We present 3D-PreMise, a dataset specifically tailored for 3D parametric modeling of industrial shapes, designed to explore state-of-the-art LLMs within our proposed pipeline. Our work reveals effective generation strategies and delves into the self-correction capabilities of LLMs using a visual interface. Our work highlights both the potential and limitations of LLMs in 3D parametric modeling for industrial applications.
ExeDec: Execution Decomposition for Compositional Generalization in Neural Program Synthesis
When writing programs, people have the ability to tackle a new complex task by decomposing it into smaller and more familiar subtasks. While it is difficult to measure whether neural program synthesis methods have similar capabilities, we can measure whether they compositionally generalize, that is, whether a model that has been trained on the simpler subtasks is subsequently able to solve more complex tasks. In this paper, we characterize several different forms of compositional generalization that are desirable in program synthesis, forming a meta-benchmark which we use to create generalization tasks for two popular datasets, RobustFill and DeepCoder. We then propose ExeDec, a novel decomposition-based synthesis strategy that predicts execution subgoals to solve problems step-by-step informed by program execution at each step. ExeDec has better synthesis performance and greatly improved compositional generalization ability compared to baselines.
ProVision: Programmatically Scaling Vision-centric Instruction Data for Multimodal Language Models
With the rise of multimodal applications, instruction data has become critical for training multimodal language models capable of understanding complex image-based queries. Existing practices rely on powerful but costly large language models (LLMs) or multimodal language models (MLMs) to produce instruction data. These are often prone to hallucinations, licensing issues and the generation process is often hard to scale and interpret. In this work, we present a programmatic approach that employs scene graphs as symbolic representations of images and human-written programs to systematically synthesize vision-centric instruction data. Our approach ensures the interpretability and controllability of the data generation process and scales efficiently while maintaining factual accuracy. By implementing a suite of 24 single-image, 14 multi-image instruction generators, and a scene graph generation pipeline, we build a scalable, cost-effective system: ProVision which produces diverse question-answer pairs concerning objects, attributes, relations, depth, etc., for any given image. Applied to Visual Genome and DataComp datasets, we generate over 10 million instruction data points, ProVision-10M, and leverage them in both pretraining and instruction tuning stages of MLMs. When adopted in the instruction tuning stage, our single-image instruction data yields up to a 7% improvement on the 2D split and 8% on the 3D split of CVBench, along with a 3% increase in performance on QBench2, RealWorldQA, and MMMU. Our multi-image instruction data leads to an 8% improvement on Mantis-Eval. Incorporation of our data in both pre-training and fine-tuning stages of xGen-MM-4B leads to an averaged improvement of 1.6% across 11 benchmarks.
InstructLayout: Instruction-Driven 2D and 3D Layout Synthesis with Semantic Graph Prior
Comprehending natural language instructions is a charming property for both 2D and 3D layout synthesis systems. Existing methods implicitly model object joint distributions and express object relations, hindering generation's controllability. We introduce InstructLayout, a novel generative framework that integrates a semantic graph prior and a layout decoder to improve controllability and fidelity for 2D and 3D layout synthesis. The proposed semantic graph prior learns layout appearances and object distributions simultaneously, demonstrating versatility across various downstream tasks in a zero-shot manner. To facilitate the benchmarking for text-driven 2D and 3D scene synthesis, we respectively curate two high-quality datasets of layout-instruction pairs from public Internet resources with large language and multimodal models. Extensive experimental results reveal that the proposed method outperforms existing state-of-the-art approaches by a large margin in both 2D and 3D layout synthesis tasks. Thorough ablation studies confirm the efficacy of crucial design components.
VisorGPT: Learning Visual Prior via Generative Pre-Training
Various stuff and things in visual data possess specific traits, which can be learned by deep neural networks and are implicitly represented as the visual prior, e.g., object location and shape, in the model. Such prior potentially impacts many vision tasks. For example, in conditional image synthesis, spatial conditions failing to adhere to the prior can result in visually inaccurate synthetic results. This work aims to explicitly learn the visual prior and enable the customization of sampling. Inspired by advances in language modeling, we propose to learn Visual prior via Generative Pre-Training, dubbed VisorGPT. By discretizing visual locations of objects, e.g., bounding boxes, human pose, and instance masks, into sequences, \our~can model visual prior through likelihood maximization. Besides, prompt engineering is investigated to unify various visual locations and enable customized sampling of sequential outputs from the learned prior. Experimental results demonstrate that \our~can effectively model the visual prior, which can be employed for many vision tasks, such as customizing accurate human pose for conditional image synthesis models like ControlNet. Code will be released at https://github.com/Sierkinhane/VisorGPT.
CADTalk: An Algorithm and Benchmark for Semantic Commenting of CAD Programs
CAD programs are a popular way to compactly encode shapes as a sequence of operations that are easy to parametrically modify. However, without sufficient semantic comments and structure, such programs can be challenging to understand, let alone modify. We introduce the problem of semantic commenting CAD programs, wherein the goal is to segment the input program into code blocks corresponding to semantically meaningful shape parts and assign a semantic label to each block. We solve the problem by combining program parsing with visual-semantic analysis afforded by recent advances in foundational language and vision models. Specifically, by executing the input programs, we create shapes, which we use to generate conditional photorealistic images to make use of semantic annotators for such images. We then distill the information across the images and link back to the original programs to semantically comment on them. Additionally, we collected and annotated a benchmark dataset, CADTalk, consisting of 5,288 machine-made programs and 45 human-made programs with ground truth semantic comments. We extensively evaluated our approach, compared it to a GPT-based baseline, and an open-set shape segmentation baseline, and reported an 83.24% accuracy on the new CADTalk dataset. Code and data: https://enigma-li.github.io/CADTalk/.
Prompt-to-Prompt Image Editing with Cross Attention Control
Recent large-scale text-driven synthesis models have attracted much attention thanks to their remarkable capabilities of generating highly diverse images that follow given text prompts. Such text-based synthesis methods are particularly appealing to humans who are used to verbally describe their intent. Therefore, it is only natural to extend the text-driven image synthesis to text-driven image editing. Editing is challenging for these generative models, since an innate property of an editing technique is to preserve most of the original image, while in the text-based models, even a small modification of the text prompt often leads to a completely different outcome. State-of-the-art methods mitigate this by requiring the users to provide a spatial mask to localize the edit, hence, ignoring the original structure and content within the masked region. In this paper, we pursue an intuitive prompt-to-prompt editing framework, where the edits are controlled by text only. To this end, we analyze a text-conditioned model in depth and observe that the cross-attention layers are the key to controlling the relation between the spatial layout of the image to each word in the prompt. With this observation, we present several applications which monitor the image synthesis by editing the textual prompt only. This includes localized editing by replacing a word, global editing by adding a specification, and even delicately controlling the extent to which a word is reflected in the image. We present our results over diverse images and prompts, demonstrating high-quality synthesis and fidelity to the edited prompts.
End-to-End Optimization of Scene Layout
We propose an end-to-end variational generative model for scene layout synthesis conditioned on scene graphs. Unlike unconditional scene layout generation, we use scene graphs as an abstract but general representation to guide the synthesis of diverse scene layouts that satisfy relationships included in the scene graph. This gives rise to more flexible control over the synthesis process, allowing various forms of inputs such as scene layouts extracted from sentences or inferred from a single color image. Using our conditional layout synthesizer, we can generate various layouts that share the same structure of the input example. In addition to this conditional generation design, we also integrate a differentiable rendering module that enables layout refinement using only 2D projections of the scene. Given a depth and a semantics map, the differentiable rendering module enables optimizing over the synthesized layout to fit the given input in an analysis-by-synthesis fashion. Experiments suggest that our model achieves higher accuracy and diversity in conditional scene synthesis and allows exemplar-based scene generation from various input forms.
BlenderAlchemy: Editing 3D Graphics with Vision-Language Models
Graphics design is important for various applications, including movie production and game design. To create a high-quality scene, designers usually need to spend hours in software like Blender, in which they might need to interleave and repeat operations, such as connecting material nodes, hundreds of times. Moreover, slightly different design goals may require completely different sequences, making automation difficult. In this paper, we propose a system that leverages Vision-Language Models (VLMs), like GPT-4V, to intelligently search the design action space to arrive at an answer that can satisfy a user's intent. Specifically, we design a vision-based edit generator and state evaluator to work together to find the correct sequence of actions to achieve the goal. Inspired by the role of visual imagination in the human design process, we supplement the visual reasoning capabilities of VLMs with "imagined" reference images from image-generation models, providing visual grounding of abstract language descriptions. In this paper, we provide empirical evidence suggesting our system can produce simple but tedious Blender editing sequences for tasks such as editing procedural materials from text and/or reference images, as well as adjusting lighting configurations for product renderings in complex scenes.
LLM Code Customization with Visual Results: A Benchmark on TikZ
With the rise of AI-based code generation, customizing existing code out of natural language instructions to modify visual results -such as figures or images -has become possible, promising to reduce the need for deep programming expertise. However, even experienced developers can struggle with this task, as it requires identifying relevant code regions (feature location), generating valid code variants, and ensuring the modifications reliably align with user intent. In this paper, we introduce vTikZ, the first benchmark designed to evaluate the ability of Large Language Models (LLMs) to customize code while preserving coherent visual outcomes. Our benchmark consists of carefully curated vTikZ editing scenarios, parameterized ground truths, and a reviewing tool that leverages visual feedback to assess correctness. Empirical evaluation with stateof-the-art LLMs shows that existing solutions struggle to reliably modify code in alignment with visual intent, highlighting a gap in current AI-assisted code editing approaches. We argue that vTikZ opens new research directions for integrating LLMs with visual feedback mechanisms to improve code customization tasks in various domains beyond TikZ, including image processing, art creation, Web design, and 3D modeling.
PartCraft: Crafting Creative Objects by Parts
This paper propels creative control in generative visual AI by allowing users to "select". Departing from traditional text or sketch-based methods, we for the first time allow users to choose visual concepts by parts for their creative endeavors. The outcome is fine-grained generation that precisely captures selected visual concepts, ensuring a holistically faithful and plausible result. To achieve this, we first parse objects into parts through unsupervised feature clustering. Then, we encode parts into text tokens and introduce an entropy-based normalized attention loss that operates on them. This loss design enables our model to learn generic prior topology knowledge about object's part composition, and further generalize to novel part compositions to ensure the generation looks holistically faithful. Lastly, we employ a bottleneck encoder to project the part tokens. This not only enhances fidelity but also accelerates learning, by leveraging shared knowledge and facilitating information exchange among instances. Visual results in the paper and supplementary material showcase the compelling power of PartCraft in crafting highly customized, innovative creations, exemplified by the "charming" and creative birds. Code is released at https://github.com/kamwoh/partcraft.
