Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeStacked Attention Networks for Image Question Answering
This paper presents stacked attention networks (SANs) that learn to answer natural language questions from images. SANs use semantic representation of a question as query to search for the regions in an image that are related to the answer. We argue that image question answering (QA) often requires multiple steps of reasoning. Thus, we develop a multiple-layer SAN in which we query an image multiple times to infer the answer progressively. Experiments conducted on four image QA data sets demonstrate that the proposed SANs significantly outperform previous state-of-the-art approaches. The visualization of the attention layers illustrates the progress that the SAN locates the relevant visual clues that lead to the answer of the question layer-by-layer.
Visual Haystacks: Answering Harder Questions About Sets of Images
Recent advancements in Large Multimodal Models (LMMs) have made significant progress in the field of single-image visual question answering. However, these models face substantial challenges when tasked with queries that span extensive collections of images, similar to real-world scenarios like searching through large photo albums, finding specific information across the internet, or monitoring environmental changes through satellite imagery. This paper explores the task of Multi-Image Visual Question Answering (MIQA): given a large set of images and a natural language query, the task is to generate a relevant and grounded response. We propose a new public benchmark, dubbed "Visual Haystacks (VHs)," specifically designed to evaluate LMMs' capabilities in visual retrieval and reasoning over sets of unrelated images, where we perform comprehensive evaluations demonstrating that even robust closed-source models struggle significantly. Towards addressing these shortcomings, we introduce MIRAGE (Multi-Image Retrieval Augmented Generation), a novel retrieval/QA framework tailored for LMMs that confronts the challenges of MIQA with marked efficiency and accuracy improvements over baseline methods. Our evaluation shows that MIRAGE surpasses closed-source GPT-4o models by up to 11% on the VHs benchmark and offers up to 3.4x improvements in efficiency over text-focused multi-stage approaches.
Teaching Broad Reasoning Skills for Multi-Step QA by Generating Hard Contexts
Question-answering datasets require a broad set of reasoning skills. We show how to use question decompositions to teach language models these broad reasoning skills in a robust fashion. Specifically, we use widely available QDMR representations to programmatically create hard-to-cheat synthetic contexts for real questions in six multi-step reasoning datasets. These contexts are carefully designed to avoid reasoning shortcuts prevalent in real contexts that prevent models from learning the right skills. This results in a pretraining dataset, named TeaBReaC, containing 525K multi-step questions (with associated formal programs) covering about 900 reasoning patterns. We show that pretraining standard language models (LMs) on TeaBReaC before fine-tuning them on target datasets improves their performance by up to 13 F1 points across 4 multi-step QA datasets, with up to 21 point gain on more complex questions. The resulting models also demonstrate higher robustness, with a 5-8 F1 point improvement on two contrast sets. Furthermore, TeaBReaC pretraining substantially improves model performance and robustness even when starting with numerate LMs pretrained using recent methods (e.g., PReasM, POET). Our work thus shows how to effectively use decomposition-guided contexts to robustly teach multi-step reasoning.
Synthetic Target Domain Supervision for Open Retrieval QA
Neural passage retrieval is a new and promising approach in open retrieval question answering. In this work, we stress-test the Dense Passage Retriever (DPR) -- a state-of-the-art (SOTA) open domain neural retrieval model -- on closed and specialized target domains such as COVID-19, and find that it lags behind standard BM25 in this important real-world setting. To make DPR more robust under domain shift, we explore its fine-tuning with synthetic training examples, which we generate from unlabeled target domain text using a text-to-text generator. In our experiments, this noisy but fully automated target domain supervision gives DPR a sizable advantage over BM25 in out-of-domain settings, making it a more viable model in practice. Finally, an ensemble of BM25 and our improved DPR model yields the best results, further pushing the SOTA for open retrieval QA on multiple out-of-domain test sets.
KenSwQuAD -- A Question Answering Dataset for Swahili Low Resource Language
The need for Question Answering datasets in low resource languages is the motivation of this research, leading to the development of Kencorpus Swahili Question Answering Dataset, KenSwQuAD. This dataset is annotated from raw story texts of Swahili low resource language, which is a predominantly spoken in Eastern African and in other parts of the world. Question Answering (QA) datasets are important for machine comprehension of natural language for tasks such as internet search and dialog systems. Machine learning systems need training data such as the gold standard Question Answering set developed in this research. The research engaged annotators to formulate QA pairs from Swahili texts collected by the Kencorpus project, a Kenyan languages corpus. The project annotated 1,445 texts from the total 2,585 texts with at least 5 QA pairs each, resulting into a final dataset of 7,526 QA pairs. A quality assurance set of 12.5% of the annotated texts confirmed that the QA pairs were all correctly annotated. A proof of concept on applying the set to the QA task confirmed that the dataset can be usable for such tasks. KenSwQuAD has also contributed to resourcing of the Swahili language.
Unifying Vision, Text, and Layout for Universal Document Processing
We propose Universal Document Processing (UDOP), a foundation Document AI model which unifies text, image, and layout modalities together with varied task formats, including document understanding and generation. UDOP leverages the spatial correlation between textual content and document image to model image, text, and layout modalities with one uniform representation. With a novel Vision-Text-Layout Transformer, UDOP unifies pretraining and multi-domain downstream tasks into a prompt-based sequence generation scheme. UDOP is pretrained on both large-scale unlabeled document corpora using innovative self-supervised objectives and diverse labeled data. UDOP also learns to generate document images from text and layout modalities via masked image reconstruction. To the best of our knowledge, this is the first time in the field of document AI that one model simultaneously achieves high-quality neural document editing and content customization. Our method sets the state-of-the-art on 8 Document AI tasks, e.g., document understanding and QA, across diverse data domains like finance reports, academic papers, and websites. UDOP ranks first on the leaderboard of the Document Understanding Benchmark.