Retrieval-Augmented Fine-Tuning With Preference Optimization For Visual Program Generation
Visual programming languages (VPLs) allow users to create programs through graphical interfaces, which results in easier accessibility and their widespread usage in various domains. To further enhance this accessibility, recent research has focused on generating VPL code from user instructions using large language models (LLMs). Specifically, by employing prompting-based methods, these studies have shown promising results. Nevertheless, such approaches can be less effective for industrial VPLs such as Ladder Diagram (LD). LD is a pivotal language used in industrial automation processes and involves extensive domain-specific configurations, which are difficult to capture in a single prompt. In this work, we demonstrate that training-based methods outperform prompting-based methods for LD generation accuracy, even with smaller backbone models. Building on these findings, we propose a two-stage training strategy to further enhance VPL generation. First, we employ retrieval-augmented fine-tuning to leverage the repetitive use of subroutines commonly seen in industrial VPLs. Second, we apply direct preference optimization (DPO) to further guide the model toward accurate outputs, using systematically generated preference pairs through graph editing operations. Extensive experiments on real-world LD data demonstrate that our approach improves program-level accuracy by over 10% compared to supervised fine-tuning, which highlights its potential to advance industrial automation.
Evaluating ChatGPT and GPT-4 for Visual Programming
Generative AI and large language models have the potential to drastically improve the landscape of computing education by automatically generating personalized feedback and content. Recent works have studied the capabilities of these models for different programming education scenarios; however, these works considered only text-based programming, in particular, Python programming. Consequently, they leave open the question of how well these models would perform in visual programming domains popularly used for K-8 programming education. The main research question we study is: Do state-of-the-art generative models show advanced capabilities in visual programming on par with their capabilities in text-based Python programming? In our work, we evaluate two models, ChatGPT (based on GPT-3.5) and GPT-4, in visual programming domains for various scenarios and assess performance using expert-based annotations. In particular, we base our evaluation using reference tasks from the domains of Hour of Code: Maze Challenge by Code-dot-org and Karel. Our results show that these models perform poorly and struggle to combine spatial, logical, and programming skills crucial for visual programming. These results also provide exciting directions for future work on developing techniques to improve the performance of generative models in visual programming.
Code2Video: A Code-centric Paradigm for Educational Video Generation
While recent generative models advance pixel-space video synthesis, they remain limited in producing professional educational videos, which demand disciplinary knowledge, precise visual structures, and coherent transitions, limiting their applicability in educational scenarios. Intuitively, such requirements are better addressed through the manipulation of a renderable environment, which can be explicitly controlled via logical commands (e.g., code). In this work, we propose Code2Video, a code-centric agent framework for generating educational videos via executable Python code. The framework comprises three collaborative agents: (i) Planner, which structures lecture content into temporally coherent flows and prepares corresponding visual assets; (ii) Coder, which converts structured instructions into executable Python codes while incorporating scope-guided auto-fix to enhance efficiency; and (iii) Critic, which leverages vision-language models (VLM) with visual anchor prompts to refine spatial layout and ensure clarity. To support systematic evaluation, we build MMMC, a benchmark of professionally produced, discipline-specific educational videos. We evaluate MMMC across diverse dimensions, including VLM-as-a-Judge aesthetic scores, code efficiency, and particularly, TeachQuiz, a novel end-to-end metric that quantifies how well a VLM, after unlearning, can recover knowledge by watching the generated videos. Our results demonstrate the potential of Code2Video as a scalable, interpretable, and controllable approach, achieving 40% improvement over direct code generation and producing videos comparable to human-crafted tutorials. The code and datasets are available at https://github.com/showlab/Code2Video.
VisualSphinx: Large-Scale Synthetic Vision Logic Puzzles for RL
Vision language models (VLMs) are expected to perform effective multimodal reasoning and make logically coherent decisions, which is critical to tasks such as diagram understanding and spatial problem solving. However, current VLM reasoning lacks large-scale and well-structured training datasets. To bridge this gap, we propose VisualSphinx, a first-of-its-kind large-scale synthetic visual logical reasoning training data. To tackle the challenge of image synthesis with grounding answers, we propose a rule-to-image synthesis pipeline, which extracts and expands puzzle rules from seed questions and generates the code of grounding synthesis image synthesis for puzzle sample assembly. Experiments demonstrate that VLM trained using GRPO on VisualSphinx benefit from logical coherence and readability of our dataset and exhibit improved performance on logical reasoning tasks. The enhanced reasoning capabilities developed from VisualSphinx also benefit other reasoning tasks such as algebraic reasoning, arithmetic reasoning and geometry reasoning.
MMCode: Evaluating Multi-Modal Code Large Language Models with Visually Rich Programming Problems
Programming often involves converting detailed and complex specifications into code, a process during which developers typically utilize visual aids to more effectively convey concepts. While recent developments in Large Multimodal Models have demonstrated remarkable abilities in visual reasoning and mathematical tasks, there is little work on investigating whether these models can effectively interpret visual elements for code generation. To this end, we present MMCode, the first multi-modal coding dataset for evaluating algorithmic problem-solving skills in visually rich contexts. MMCode contains 3,548 questions and 6,620 images collected from real-world programming challenges harvested from 10 code competition websites, presenting significant challenges due to the extreme demand for reasoning abilities. Our experiment results show that current state-of-the-art models struggle to solve these problems. The results highlight the lack of powerful vision-code models, and we hope MMCode can serve as an inspiration for future works in this domain. The data and code are publicly available at https://github.com/happylkx/MMCode.
VisPath: Automated Visualization Code Synthesis via Multi-Path Reasoning and Feedback-Driven Optimization
Unprecedented breakthroughs in Large Language Models (LLMs) has amplified its penetration into application of automated visualization code generation. Few-shot prompting and query expansion techniques have notably enhanced data visualization performance, however, still fail to overcome ambiguity and complexity of natural language queries - imposing an inherent burden for manual human intervention. To mitigate such limitations, we propose a holistic framework VisPath : A Multi-Path Reasoning and Feedback-Driven Optimization Framework for Visualization Code Generation, which systematically enhances code quality through structured reasoning and refinement. VisPath is a multi-stage framework, specially designed to handle underspecified queries. To generate a robust final visualization code, it first utilizes initial query to generate diverse reformulated queries via Chain-of-Thought (CoT) prompting, each representing a distinct reasoning path. Refined queries are used to produce candidate visualization scripts, consequently executed to generate multiple images. Comprehensively assessing correctness and quality of outputs, VisPath generates feedback for each image, which are then fed to aggregation module to generate optimal result. Extensive experiments on benchmarks including MatPlotBench and the Qwen-Agent Code Interpreter Benchmark show that VisPath significantly outperforms state-of-the-art (SOTA) methods, increased up to average 17%, offering a more reliable solution for AI-driven visualization code generation.
Learning to Reason via Program Generation, Emulation, and Search
Program synthesis with language models (LMs) has unlocked a large set of reasoning abilities; code-tuned LMs have proven adept at generating programs that solve a wide variety of algorithmic symbolic manipulation tasks (e.g. word concatenation). However, not all reasoning tasks are easily expressible as code, e.g. tasks involving commonsense reasoning, moral decision-making, and sarcasm understanding. Our goal is to extend an LM's program synthesis skills to such tasks and evaluate the results via pseudo-programs, namely Python programs where some leaf function calls are left undefined. To that end, we propose, Code Generation and Emulated EXecution (CoGEX). CoGEX works by (1) training LMs to generate their own pseudo-programs, (2) teaching them to emulate their generated program's execution, including those leaf functions, allowing the LM's knowledge to fill in the execution gaps; and (3) using them to search over many programs to find an optimal one. To adapt the CoGEX model to a new task, we introduce a method for performing program search to find a single program whose pseudo-execution yields optimal performance when applied to all the instances of a given dataset. We show that our approach yields large improvements compared to standard in-context learning approaches on a battery of tasks, both algorithmic and soft reasoning. This result thus demonstrates that code synthesis can be applied to a much broader class of problems than previously considered. Our released dataset, fine-tuned models, and implementation can be found at https://github.com/nweir127/CoGEX.
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
We present a method that achieves state-of-the-art results for synthesizing novel views of complex scenes by optimizing an underlying continuous volumetric scene function using a sparse set of input views. Our algorithm represents a scene using a fully-connected (non-convolutional) deep network, whose input is a single continuous 5D coordinate (spatial location (x,y,z) and viewing direction (theta, phi)) and whose output is the volume density and view-dependent emitted radiance at that spatial location. We synthesize views by querying 5D coordinates along camera rays and use classic volume rendering techniques to project the output colors and densities into an image. Because volume rendering is naturally differentiable, the only input required to optimize our representation is a set of images with known camera poses. We describe how to effectively optimize neural radiance fields to render photorealistic novel views of scenes with complicated geometry and appearance, and demonstrate results that outperform prior work on neural rendering and view synthesis. View synthesis results are best viewed as videos, so we urge readers to view our supplementary video for convincing comparisons.
InCoder: A Generative Model for Code Infilling and Synthesis
Code is seldom written in a single left-to-right pass and is instead repeatedly edited and refined. We introduce InCoder, a unified generative model that can perform program synthesis (via left-to-right generation) as well as editing (via infilling). InCoder is trained to generate code files from a large corpus of permissively licensed code, where regions of code have been randomly masked and moved to the end of each file, allowing code infilling with bidirectional context. Our model is the first generative model that is able to directly perform zero-shot code infilling, which we evaluate on challenging tasks such as type inference, comment generation, and variable re-naming. We find that the ability to condition on bidirectional context substantially improves performance on these tasks, while still performing comparably on standard program synthesis benchmarks in comparison to left-to-right only models pretrained at similar scale. The InCoder models and code are publicly released. https://sites.google.com/view/incoder-code-models
CodeRL: Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning
Program synthesis or code generation aims to generate a program that satisfies a problem specification. Recent approaches using large-scale pretrained language models (LMs) have shown promising results, yet they have some critical limitations. In particular, they often follow a standard supervised fine-tuning procedure to train a code generation model only from the pairs of natural-language problem descriptions and ground-truth programs. Such paradigm largely ignores some important but potentially useful signals in the problem specification such as unit tests, which thus often results in poor performance when solving complex unseen coding tasks. To address the limitations, we propose "CodeRL", a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning (RL). Specifically, during training, we treat the code-generating LM as an actor network, and introduce a critic network that is trained to predict the functional correctness of generated programs and provide dense feedback signals to the actor. During inference, we introduce a new generation procedure with a critical sampling strategy that allows a model to automatically regenerate programs based on feedback from example unit tests and critic scores. For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives, larger model sizes, and better pretraining data. Our method not only achieves new SOTA results on the challenging APPS benchmark, but also shows strong zero-shot transfer capability with new SOTA results on the simpler MBPP benchmark.
Design2Code: How Far Are We From Automating Front-End Engineering?
Generative AI has made rapid advancements in recent years, achieving unprecedented capabilities in multimodal understanding and code generation. This can enable a new paradigm of front-end development, in which multimodal LLMs might directly convert visual designs into code implementations. In this work, we formalize this as a Design2Code task and conduct comprehensive benchmarking. Specifically, we manually curate a benchmark of 484 diverse real-world webpages as test cases and develop a set of automatic evaluation metrics to assess how well current multimodal LLMs can generate the code implementations that directly render into the given reference webpages, given the screenshots as input. We also complement automatic metrics with comprehensive human evaluations. We develop a suite of multimodal prompting methods and show their effectiveness on GPT-4V and Gemini Pro Vision. We further finetune an open-source Design2Code-18B model that successfully matches the performance of Gemini Pro Vision. Both human evaluation and automatic metrics show that GPT-4V performs the best on this task compared to other models. Moreover, annotators think GPT-4V generated webpages can replace the original reference webpages in 49% of cases in terms of visual appearance and content; and perhaps surprisingly, in 64% of cases GPT-4V generated webpages are considered better than the original reference webpages. Our fine-grained break-down metrics indicate that open-source models mostly lag in recalling visual elements from the input webpages and in generating correct layout designs, while aspects like text content and coloring can be drastically improved with proper finetuning.
ViperGPT: Visual Inference via Python Execution for Reasoning
Answering visual queries is a complex task that requires both visual processing and reasoning. End-to-end models, the dominant approach for this task, do not explicitly differentiate between the two, limiting interpretability and generalization. Learning modular programs presents a promising alternative, but has proven challenging due to the difficulty of learning both the programs and modules simultaneously. We introduce ViperGPT, a framework that leverages code-generation models to compose vision-and-language models into subroutines to produce a result for any query. ViperGPT utilizes a provided API to access the available modules, and composes them by generating Python code that is later executed. This simple approach requires no further training, and achieves state-of-the-art results across various complex visual tasks.
Learning Program Representations for Food Images and Cooking Recipes
In this paper, we are interested in modeling a how-to instructional procedure, such as a cooking recipe, with a meaningful and rich high-level representation. Specifically, we propose to represent cooking recipes and food images as cooking programs. Programs provide a structured representation of the task, capturing cooking semantics and sequential relationships of actions in the form of a graph. This allows them to be easily manipulated by users and executed by agents. To this end, we build a model that is trained to learn a joint embedding between recipes and food images via self-supervision and jointly generate a program from this embedding as a sequence. To validate our idea, we crowdsource programs for cooking recipes and show that: (a) projecting the image-recipe embeddings into programs leads to better cross-modal retrieval results; (b) generating programs from images leads to better recognition results compared to predicting raw cooking instructions; and (c) we can generate food images by manipulating programs via optimizing the latent code of a GAN. Code, data, and models are available online.
Visual Programming for Zero-shot Open-Vocabulary 3D Visual Grounding
3D Visual Grounding (3DVG) aims at localizing 3D object based on textual descriptions. Conventional supervised methods for 3DVG often necessitate extensive annotations and a predefined vocabulary, which can be restrictive. To address this issue, we propose a novel visual programming approach for zero-shot open-vocabulary 3DVG, leveraging the capabilities of large language models (LLMs). Our approach begins with a unique dialog-based method, engaging with LLMs to establish a foundational understanding of zero-shot 3DVG. Building on this, we design a visual program that consists of three types of modules, i.e., view-independent, view-dependent, and functional modules. These modules, specifically tailored for 3D scenarios, work collaboratively to perform complex reasoning and inference. Furthermore, we develop an innovative language-object correlation module to extend the scope of existing 3D object detectors into open-vocabulary scenarios. Extensive experiments demonstrate that our zero-shot approach can outperform some supervised baselines, marking a significant stride towards effective 3DVG.
MetaMorph: Multimodal Understanding and Generation via Instruction Tuning
In this work, we propose Visual-Predictive Instruction Tuning (VPiT) - a simple and effective extension to visual instruction tuning that enables a pretrained LLM to quickly morph into an unified autoregressive model capable of generating both text and visual tokens. VPiT teaches an LLM to predict discrete text tokens and continuous visual tokens from any input sequence of image and text data curated in an instruction-following format. Our empirical investigation reveals several intriguing properties of VPiT: (1) visual generation ability emerges as a natural byproduct of improved visual understanding, and can be unlocked efficiently with a small amount of generation data; (2) while we find understanding and generation to be mutually beneficial, understanding data contributes to both capabilities more effectively than generation data. Building upon these findings, we train our MetaMorph model and achieve competitive performance on both visual understanding and generation. In visual generation, MetaMorph can leverage the world knowledge and reasoning abilities gained from LLM pretraining, and overcome common failure modes exhibited by other generation models. Our results suggest that LLMs may have strong "prior" vision capabilities that can be efficiently adapted to both visual understanding and generation with a relatively simple instruction tuning process.
LILO: Learning Interpretable Libraries by Compressing and Documenting Code
While large language models (LLMs) now excel at code generation, a key aspect of software development is the art of refactoring: consolidating code into libraries of reusable and readable programs. In this paper, we introduce LILO, a neurosymbolic framework that iteratively synthesizes, compresses, and documents code to build libraries tailored to particular problem domains. LILO combines LLM-guided program synthesis with recent algorithmic advances in automated refactoring from Stitch: a symbolic compression system that efficiently identifies optimal lambda abstractions across large code corpora. To make these abstractions interpretable, we introduce an auto-documentation (AutoDoc) procedure that infers natural language names and docstrings based on contextual examples of usage. In addition to improving human readability, we find that AutoDoc boosts performance by helping LILO's synthesizer to interpret and deploy learned abstractions. We evaluate LILO on three inductive program synthesis benchmarks for string editing, scene reasoning, and graphics composition. Compared to existing neural and symbolic methods - including the state-of-the-art library learning algorithm DreamCoder - LILO solves more complex tasks and learns richer libraries that are grounded in linguistic knowledge.
Modular Visual Question Answering via Code Generation
We present a framework that formulates visual question answering as modular code generation. In contrast to prior work on modular approaches to VQA, our approach requires no additional training and relies on pre-trained language models (LMs), visual models pre-trained on image-caption pairs, and fifty VQA examples used for in-context learning. The generated Python programs invoke and compose the outputs of the visual models using arithmetic and conditional logic. Our approach improves accuracy on the COVR dataset by at least 3% and on the GQA dataset by roughly 2% compared to the few-shot baseline that does not employ code generation.
VaLID: Variable-Length Input Diffusion for Novel View Synthesis
Novel View Synthesis (NVS), which tries to produce a realistic image at the target view given source view images and their corresponding poses, is a fundamental problem in 3D Vision. As this task is heavily under-constrained, some recent work, like Zero123, tries to solve this problem with generative modeling, specifically using pre-trained diffusion models. Although this strategy generalizes well to new scenes, compared to neural radiance field-based methods, it offers low levels of flexibility. For example, it can only accept a single-view image as input, despite realistic applications often offering multiple input images. This is because the source-view images and corresponding poses are processed separately and injected into the model at different stages. Thus it is not trivial to generalize the model into multi-view source images, once they are available. To solve this issue, we try to process each pose image pair separately and then fuse them as a unified visual representation which will be injected into the model to guide image synthesis at the target-views. However, inconsistency and computation costs increase as the number of input source-view images increases. To solve these issues, the Multi-view Cross Former module is proposed which maps variable-length input data to fix-size output data. A two-stage training strategy is introduced to further improve the efficiency during training time. Qualitative and quantitative evaluation over multiple datasets demonstrates the effectiveness of the proposed method against previous approaches. The code will be released according to the acceptance.
Improved Iterative Refinement for Chart-to-Code Generation via Structured Instruction
Recently, multimodal large language models (MLLMs) have attracted increasing research attention due to their powerful visual understanding capabilities. While they have achieved impressive results on various vision tasks, their performance on chart-to-code generation remains suboptimal. This task requires MLLMs to generate executable code that can reproduce a given chart, demanding not only precise visual understanding but also accurate translation of visual elements into structured code. Directly prompting MLLMs to perform this complex task often yields unsatisfactory results. To address this challenge, we propose {ChartIR}, an iterative refinement method based on structured instruction. First, we distinguish two tasks: visual understanding and code translation. To accomplish the visual understanding component, we design two types of structured instructions: description and difference. The description instruction captures the visual elements of the reference chart, while the difference instruction characterizes the discrepancies between the reference chart and the generated chart. These instructions effectively transform visual features into language representations, thereby facilitating the subsequent code translation process. Second, we decompose the overall chart generation pipeline into two stages: initial code generation and iterative refinement, enabling progressive enhancement of the final output. Experimental results show that, compared to other method, our method achieves superior performance on both the open-source model Qwen2-VL and the closed-source model GPT-4o.
Concept Decomposition for Visual Exploration and Inspiration
A creative idea is often born from transforming, combining, and modifying ideas from existing visual examples capturing various concepts. However, one cannot simply copy the concept as a whole, and inspiration is achieved by examining certain aspects of the concept. Hence, it is often necessary to separate a concept into different aspects to provide new perspectives. In this paper, we propose a method to decompose a visual concept, represented as a set of images, into different visual aspects encoded in a hierarchical tree structure. We utilize large vision-language models and their rich latent space for concept decomposition and generation. Each node in the tree represents a sub-concept using a learned vector embedding injected into the latent space of a pretrained text-to-image model. We use a set of regularizations to guide the optimization of the embedding vectors encoded in the nodes to follow the hierarchical structure of the tree. Our method allows to explore and discover new concepts derived from the original one. The tree provides the possibility of endless visual sampling at each node, allowing the user to explore the hidden sub-concepts of the object of interest. The learned aspects in each node can be combined within and across trees to create new visual ideas, and can be used in natural language sentences to apply such aspects to new designs.
PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM
Layout generation is the keystone in achieving automated graphic design, requiring arranging the position and size of various multi-modal design elements in a visually pleasing and constraint-following manner. Previous approaches are either inefficient for large-scale applications or lack flexibility for varying design requirements. Our research introduces a unified framework for automated graphic layout generation, leveraging the multi-modal large language model (MLLM) to accommodate diverse design tasks. In contrast, our data-driven method employs structured text (JSON format) and visual instruction tuning to generate layouts under specific visual and textual constraints, including user-defined natural language specifications. We conducted extensive experiments and achieved state-of-the-art (SOTA) performance on public multi-modal layout generation benchmarks, demonstrating the effectiveness of our method. Moreover, recognizing existing datasets' limitations in capturing the complexity of real-world graphic designs, we propose two new datasets for much more challenging tasks (user-constrained generation and complicated poster), further validating our model's utility in real-life settings. Marking by its superior accessibility and adaptability, this approach further automates large-scale graphic design tasks. The code and datasets will be publicly available on https://github.com/posterllava/PosterLLaVA.
InstructCV: Instruction-Tuned Text-to-Image Diffusion Models as Vision Generalists
Recent advances in generative diffusion models have enabled text-controlled synthesis of realistic and diverse images with impressive quality. Despite these remarkable advances, the application of text-to-image generative models in computer vision for standard visual recognition tasks remains limited. The current de facto approach for these tasks is to design model architectures and loss functions that are tailored to the task at hand. In this paper, we develop a unified language interface for computer vision tasks that abstracts away task-specific design choices and enables task execution by following natural language instructions. Our approach involves casting multiple computer vision tasks as text-to-image generation problems. Here, the text represents an instruction describing the task, and the resulting image is a visually-encoded task output. To train our model, we pool commonly-used computer vision datasets covering a range of tasks, including segmentation, object detection, depth estimation, and classification. We then use a large language model to paraphrase prompt templates that convey the specific tasks to be conducted on each image, and through this process, we create a multi-modal and multi-task training dataset comprising input and output images along with annotated instructions. Following the InstructPix2Pix architecture, we apply instruction-tuning to a text-to-image diffusion model using our constructed dataset, steering its functionality from a generative model to an instruction-guided multi-task vision learner. Experiments demonstrate that our model, dubbed InstructCV, performs competitively compared to other generalist and task-specific vision models. Moreover, it exhibits compelling generalization capabilities to unseen data, categories, and user instructions.
ArtifactsBench: Bridging the Visual-Interactive Gap in LLM Code Generation Evaluation
The generative capabilities of Large Language Models (LLMs) are rapidly expanding from static code to dynamic, interactive visual artifacts. This progress is bottlenecked by a critical evaluation gap: established benchmarks focus on algorithmic correctness and are blind to the visual fidelity and interactive integrity that define modern user experiences. To bridge this gap, we introduce ArtifactsBench, a new benchmark and paradigm for the automated, multimodal evaluation of visual code generation. Our framework programmatically renders each generated artifact and captures its dynamic behavior through temporal screenshots. This visual evidence, alongside the source code, is then assessed by a Multimodal LLM (MLLM)-as-Judge, which is rigorously guided by a fine-grained, per-task checklist to ensure holistic and reproducible scoring. We construct a new benchmark of 1,825 diverse tasks and evaluate over 30 leading LLMs. Our automated evaluation achieves a striking 94.4% ranking consistency with WebDev Arena, the gold-standard for human preference in web development, and over 90% pairwise agreement with human experts. This establishes ArtifactsBench as the first framework to reliably automate the assessment of human-perceived quality at scale. Our analysis provides a high-resolution map of the current SOTA, revealing that generalist models often outperform domain-specific ones. We open-source ArtifactsBench, including the benchmark, evaluation harness, and baseline results at https://artifactsbenchmark.github.io/, to provide the community with a scalable and accurate tool to accelerate the development of user-centric generative models.
PromptVFX: Text-Driven Fields for Open-World 3D Gaussian Animation
Visual effects (VFX) are key to immersion in modern films, games, and AR/VR. Creating 3D effects requires specialized expertise and training in 3D animation software and can be time consuming. Generative solutions typically rely on computationally intense methods such as diffusion models which can be slow at 4D inference. We reformulate 3D animation as a field prediction task and introduce a text-driven framework that infers a time-varying 4D flow field acting on 3D Gaussians. By leveraging large language models (LLMs) and vision-language models (VLMs) for function generation, our approach interprets arbitrary prompts (e.g., "make the vase glow orange, then explode") and instantly updates color, opacity, and positions of 3D Gaussians in real time. This design avoids overheads such as mesh extraction, manual or physics-based simulations and allows both novice and expert users to animate volumetric scenes with minimal effort on a consumer device even in a web browser. Experimental results show that simple textual instructions suffice to generate compelling time-varying VFX, reducing the manual effort typically required for rigging or advanced modeling. We thus present a fast and accessible pathway to language-driven 3D content creation that can pave the way to democratize VFX further.
SVGDreamer++: Advancing Editability and Diversity in Text-Guided SVG Generation
Recently, text-guided scalable vector graphics (SVG) synthesis has demonstrated significant potential in domains such as iconography and sketching. However, SVGs generated from existing Text-to-SVG methods often lack editability and exhibit deficiencies in visual quality and diversity. In this paper, we propose a novel text-guided vector graphics synthesis method to address these limitations. To enhance the editability of output SVGs, we introduce a Hierarchical Image VEctorization (HIVE) framework that operates at the semantic object level and supervises the optimization of components within the vector object. This approach facilitates the decoupling of vector graphics into distinct objects and component levels. Our proposed HIVE algorithm, informed by image segmentation priors, not only ensures a more precise representation of vector graphics but also enables fine-grained editing capabilities within vector objects. To improve the diversity of output SVGs, we present a Vectorized Particle-based Score Distillation (VPSD) approach. VPSD addresses over-saturation issues in existing methods and enhances sample diversity. A pre-trained reward model is incorporated to re-weight vector particles, improving aesthetic appeal and enabling faster convergence. Additionally, we design a novel adaptive vector primitives control strategy, which allows for the dynamic adjustment of the number of primitives, thereby enhancing the presentation of graphic details. Extensive experiments validate the effectiveness of the proposed method, demonstrating its superiority over baseline methods in terms of editability, visual quality, and diversity. We also show that our new method supports up to six distinct vector styles, capable of generating high-quality vector assets suitable for stylized vector design and poster design. Code and demo will be released at: http://ximinng.github.io/SVGDreamerV2Project/
From 2D CAD Drawings to 3D Parametric Models: A Vision-Language Approach
In this paper, we present CAD2Program, a new method for reconstructing 3D parametric models from 2D CAD drawings. Our proposed method is inspired by recent successes in vision-language models (VLMs), and departs from traditional methods which rely on task-specific data representations and/or algorithms. Specifically, on the input side, we simply treat the 2D CAD drawing as a raster image, regardless of its original format, and encode the image with a standard ViT model. We show that such an encoding scheme achieves competitive performance against existing methods that operate on vector-graphics inputs, while imposing substantially fewer restrictions on the 2D drawings. On the output side, our method auto-regressively predicts a general-purpose language describing 3D parametric models in text form. Compared to other sequence modeling methods for CAD which use domain-specific sequence representations with fixed-size slots, our text-based representation is more flexible, and can be easily extended to arbitrary geometric entities and semantic or functional properties. Experimental results on a large-scale dataset of cabinet models demonstrate the effectiveness of our method.
Visual Programming for Text-to-Image Generation and Evaluation
As large language models have demonstrated impressive performance in many domains, recent works have adopted language models (LMs) as controllers of visual modules for vision-and-language tasks. While existing work focuses on equipping LMs with visual understanding, we propose two novel interpretable/explainable visual programming frameworks for text-to-image (T2I) generation and evaluation. First, we introduce VPGen, an interpretable step-by-step T2I generation framework that decomposes T2I generation into three steps: object/count generation, layout generation, and image generation. We employ an LM to handle the first two steps (object/count generation and layout generation), by finetuning it on text-layout pairs. Our step-by-step T2I generation framework provides stronger spatial control than end-to-end models, the dominant approach for this task. Furthermore, we leverage the world knowledge of pretrained LMs, overcoming the limitation of previous layout-guided T2I works that can only handle predefined object classes. We demonstrate that our VPGen has improved control in counts/spatial relations/scales of objects than state-of-the-art T2I generation models. Second, we introduce VPEval, an interpretable and explainable evaluation framework for T2I generation based on visual programming. Unlike previous T2I evaluations with a single scoring model that is accurate in some skills but unreliable in others, VPEval produces evaluation programs that invoke a set of visual modules that are experts in different skills, and also provides visual+textual explanations of the evaluation results. Our analysis shows VPEval provides a more human-correlated evaluation for skill-specific and open-ended prompts than widely used single model-based evaluation. We hope our work encourages future progress on interpretable/explainable generation and evaluation for T2I models. Website: https://vp-t2i.github.io
RobustFill: Neural Program Learning under Noisy I/O
The problem of automatically generating a computer program from some specification has been studied since the early days of AI. Recently, two competing approaches for automatic program learning have received significant attention: (1) neural program synthesis, where a neural network is conditioned on input/output (I/O) examples and learns to generate a program, and (2) neural program induction, where a neural network generates new outputs directly using a latent program representation. Here, for the first time, we directly compare both approaches on a large-scale, real-world learning task. We additionally contrast to rule-based program synthesis, which uses hand-crafted semantics to guide the program generation. Our neural models use a modified attention RNN to allow encoding of variable-sized sets of I/O pairs. Our best synthesis model achieves 92% accuracy on a real-world test set, compared to the 34% accuracy of the previous best neural synthesis approach. The synthesis model also outperforms a comparable induction model on this task, but we more importantly demonstrate that the strength of each approach is highly dependent on the evaluation metric and end-user application. Finally, we show that we can train our neural models to remain very robust to the type of noise expected in real-world data (e.g., typos), while a highly-engineered rule-based system fails entirely.
B-Coder: Value-Based Deep Reinforcement Learning for Program Synthesis
Program synthesis aims to create accurate, executable code from natural language descriptions. This field has leveraged the power of reinforcement learning (RL) in conjunction with large language models (LLMs), significantly enhancing code generation capabilities. This integration focuses on directly optimizing functional correctness, transcending conventional supervised losses. While current literature predominantly favors policy-based algorithms, attributes of program synthesis suggest a natural compatibility with value-based methods. This stems from rich collection of off-policy programs developed by human programmers, and the straightforward verification of generated programs through automated unit testing (i.e. easily obtainable rewards in RL language). Diverging from the predominant use of policy-based algorithms, our work explores the applicability of value-based approaches, leading to the development of our B-Coder (pronounced Bellman coder). Yet, training value-based methods presents challenges due to the enormous search space inherent to program synthesis. To this end, we propose an initialization protocol for RL agents utilizing pre-trained LMs and a conservative Bellman operator to reduce training complexities. Moreover, we demonstrate how to leverage the learned value functions as a dual strategy to post-process generated programs. Our empirical evaluations demonstrated B-Coder's capability in achieving state-of-the-art performance compared with policy-based methods. Remarkably, this achievement is reached with minimal reward engineering effort, highlighting the effectiveness of value-based RL, independent of reward designs.
AutoVFX: Physically Realistic Video Editing from Natural Language Instructions
Modern visual effects (VFX) software has made it possible for skilled artists to create imagery of virtually anything. However, the creation process remains laborious, complex, and largely inaccessible to everyday users. In this work, we present AutoVFX, a framework that automatically creates realistic and dynamic VFX videos from a single video and natural language instructions. By carefully integrating neural scene modeling, LLM-based code generation, and physical simulation, AutoVFX is able to provide physically-grounded, photorealistic editing effects that can be controlled directly using natural language instructions. We conduct extensive experiments to validate AutoVFX's efficacy across a diverse spectrum of videos and instructions. Quantitative and qualitative results suggest that AutoVFX outperforms all competing methods by a large margin in generative quality, instruction alignment, editing versatility, and physical plausibility.
Long Video Generation with Time-Agnostic VQGAN and Time-Sensitive Transformer
Videos are created to express emotion, exchange information, and share experiences. Video synthesis has intrigued researchers for a long time. Despite the rapid progress driven by advances in visual synthesis, most existing studies focus on improving the frames' quality and the transitions between them, while little progress has been made in generating longer videos. In this paper, we present a method that builds on 3D-VQGAN and transformers to generate videos with thousands of frames. Our evaluation shows that our model trained on 16-frame video clips from standard benchmarks such as UCF-101, Sky Time-lapse, and Taichi-HD datasets can generate diverse, coherent, and high-quality long videos. We also showcase conditional extensions of our approach for generating meaningful long videos by incorporating temporal information with text and audio. Videos and code can be found at https://songweige.github.io/projects/tats/index.html.
Generative Visual Communication in the Era of Vision-Language Models
Visual communication, dating back to prehistoric cave paintings, is the use of visual elements to convey ideas and information. In today's visually saturated world, effective design demands an understanding of graphic design principles, visual storytelling, human psychology, and the ability to distill complex information into clear visuals. This dissertation explores how recent advancements in vision-language models (VLMs) can be leveraged to automate the creation of effective visual communication designs. Although generative models have made great progress in generating images from text, they still struggle to simplify complex ideas into clear, abstract visuals and are constrained by pixel-based outputs, which lack flexibility for many design tasks. To address these challenges, we constrain the models' operational space and introduce task-specific regularizations. We explore various aspects of visual communication, namely, sketches and visual abstraction, typography, animation, and visual inspiration.
Magic Fixup: Streamlining Photo Editing by Watching Dynamic Videos
We propose a generative model that, given a coarsely edited image, synthesizes a photorealistic output that follows the prescribed layout. Our method transfers fine details from the original image and preserves the identity of its parts. Yet, it adapts it to the lighting and context defined by the new layout. Our key insight is that videos are a powerful source of supervision for this task: objects and camera motions provide many observations of how the world changes with viewpoint, lighting, and physical interactions. We construct an image dataset in which each sample is a pair of source and target frames extracted from the same video at randomly chosen time intervals. We warp the source frame toward the target using two motion models that mimic the expected test-time user edits. We supervise our model to translate the warped image into the ground truth, starting from a pretrained diffusion model. Our model design explicitly enables fine detail transfer from the source frame to the generated image, while closely following the user-specified layout. We show that by using simple segmentations and coarse 2D manipulations, we can synthesize a photorealistic edit faithful to the user's input while addressing second-order effects like harmonizing the lighting and physical interactions between edited objects.
Piece it Together: Part-Based Concepting with IP-Priors
Advanced generative models excel at synthesizing images but often rely on text-based conditioning. Visual designers, however, often work beyond language, directly drawing inspiration from existing visual elements. In many cases, these elements represent only fragments of a potential concept-such as an uniquely structured wing, or a specific hairstyle-serving as inspiration for the artist to explore how they can come together creatively into a coherent whole. Recognizing this need, we introduce a generative framework that seamlessly integrates a partial set of user-provided visual components into a coherent composition while simultaneously sampling the missing parts needed to generate a plausible and complete concept. Our approach builds on a strong and underexplored representation space, extracted from IP-Adapter+, on which we train IP-Prior, a lightweight flow-matching model that synthesizes coherent compositions based on domain-specific priors, enabling diverse and context-aware generations. Additionally, we present a LoRA-based fine-tuning strategy that significantly improves prompt adherence in IP-Adapter+ for a given task, addressing its common trade-off between reconstruction quality and prompt adherence.
Alfie: Democratising RGBA Image Generation With No $$$
Designs and artworks are ubiquitous across various creative fields, requiring graphic design skills and dedicated software to create compositions that include many graphical elements, such as logos, icons, symbols, and art scenes, which are integral to visual storytelling. Automating the generation of such visual elements improves graphic designers' productivity, democratizes and innovates the creative industry, and helps generate more realistic synthetic data for related tasks. These illustration elements are mostly RGBA images with irregular shapes and cutouts, facilitating blending and scene composition. However, most image generation models are incapable of generating such images and achieving this capability requires expensive computational resources, specific training recipes, or post-processing solutions. In this work, we propose a fully-automated approach for obtaining RGBA illustrations by modifying the inference-time behavior of a pre-trained Diffusion Transformer model, exploiting the prompt-guided controllability and visual quality offered by such models with no additional computational cost. We force the generation of entire subjects without sharp croppings, whose background is easily removed for seamless integration into design projects or artistic scenes. We show with a user study that, in most cases, users prefer our solution over generating and then matting an image, and we show that our generated illustrations yield good results when used as inputs for composite scene generation pipelines. We release the code at https://github.com/aimagelab/Alfie.
GENOME: GenerativE Neuro-symbOlic visual reasoning by growing and reusing ModulEs
Recent works have shown that Large Language Models (LLMs) could empower traditional neuro-symbolic models via programming capabilities to translate language into module descriptions, thus achieving strong visual reasoning results while maintaining the model's transparency and efficiency. However, these models usually exhaustively generate the entire code snippet given each new instance of a task, which is extremely ineffective. We propose generative neuro-symbolic visual reasoning by growing and reusing modules. Specifically, our model consists of three unique stages, module initialization, module generation, and module execution. First, given a vision-language task, we adopt LLMs to examine whether we could reuse and grow over established modules to handle this new task. If not, we initialize a new module needed by the task and specify the inputs and outputs of this new module. After that, the new module is created by querying LLMs to generate corresponding code snippets that match the requirements. In order to get a better sense of the new module's ability, we treat few-shot training examples as test cases to see if our new module could pass these cases. If yes, the new module is added to the module library for future reuse. Finally, we evaluate the performance of our model on the testing set by executing the parsed programs with the newly made visual modules to get the results. We find the proposed model possesses several advantages. First, it performs competitively on standard tasks like visual question answering and referring expression comprehension; Second, the modules learned from one task can be seamlessly transferred to new tasks; Last but not least, it is able to adapt to new visual reasoning tasks by observing a few training examples and reusing modules.
StyleDrop: Text-to-Image Generation in Any Style
Pre-trained large text-to-image models synthesize impressive images with an appropriate use of text prompts. However, ambiguities inherent in natural language and out-of-distribution effects make it hard to synthesize image styles, that leverage a specific design pattern, texture or material. In this paper, we introduce StyleDrop, a method that enables the synthesis of images that faithfully follow a specific style using a text-to-image model. The proposed method is extremely versatile and captures nuances and details of a user-provided style, such as color schemes, shading, design patterns, and local and global effects. It efficiently learns a new style by fine-tuning very few trainable parameters (less than 1% of total model parameters) and improving the quality via iterative training with either human or automated feedback. Better yet, StyleDrop is able to deliver impressive results even when the user supplies only a single image that specifies the desired style. An extensive study shows that, for the task of style tuning text-to-image models, StyleDrop implemented on Muse convincingly outperforms other methods, including DreamBooth and textual inversion on Imagen or Stable Diffusion. More results are available at our project website: https://styledrop.github.io
ExoViP: Step-by-step Verification and Exploration with Exoskeleton Modules for Compositional Visual Reasoning
Compositional visual reasoning methods, which translate a complex query into a structured composition of feasible visual tasks, have exhibited a strong potential in complicated multi-modal tasks. Empowered by recent advances in large language models (LLMs), this multi-modal challenge has been brought to a new stage by treating LLMs as few-shot/zero-shot planners, i.e., vision-language (VL) programming. Such methods, despite their numerous merits, suffer from challenges due to LLM planning mistakes or inaccuracy of visual execution modules, lagging behind the non-compositional models. In this work, we devise a "plug-and-play" method, ExoViP, to correct errors in both the planning and execution stages through introspective verification. We employ verification modules as "exoskeletons" to enhance current VL programming schemes. Specifically, our proposed verification module utilizes a mixture of three sub-verifiers to validate predictions after each reasoning step, subsequently calibrating the visual module predictions and refining the reasoning trace planned by LLMs. Experimental results on two representative VL programming methods showcase consistent improvements on five compositional reasoning tasks on standard benchmarks. In light of this, we believe that ExoViP can foster better performance and generalization on open-domain multi-modal challenges.
UI-E2I-Synth: Advancing GUI Grounding with Large-Scale Instruction Synthesis
Recent advancements in Large Vision-Language Models are accelerating the development of Graphical User Interface (GUI) agents that utilize human-like vision perception capabilities to enhance productivity on digital devices. Compared to approaches predicated on GUI metadata, which are platform-dependent and vulnerable to implementation variations, vision-based approaches offer broader applicability. In this vision-based paradigm, the GUI instruction grounding, which maps user instruction to the location of corresponding element on the given screenshot, remains a critical challenge, particularly due to limited public training dataset and resource-intensive manual instruction data annotation. In this paper, we delve into unexplored challenges in this task including element-to-screen ratio, unbalanced element type, and implicit instruction. To address these challenges, we introduce a large-scale data synthesis pipeline UI-E2I-Synth for generating varying complex instruction datasets using GPT-4o instead of human annotators. Furthermore, we propose a new GUI instruction grounding benchmark UI-I2E-Bench, which is designed to address the limitations of existing benchmarks by incorporating diverse annotation aspects. Our model, trained on the synthesized data, achieves superior performance in GUI instruction grounding, demonstrating the advancements of proposed data synthesis pipeline. The proposed benchmark, accompanied by extensive analyses, provides practical insights for future research in GUI grounding. We will release corresponding artifacts at https://colmon46.github.io/i2e-bench-leaderboard/ .
CogCoM: Train Large Vision-Language Models Diving into Details through Chain of Manipulations
Vision-Language Models (VLMs) have demonstrated their widespread viability thanks to extensive training in aligning visual instructions to answers. However, this conclusive alignment leads models to ignore critical visual reasoning, and further result in failures on meticulous visual problems and unfaithful responses. In this paper, we propose Chain of Manipulations, a mechanism that enables VLMs to solve problems with a series of manipulations, where each manipulation refers to an operation on the visual input, either from intrinsic abilities (e.g., grounding) acquired through prior training or from imitating human-like behaviors (e.g., zoom in). This mechanism encourages VLMs to generate faithful responses with evidential visual reasoning, and permits users to trace error causes in the interpretable paths. We thus train CogCoM, a general 17B VLM with a memory-based compatible architecture endowed this reasoning mechanism. Experiments show that our model achieves the state-of-the-art performance across 8 benchmarks from 3 categories, and a limited number of training steps with the data swiftly gains a competitive performance. The code and data are publicly available at https://github.com/THUDM/CogCoM.
VURF: A General-purpose Reasoning and Self-refinement Framework for Video Understanding
Recent studies have demonstrated the effectiveness of Large Language Models (LLMs) as reasoning modules that can deconstruct complex tasks into more manageable sub-tasks, particularly when applied to visual reasoning tasks for images. In contrast, this paper introduces a Video Understanding and Reasoning Framework (VURF) based on the reasoning power of LLMs. Ours is a novel approach to extend the utility of LLMs in the context of video tasks, leveraging their capacity to generalize from minimal input and output demonstrations within a contextual framework. By presenting LLMs with pairs of instructions and their corresponding high-level programs, we harness their contextual learning capabilities to generate executable visual programs for video understanding. To enhance program's accuracy and robustness, we implement two important strategies. Firstly, we employ a feedback-generation approach, powered by GPT-3.5, to rectify errors in programs utilizing unsupported functions. Secondly, taking motivation from recent works on self refinement of LLM outputs, we introduce an iterative procedure for improving the quality of the in-context examples by aligning the initial outputs to the outputs that would have been generated had the LLM not been bound by the structure of the in-context examples. Our results on several video-specific tasks, including visual QA, video anticipation, pose estimation and multi-video QA illustrate the efficacy of these enhancements in improving the performance of visual programming approaches for video tasks. Our Codes and data will be publicly released.
CLIPDrawX: Primitive-based Explanations for Text Guided Sketch Synthesis
With the goal of understanding the visual concepts that CLIP associates with text prompts, we show that the latent space of CLIP can be visualized solely in terms of linear transformations on simple geometric primitives like circles and straight lines. Although existing approaches achieve this by sketch-synthesis-through-optimization, they do so on the space of B\'ezier curves, which exhibit a wastefully large set of structures that they can evolve into, as most of them are non-essential for generating meaningful sketches. We present CLIPDrawX, an algorithm that provides significantly better visualizations for CLIP text embeddings, using only simple primitive shapes like straight lines and circles. This constrains the set of possible outputs to linear transformations on these primitives, thereby exhibiting an inherently simpler mathematical form. The synthesis process of CLIPDrawX can be tracked end-to-end, with each visual concept being explained exclusively in terms of primitives. Implementation will be released upon acceptance. Project Page: https://clipdrawx.github.io/{https://clipdrawx.github.io/}.
Scaling Text-Rich Image Understanding via Code-Guided Synthetic Multimodal Data Generation
Reasoning about images with rich text, such as charts and documents, is a critical application of vision-language models (VLMs). However, VLMs often struggle in these domains due to the scarcity of diverse text-rich vision-language data. To address this challenge, we present CoSyn, a framework that leverages the coding capabilities of text-only large language models (LLMs) to automatically create synthetic text-rich multimodal data. Given input text describing a target domain (e.g., "nutrition fact labels"), CoSyn prompts an LLM to generate code (Python, HTML, LaTeX, etc.) for rendering synthetic images. With the underlying code as textual representations of the synthetic images, CoSyn can generate high-quality instruction-tuning data, again relying on a text-only LLM. Using CoSyn, we constructed a dataset comprising 400K images and 2.7M rows of vision-language instruction-tuning data. Comprehensive experiments on seven benchmarks demonstrate that models trained on our synthetic data achieve state-of-the-art performance among competitive open-source models, including Llama 3.2, and surpass proprietary models such as GPT-4V and Gemini 1.5 Flash. Furthermore, CoSyn can produce synthetic pointing data, enabling VLMs to ground information within input images, showcasing its potential for developing multimodal agents capable of acting in real-world environments.
Do we Really Need Visual Instructions? Towards Visual Instruction-Free Fine-tuning for Large Vision-Language Models
Visual instruction tuning has become the predominant technology in eliciting the multimodal task-solving capabilities of large vision-language models (LVLMs). Despite the success, as visual instructions require images as the input, it would leave the gap in inheriting the task-solving capabilities from the backbone LLMs, and make it costly to collect a large-scale dataset. To address it, we propose ViFT, a visual instruction-free fine-tuning framework for LVLMs. In ViFT, we only require the text-only instructions and image caption data during training, to separately learn the task-solving and visual perception abilities. During inference, we extract and combine the representations of the text and image inputs, for fusing the two abilities to fulfill multimodal tasks. Experimental results demonstrate that ViFT can achieve state-of-the-art performance on several visual reasoning and visual instruction following benchmarks, with rather less training data. Our code and data will be publicly released.
Unaligned 2D to 3D Translation with Conditional Vector-Quantized Code Diffusion using Transformers
Generating 3D images of complex objects conditionally from a few 2D views is a difficult synthesis problem, compounded by issues such as domain gap and geometric misalignment. For instance, a unified framework such as Generative Adversarial Networks cannot achieve this unless they explicitly define both a domain-invariant and geometric-invariant joint latent distribution, whereas Neural Radiance Fields are generally unable to handle both issues as they optimize at the pixel level. By contrast, we propose a simple and novel 2D to 3D synthesis approach based on conditional diffusion with vector-quantized codes. Operating in an information-rich code space enables high-resolution 3D synthesis via full-coverage attention across the views. Specifically, we generate the 3D codes (e.g. for CT images) conditional on previously generated 3D codes and the entire codebook of two 2D views (e.g. 2D X-rays). Qualitative and quantitative results demonstrate state-of-the-art performance over specialized methods across varied evaluation criteria, including fidelity metrics such as density, coverage, and distortion metrics for two complex volumetric imagery datasets from in real-world scenarios.
IconShop: Text-Guided Vector Icon Synthesis with Autoregressive Transformers
Scalable Vector Graphics (SVG) is a popular vector image format that offers good support for interactivity and animation. Despite its appealing characteristics, creating custom SVG content can be challenging for users due to the steep learning curve required to understand SVG grammars or get familiar with professional editing software. Recent advancements in text-to-image generation have inspired researchers to explore vector graphics synthesis using either image-based methods (i.e., text -> raster image -> vector graphics) combining text-to-image generation models with image vectorization, or language-based methods (i.e., text -> vector graphics script) through pretrained large language models. However, these methods still suffer from limitations in terms of generation quality, diversity, and flexibility. In this paper, we introduce IconShop, a text-guided vector icon synthesis method using autoregressive transformers. The key to success of our approach is to sequentialize and tokenize SVG paths (and textual descriptions as guidance) into a uniquely decodable token sequence. With that, we are able to fully exploit the sequence learning power of autoregressive transformers, while enabling both unconditional and text-conditioned icon synthesis. Through standard training to predict the next token on a large-scale vector icon dataset accompanied by textural descriptions, the proposed IconShop consistently exhibits better icon synthesis capability than existing image-based and language-based methods both quantitatively and qualitatively. Meanwhile, we observe a dramatic improvement in generation diversity, which is validated by the objective Uniqueness and Novelty measures. More importantly, we demonstrate the flexibility of IconShop with multiple novel icon synthesis tasks, including icon editing, icon interpolation, icon semantic combination, and icon design auto-suggestion.
Visual Instruction Tuning towards General-Purpose Multimodal Model: A Survey
Traditional computer vision generally solves each single task independently by a dedicated model with the task instruction implicitly designed in the model architecture, arising two limitations: (1) it leads to task-specific models, which require multiple models for different tasks and restrict the potential synergies from diverse tasks; (2) it leads to a pre-defined and fixed model interface that has limited interactivity and adaptability in following user' task instructions. To address them, Visual Instruction Tuning (VIT) has been intensively studied recently, which finetunes a large vision model with language as task instructions, aiming to learn from a wide range of vision tasks described by language instructions a general-purpose multimodal model that can follow arbitrary instructions and thus solve arbitrary tasks specified by the user. This work aims to provide a systematic review of visual instruction tuning, covering (1) the background that presents computer vision task paradigms and the development of VIT; (2) the foundations of VIT that introduce commonly used network architectures, visual instruction tuning frameworks and objectives, and evaluation setups and tasks; (3) the commonly used datasets in visual instruction tuning and evaluation; (4) the review of existing VIT methods that categorizes them with a taxonomy according to both the studied vision task and the method design and highlights the major contributions, strengths, and shortcomings of them; (5) the comparison and discussion of VIT methods over various instruction-following benchmarks; (6) several challenges, open directions and possible future works in visual instruction tuning research.
AutoPresent: Designing Structured Visuals from Scratch
Designing structured visuals such as presentation slides is essential for communicative needs, necessitating both content creation and visual planning skills. In this work, we tackle the challenge of automated slide generation, where models produce slide presentations from natural language (NL) instructions. We first introduce the SlidesBench benchmark, the first benchmark for slide generation with 7k training and 585 testing examples derived from 310 slide decks across 10 domains. SlidesBench supports evaluations that are (i)reference-based to measure similarity to a target slide, and (ii)reference-free to measure the design quality of generated slides alone. We benchmark end-to-end image generation and program generation methods with a variety of models, and find that programmatic methods produce higher-quality slides in user-interactable formats. Built on the success of program generation, we create AutoPresent, an 8B Llama-based model trained on 7k pairs of instructions paired with code for slide generation, and achieve results comparable to the closed-source model GPT-4o. We further explore iterative design refinement where the model is tasked to self-refine its own output, and we found that this process improves the slide's quality. We hope that our work will provide a basis for future work on generating structured visuals.
UI2Code^N: A Visual Language Model for Test-Time Scalable Interactive UI-to-Code Generation
User interface (UI) programming is a core yet highly complex part of modern software development. Recent advances in visual language models (VLMs) highlight the potential of automatic UI coding, but current approaches face two key limitations: multimodal coding capabilities remain underdeveloped, and single-turn paradigms make little use of iterative visual feedback. We address these challenges with an interactive UI-to-code paradigm that better reflects real-world workflows and raises the upper bound of achievable performance. Under this paradigm, we present UI2Code^N, a visual language model trained through staged pretraining, fine-tuning, and reinforcement learning to achieve foundational improvements in multimodal coding. The model unifies three key capabilities: UI-to-code generation, UI editing, and UI polishing. We further explore test-time scaling for interactive generation, enabling systematic use of multi-turn feedback. Experiments on UI-to-code and UI polishing benchmarks show that UI2Code^N establishes a new state of the art among open-source models and achieves performance comparable to leading closed-source models such as Claude-4-Sonnet and GPT-5. Our code and models are available at https://github.com/zai-org/UI2Code_N.
PixWizard: Versatile Image-to-Image Visual Assistant with Open-Language Instructions
This paper presents a versatile image-to-image visual assistant, PixWizard, designed for image generation, manipulation, and translation based on free-from language instructions. To this end, we tackle a variety of vision tasks into a unified image-text-to-image generation framework and curate an Omni Pixel-to-Pixel Instruction-Tuning Dataset. By constructing detailed instruction templates in natural language, we comprehensively include a large set of diverse vision tasks such as text-to-image generation, image restoration, image grounding, dense image prediction, image editing, controllable generation, inpainting/outpainting, and more. Furthermore, we adopt Diffusion Transformers (DiT) as our foundation model and extend its capabilities with a flexible any resolution mechanism, enabling the model to dynamically process images based on the aspect ratio of the input, closely aligning with human perceptual processes. The model also incorporates structure-aware and semantic-aware guidance to facilitate effective fusion of information from the input image. Our experiments demonstrate that PixWizard not only shows impressive generative and understanding abilities for images with diverse resolutions but also exhibits promising generalization capabilities with unseen tasks and human instructions. The code and related resources are available at https://github.com/AFeng-x/PixWizard
LayoutLLM-T2I: Eliciting Layout Guidance from LLM for Text-to-Image Generation
In the text-to-image generation field, recent remarkable progress in Stable Diffusion makes it possible to generate rich kinds of novel photorealistic images. However, current models still face misalignment issues (e.g., problematic spatial relation understanding and numeration failure) in complex natural scenes, which impedes the high-faithfulness text-to-image generation. Although recent efforts have been made to improve controllability by giving fine-grained guidance (e.g., sketch and scribbles), this issue has not been fundamentally tackled since users have to provide such guidance information manually. In this work, we strive to synthesize high-fidelity images that are semantically aligned with a given textual prompt without any guidance. Toward this end, we propose a coarse-to-fine paradigm to achieve layout planning and image generation. Concretely, we first generate the coarse-grained layout conditioned on a given textual prompt via in-context learning based on Large Language Models. Afterward, we propose a fine-grained object-interaction diffusion method to synthesize high-faithfulness images conditioned on the prompt and the automatically generated layout. Extensive experiments demonstrate that our proposed method outperforms the state-of-the-art models in terms of layout and image generation. Our code and settings are available at https://layoutllm-t2i.github.io.
Thinking with Programming Vision: Towards a Unified View for Thinking with Images
Multimodal large language models (MLLMs) that think with images can interactively use tools to reason about visual inputs, but current approaches often rely on a narrow set of tools with limited real-world necessity and scalability. In this work, we first reveal a critical and previously overlooked weakness: even state-of-the-art MLLMs are surprisingly brittle, showing significant performance degradation on images with simple orientation changes or natural corruptions, underscoring the need for more robust tool-based reasoning. To address this, we propose CodeVision, a flexible and scalable code-as-tool framework where the model generates code as a universal interface to invoke any image operation, moving beyond fixed tool registries. We train our model using a two-stage methodology, beginning with Supervised Fine-Tuning (SFT) on a high-quality dataset curated for complex, multi-turn tool composition and error recovery, followed by Reinforcement Learning (RL) with a novel and dense process reward function to encourage strategic and efficient tool use. To facilitate this research, we construct new SFT and RL datasets and introduce a challenging new benchmark suite designed to rigorously evaluate robustness to orientation changes and multi-tool reasoning. Experiments on Qwen2.5-VL and Qwen3-VL series show that our approach significantly improves model performance and fosters emergent capabilities such as flexible tool composition, efficient chained execution, and robust error recovery from runtime feedback. Code is available at https://github.com/ByteDance-BandAI/CodeVision.
Generating Pedagogically Meaningful Visuals for Math Word Problems: A New Benchmark and Analysis of Text-to-Image Models
Visuals are valuable tools for teaching math word problems (MWPs), helping young learners interpret textual descriptions into mathematical expressions before solving them. However, creating such visuals is labor-intensive and there is a lack of automated methods to support this process. In this paper, we present Math2Visual, an automatic framework for generating pedagogically meaningful visuals from MWP text descriptions. Math2Visual leverages a pre-defined visual language and a design space grounded in interviews with math teachers, to illustrate the core mathematical relationships in MWPs. Using Math2Visual, we construct an annotated dataset of 1,903 visuals and evaluate Text-to-Image (TTI) models for their ability to generate visuals that align with our design. We further fine-tune several TTI models with our dataset, demonstrating improvements in educational visual generation. Our work establishes a new benchmark for automated generation of pedagogically meaningful visuals and offers insights into key challenges in producing multimodal educational content, such as the misrepresentation of mathematical relationships and the omission of essential visual elements.
Patch-based 3D Natural Scene Generation from a Single Example
We target a 3D generative model for general natural scenes that are typically unique and intricate. Lacking the necessary volumes of training data, along with the difficulties of having ad hoc designs in presence of varying scene characteristics, renders existing setups intractable. Inspired by classical patch-based image models, we advocate for synthesizing 3D scenes at the patch level, given a single example. At the core of this work lies important algorithmic designs w.r.t the scene representation and generative patch nearest-neighbor module, that address unique challenges arising from lifting classical 2D patch-based framework to 3D generation. These design choices, on a collective level, contribute to a robust, effective, and efficient model that can generate high-quality general natural scenes with both realistic geometric structure and visual appearance, in large quantities and varieties, as demonstrated upon a variety of exemplar scenes.
DesignDiffusion: High-Quality Text-to-Design Image Generation with Diffusion Models
In this paper, we present DesignDiffusion, a simple yet effective framework for the novel task of synthesizing design images from textual descriptions. A primary challenge lies in generating accurate and style-consistent textual and visual content. Existing works in a related task of visual text generation often focus on generating text within given specific regions, which limits the creativity of generation models, resulting in style or color inconsistencies between textual and visual elements if applied to design image generation. To address this issue, we propose an end-to-end, one-stage diffusion-based framework that avoids intricate components like position and layout modeling. Specifically, the proposed framework directly synthesizes textual and visual design elements from user prompts. It utilizes a distinctive character embedding derived from the visual text to enhance the input prompt, along with a character localization loss for enhanced supervision during text generation. Furthermore, we employ a self-play Direct Preference Optimization fine-tuning strategy to improve the quality and accuracy of the synthesized visual text. Extensive experiments demonstrate that DesignDiffusion achieves state-of-the-art performance in design image generation.
Program Synthesis with Large Language Models
This paper explores the limits of the current generation of large language models for program synthesis in general purpose programming languages. We evaluate a collection of such models (with between 244M and 137B parameters) on two new benchmarks, MBPP and MathQA-Python, in both the few-shot and fine-tuning regimes. Our benchmarks are designed to measure the ability of these models to synthesize short Python programs from natural language descriptions. The Mostly Basic Programming Problems (MBPP) dataset contains 974 programming tasks, designed to be solvable by entry-level programmers. The MathQA-Python dataset, a Python version of the MathQA benchmark, contains 23914 problems that evaluate the ability of the models to synthesize code from more complex text. On both datasets, we find that synthesis performance scales log-linearly with model size. Our largest models, even without finetuning on a code dataset, can synthesize solutions to 59.6 percent of the problems from MBPP using few-shot learning with a well-designed prompt. Fine-tuning on a held-out portion of the dataset improves performance by about 10 percentage points across most model sizes. On the MathQA-Python dataset, the largest fine-tuned model achieves 83.8 percent accuracy. Going further, we study the model's ability to engage in dialog about code, incorporating human feedback to improve its solutions. We find that natural language feedback from a human halves the error rate compared to the model's initial prediction. Additionally, we conduct an error analysis to shed light on where these models fall short and what types of programs are most difficult to generate. Finally, we explore the semantic grounding of these models by fine-tuning them to predict the results of program execution. We find that even our best models are generally unable to predict the output of a program given a specific input.
Opening the AI black box: program synthesis via mechanistic interpretability
We present MIPS, a novel method for program synthesis based on automated mechanistic interpretability of neural networks trained to perform the desired task, auto-distilling the learned algorithm into Python code. We test MIPS on a benchmark of 62 algorithmic tasks that can be learned by an RNN and find it highly complementary to GPT-4: MIPS solves 32 of them, including 13 that are not solved by GPT-4 (which also solves 30). MIPS uses an integer autoencoder to convert the RNN into a finite state machine, then applies Boolean or integer symbolic regression to capture the learned algorithm. As opposed to large language models, this program synthesis technique makes no use of (and is therefore not limited by) human training data such as algorithms and code from GitHub. We discuss opportunities and challenges for scaling up this approach to make machine-learned models more interpretable and trustworthy.
Visual Programmability: A Guide for Code-as-Thought in Chart Understanding
Chart understanding presents a critical test to the reasoning capabilities of Vision-Language Models (VLMs). Prior approaches face critical limitations: some rely on external tools, making them brittle and constrained by a predefined toolkit, while others fine-tune specialist models that often adopt a single reasoning strategy, such as text-based chain-of-thought (CoT). The intermediate steps of text-based reasoning are difficult to verify, which complicates the use of reinforcement-learning signals that reward factual accuracy. To address this, we propose a Code-as-Thought (CaT) approach to represent the visual information of a chart in a verifiable, symbolic format. Our key insight is that this strategy must be adaptive: a fixed, code-only implementation consistently fails on complex charts where symbolic representation is unsuitable. This finding leads us to introduce Visual Programmability: a learnable property that determines if a chart-question pair is better solved with code or direct visual analysis. We implement this concept in an adaptive framework where a VLM learns to choose between the CaT pathway and a direct visual reasoning pathway. The selection policy of the model is trained with reinforcement learning using a novel dual-reward system. This system combines a data-accuracy reward to ground the model in facts and prevent numerical hallucination, with a decision reward that teaches the model when to use each strategy, preventing it from defaulting to a single reasoning mode. Experiments demonstrate strong and robust performance across diverse chart-understanding benchmarks. Our work shows that VLMs can be taught not only to reason but also how to reason, dynamically selecting the optimal reasoning pathway for each task.
Learning to Imagine: Visually-Augmented Natural Language Generation
People often imagine relevant scenes to aid in the writing process. In this work, we aim to utilize visual information for composition in the same manner as humans. We propose a method, LIVE, that makes pre-trained language models (PLMs) Learn to Imagine for Visuallyaugmented natural language gEneration. First, we imagine the scene based on the text: we use a diffusion model to synthesize high-quality images conditioned on the input texts. Second, we use CLIP to determine whether the text can evoke the imagination in a posterior way. Finally, our imagination is dynamic, and we conduct synthesis for each sentence rather than generate only one image for an entire paragraph. Technically, we propose a novel plug-and-play fusion layer to obtain visually-augmented representations for each text. Our vision-text fusion layer is compatible with Transformerbased architecture. We have conducted extensive experiments on four generation tasks using BART and T5, and the automatic results and human evaluation demonstrate the effectiveness of our proposed method. We will release the code, model, and data at the link: https://github.com/RUCAIBox/LIVE.
Factuality Matters: When Image Generation and Editing Meet Structured Visuals
While modern visual generation models excel at creating aesthetically pleasing natural images, they struggle with producing or editing structured visuals like charts, diagrams, and mathematical figures, which demand composition planning, text rendering, and multimodal reasoning for factual fidelity. To address this, we present the first comprehensive, systematic investigation of this domain, encompassing data construction, model training, and an evaluation benchmark. First, we construct a large-scale dataset of 1.3 million high-quality structured image pairs derived from executable drawing programs and augmented with chain-of-thought reasoning annotations. Building on it, we train a unified model that integrates a VLM with FLUX.1 Kontext via a lightweight connector for enhanced multimodal understanding. A three-stage training curriculum enables progressive feature alignment, knowledge infusion, and reasoning-augmented generation, further boosted by an external reasoner at inference time. Finally, we introduce StructBench, a novel benchmark for generation and editing with over 1,700 challenging instances, and an accompanying evaluation metric, StructScore, which employs a multi-round Q\&A protocol to assess fine-grained factual accuracy. Evaluations of 15 models reveal that even leading closed-source systems remain far from satisfactory. Our model attains strong editing performance, and inference-time reasoning yields consistent gains across diverse architectures. By releasing the dataset, model, and benchmark, we aim to advance unified multimodal foundations for structured visuals.
VinciCoder: Unifying Multimodal Code Generation via Coarse-to-fine Visual Reinforcement Learning
Multimodal code generation has garnered significant interest within the research community. Despite the notable success of recent vision-language models (VLMs) on specialized tasks like chart-to-code generation, their reliance on single-task training regimens fosters a narrow paradigm that hinders the development of generalized VIsioN Code Intelligence. In this work, we introduce VinciCoder, a unified multimodal code generation model that addresses this limitation via a two-stage training framework. We begin by constructing a large-scale Supervised Finetuning (SFT) corpus comprising 1.6M image-code pairs for tasks involving direct code generation and visual-based code refinement. Subsequently, we introduce a Visual Reinforcement Learning (ViRL) strategy, which employs a coarse-to-fine reward mechanism to improve visual fidelity by calculating visual similarity across local and global image patches. Extensive experiments on diverse multimodal code generation benchmarks demonstrate that VinciCoder achieves state-of-the-art performance, surpassing recent open-source models. The ablation study further validates the effectiveness of our proposed coarse-to-fine ViRL strategy. The data, code and model is available at https://github.com/DocTron-hub/VinciCoder.
Don't Look Only Once: Towards Multimodal Interactive Reasoning with Selective Visual Revisitation
We present v1, a lightweight extension to Multimodal Large Language Models (MLLMs) that enables selective visual revisitation during inference. While current MLLMs typically consume visual input only once and reason purely over internal memory, v1 introduces a simple point-and-copy mechanism that allows the model to dynamically retrieve relevant image regions throughout the reasoning process. This mechanism augments existing architectures with minimal modifications, enabling contextual access to visual tokens based on the model's evolving hypotheses. To train this capability, we construct v1g, a dataset of 300K multimodal reasoning traces with interleaved visual grounding annotations. Experiments on three multimodal mathematical reasoning benchmarks -- MathVista, MathVision, and MathVerse -- demonstrate that v1 consistently improves performance over comparable baselines, particularly on tasks requiring fine-grained visual reference and multi-step reasoning. Our results suggest that dynamic visual access is a promising direction for enhancing grounded multimodal reasoning. Code, models, and data will be released to support future research.
SVGDreamer: Text Guided SVG Generation with Diffusion Model
Recently, text-guided scalable vector graphics (SVGs) synthesis has shown promise in domains such as iconography and sketch. However, existing text-to-SVG generation methods lack editability and struggle with visual quality and result diversity. To address these limitations, we propose a novel text-guided vector graphics synthesis method called SVGDreamer. SVGDreamer incorporates a semantic-driven image vectorization (SIVE) process that enables the decomposition of synthesis into foreground objects and background, thereby enhancing editability. Specifically, the SIVE process introduce attention-based primitive control and an attention-mask loss function for effective control and manipulation of individual elements. Additionally, we propose a Vectorized Particle-based Score Distillation (VPSD) approach to tackle the challenges of color over-saturation, vector primitives over-smoothing, and limited result diversity in existing text-to-SVG generation methods. Furthermore, on the basis of VPSD, we introduce Reward Feedback Learning (ReFL) to accelerate VPSD convergence and improve aesthetic appeal. Extensive experiments have been conducted to validate the effectiveness of SVGDreamer, demonstrating its superiority over baseline methods in terms of editability, visual quality, and diversity.
MapCoder: Multi-Agent Code Generation for Competitive Problem Solving
Code synthesis, which requires a deep understanding of complex natural language problem descriptions, generation of code instructions for complex algorithms and data structures, and the successful execution of comprehensive unit tests, presents a significant challenge. While large language models (LLMs) demonstrate impressive proficiency in natural language processing, their performance in code generation tasks remains limited. In this paper, we introduce a new approach to code generation tasks leveraging multi-agent prompting that uniquely replicates the full cycle of program synthesis as observed in human developers. Our framework, MapCoder, consists of four LLM agents specifically designed to emulate the stages of this cycle: recalling relevant examples, planning, code generation, and debugging. After conducting thorough experiments, with multiple LLM ablations and analyses across eight challenging competitive problem-solving and program synthesis benchmarks, MapCoder showcases remarkable code generation capabilities, achieving new state-of-the-art results (pass@1) on HumanEval (93.9%), MBPP (83.1%), APPS (22.0%), CodeContests (28.5%), and xCodeEval (45.3%). Moreover, our method consistently delivers superior performance across various programming languages and varying problem difficulties. We open-source our framework at https://github.com/Md-Ashraful-Pramanik/MapCoder.
MM-REACT: Prompting ChatGPT for Multimodal Reasoning and Action
We propose MM-REACT, a system paradigm that integrates ChatGPT with a pool of vision experts to achieve multimodal reasoning and action. In this paper, we define and explore a comprehensive list of advanced vision tasks that are intriguing to solve, but may exceed the capabilities of existing vision and vision-language models. To achieve such advanced visual intelligence, MM-REACT introduces a textual prompt design that can represent text descriptions, textualized spatial coordinates, and aligned file names for dense visual signals such as images and videos. MM-REACT's prompt design allows language models to accept, associate, and process multimodal information, thereby facilitating the synergetic combination of ChatGPT and various vision experts. Zero-shot experiments demonstrate MM-REACT's effectiveness in addressing the specified capabilities of interests and its wide application in different scenarios that require advanced visual understanding. Furthermore, we discuss and compare MM-REACT's system paradigm with an alternative approach that extends language models for multimodal scenarios through joint finetuning. Code, demo, video, and visualization are available at https://multimodal-react.github.io/
How do Observable Users Decompose D3 Code? A Qualitative Study
Many toolkit developers seek to streamline the visualization programming process through structured support such as prescribed templates and example galleries. However, few projects examine how users organize their own visualization programs and how their coding choices may deviate from the intents of toolkit developers, impacting visualization prototyping and design. Further, is it possible to infer users' reasoning indirectly through their code, even when users copy code from other sources? We explore this question through a qualitative analysis of 715 D3 programs on Observable. We identify three levels of program organization based on how users decompose their code into smaller blocks: Program-, Chart-, and Component-Level code decomposition, with a strong preference for Component-Level reasoning. In a series of interviews, we corroborate that these levels reflect how Observable users reason about visualization programs. We compare common user-made components with those theorized in the Grammar of Graphics to assess overlap in user and toolkit developer reasoning. We find that, while the Grammar of Graphics covers basic visualizations well, it falls short in describing complex visualization types, especially those with animation, interaction, and parameterization components. Our findings highlight how user practices differ from formal grammars and reinforce ongoing efforts to rethink visualization toolkit support, including augmenting learning tools and AI assistants to better reflect real-world coding strategies.
InstructScene: Instruction-Driven 3D Indoor Scene Synthesis with Semantic Graph Prior
Comprehending natural language instructions is a charming property for 3D indoor scene synthesis systems. Existing methods directly model object joint distributions and express object relations implicitly within a scene, thereby hindering the controllability of generation. We introduce InstructScene, a novel generative framework that integrates a semantic graph prior and a layout decoder to improve controllability and fidelity for 3D scene synthesis. The proposed semantic graph prior jointly learns scene appearances and layout distributions, exhibiting versatility across various downstream tasks in a zero-shot manner. To facilitate the benchmarking for text-driven 3D scene synthesis, we curate a high-quality dataset of scene-instruction pairs with large language and multimodal models. Extensive experimental results reveal that the proposed method surpasses existing state-of-the-art approaches by a large margin. Thorough ablation studies confirm the efficacy of crucial design components. Project page: https://chenguolin.github.io/projects/InstructScene.
VLM-Guided Adaptive Negative Prompting for Creative Generation
Creative generation is the synthesis of new, surprising, and valuable samples that reflect user intent yet cannot be envisioned in advance. This task aims to extend human imagination, enabling the discovery of visual concepts that exist in the unexplored spaces between familiar domains. While text-to-image diffusion models excel at rendering photorealistic scenes that faithfully match user prompts, they still struggle to generate genuinely novel content. Existing approaches to enhance generative creativity either rely on interpolation of image features, which restricts exploration to predefined categories, or require time-intensive procedures such as embedding optimization or model fine-tuning. We propose VLM-Guided Adaptive Negative-Prompting, a training-free, inference-time method that promotes creative image generation while preserving the validity of the generated object. Our approach utilizes a vision-language model (VLM) that analyzes intermediate outputs of the generation process and adaptively steers it away from conventional visual concepts, encouraging the emergence of novel and surprising outputs. We evaluate creativity through both novelty and validity, using statistical metrics in the CLIP embedding space. Through extensive experiments, we show consistent gains in creative novelty with negligible computational overhead. Moreover, unlike existing methods that primarily generate single objects, our approach extends to complex scenarios, such as generating coherent sets of creative objects and preserving creativity within elaborate compositional prompts. Our method integrates seamlessly into existing diffusion pipelines, offering a practical route to producing creative outputs that venture beyond the constraints of textual descriptions.
Long-Term Photometric Consistent Novel View Synthesis with Diffusion Models
Novel view synthesis from a single input image is a challenging task, where the goal is to generate a new view of a scene from a desired camera pose that may be separated by a large motion. The highly uncertain nature of this synthesis task due to unobserved elements within the scene (i.e. occlusion) and outside the field-of-view makes the use of generative models appealing to capture the variety of possible outputs. In this paper, we propose a novel generative model capable of producing a sequence of photorealistic images consistent with a specified camera trajectory, and a single starting image. Our approach is centred on an autoregressive conditional diffusion-based model capable of interpolating visible scene elements, and extrapolating unobserved regions in a view, in a geometrically consistent manner. Conditioning is limited to an image capturing a single camera view and the (relative) pose of the new camera view. To measure the consistency over a sequence of generated views, we introduce a new metric, the thresholded symmetric epipolar distance (TSED), to measure the number of consistent frame pairs in a sequence. While previous methods have been shown to produce high quality images and consistent semantics across pairs of views, we show empirically with our metric that they are often inconsistent with the desired camera poses. In contrast, we demonstrate that our method produces both photorealistic and view-consistent imagery.
VisCoder2: Building Multi-Language Visualization Coding Agents
Large language models (LLMs) have recently enabled coding agents capable of generating, executing, and revising visualization code. However, existing models often fail in practical workflows due to limited language coverage, unreliable execution, and lack of iterative correction mechanisms. Progress has been constrained by narrow datasets and benchmarks that emphasize single-round generation and single-language tasks. To address these challenges, we introduce three complementary resources for advancing visualization coding agents. VisCode-Multi-679K is a large-scale, supervised dataset containing 679K validated and executable visualization samples with multi-turn correction dialogues across 12 programming languages. VisPlotBench is a benchmark for systematic evaluation, featuring executable tasks, rendered outputs, and protocols for both initial generation and multi-round self-debug. Finally, we present VisCoder2, a family of multi-language visualization models trained on VisCode-Multi-679K. Experiments show that VisCoder2 significantly outperforms strong open-source baselines and approaches the performance of proprietary models like GPT-4.1, with further gains from iterative self-debug, reaching 82.4% overall execution pass rate at the 32B scale, particularly in symbolic or compiler-dependent languages.
Imaginarium: Vision-guided High-Quality 3D Scene Layout Generation
Generating artistic and coherent 3D scene layouts is crucial in digital content creation. Traditional optimization-based methods are often constrained by cumbersome manual rules, while deep generative models face challenges in producing content with richness and diversity. Furthermore, approaches that utilize large language models frequently lack robustness and fail to accurately capture complex spatial relationships. To address these challenges, this paper presents a novel vision-guided 3D layout generation system. We first construct a high-quality asset library containing 2,037 scene assets and 147 3D scene layouts. Subsequently, we employ an image generation model to expand prompt representations into images, fine-tuning it to align with our asset library. We then develop a robust image parsing module to recover the 3D layout of scenes based on visual semantics and geometric information. Finally, we optimize the scene layout using scene graphs and overall visual semantics to ensure logical coherence and alignment with the images. Extensive user testing demonstrates that our algorithm significantly outperforms existing methods in terms of layout richness and quality. The code and dataset will be available at https://github.com/HiHiAllen/Imaginarium.