HIS-GPT: Towards 3D Human-In-Scene Multimodal Understanding
We propose a new task to benchmark human-in-scene understanding for embodied agents: Human-In-Scene Question Answering (HIS-QA). Given a human motion within a 3D scene, HIS-QA requires the agent to comprehend human states and behaviors, reason about its surrounding environment, and answer human-related questions within the scene. To support this new task, we present HIS-Bench, a multimodal benchmark that systematically evaluates HIS understanding across a broad spectrum, from basic perception to commonsense reasoning and planning. Our evaluation of various vision-language models on HIS-Bench reveals significant limitations in their ability to handle HIS-QA tasks. To this end, we propose HIS-GPT, the first foundation model for HIS understanding. HIS-GPT integrates 3D scene context and human motion dynamics into large language models while incorporating specialized mechanisms to capture human-scene interactions. Extensive experiments demonstrate that HIS-GPT sets a new state-of-the-art on HIS-QA tasks. We hope this work inspires future research on human behavior analysis in 3D scenes, advancing embodied AI and world models. The codes and data: https://github.com/ZJHTerry18/HumanInScene.
Tomayto, Tomahto. Beyond Token-level Answer Equivalence for Question Answering Evaluation
The predictions of question answering (QA)systems are typically evaluated against manually annotated finite sets of one or more answers. This leads to a coverage limitation that results in underestimating the true performance of systems, and is typically addressed by extending over exact match (EM) with pre-defined rules or with the token-level F1 measure. In this paper, we present the first systematic conceptual and data-driven analysis to examine the shortcomings of token-level equivalence measures. To this end, we define the asymmetric notion of answer equivalence (AE), accepting answers that are equivalent to or improve over the reference, and publish over 23k human judgments for candidates produced by multiple QA systems on SQuAD. Through a careful analysis of this data, we reveal and quantify several concrete limitations of the F1 measure, such as a false impression of graduality, or missing dependence on the question. Since collecting AE annotations for each evaluated model is expensive, we learn a BERT matching (BEM) measure to approximate this task. Being a simpler task than QA, we find BEM to provide significantly better AE approximations than F1, and to more accurately reflect the performance of systems. Finally, we demonstrate the practical utility of AE and BEM on the concrete application of minimal accurate prediction sets, reducing the number of required answers by up to x2.6.
BBQ: A Hand-Built Bias Benchmark for Question Answering
It is well documented that NLP models learn social biases, but little work has been done on how these biases manifest in model outputs for applied tasks like question answering (QA). We introduce the Bias Benchmark for QA (BBQ), a dataset of question sets constructed by the authors that highlight attested social biases against people belonging to protected classes along nine social dimensions relevant for U.S. English-speaking contexts. Our task evaluates model responses at two levels: (i) given an under-informative context, we test how strongly responses reflect social biases, and (ii) given an adequately informative context, we test whether the model's biases override a correct answer choice. We find that models often rely on stereotypes when the context is under-informative, meaning the model's outputs consistently reproduce harmful biases in this setting. Though models are more accurate when the context provides an informative answer, they still rely on stereotypes and average up to 3.4 percentage points higher accuracy when the correct answer aligns with a social bias than when it conflicts, with this difference widening to over 5 points on examples targeting gender for most models tested.
Interpretable Question Answering with Knowledge Graphs
This paper presents a question answering system that operates exclusively on a knowledge graph retrieval without relying on retrieval augmented generation (RAG) with large language models (LLMs). Instead, a small paraphraser model is used to paraphrase the entity relationship edges retrieved from querying the knowledge graph. The proposed pipeline is divided into two main stages. The first stage involves pre-processing a document to generate sets of question-answer (QA) pairs. The second stage converts these QAs into a knowledge graph from which graph-based retrieval is performed using embeddings and fuzzy techniques. The graph is queried, re-ranked, and paraphrased to generate a final answer. This work includes an evaluation using LLM-as-a-judge on the CRAG benchmark, which resulted in accuracies of 71.9% and 54.4% using LLAMA-3.2 and GPT-3.5-Turbo, respectively.
Efficient Tool Use with Chain-of-Abstraction Reasoning
To achieve faithful reasoning that aligns with human expectations, large language models (LLMs) need to ground their reasoning to real-world knowledge (e.g., web facts, math and physical rules). Tools help LLMs access this external knowledge, but there remains challenges for fine-tuning LLM agents (e.g., Toolformer) to invoke tools in multi-step reasoning problems, where inter-connected tool calls require holistic and efficient tool usage planning. In this work, we propose a new method for LLMs to better leverage tools in multi-step reasoning. Our method, Chain-of-Abstraction (CoA), trains LLMs to first decode reasoning chains with abstract placeholders, and then call domain tools to reify each reasoning chain by filling in specific knowledge. This planning with abstract chains enables LLMs to learn more general reasoning strategies, which are robust to shifts of domain knowledge (e.g., math results) relevant to different reasoning questions. It also allows LLMs to perform decoding and calling of external tools in parallel, which avoids the inference delay caused by waiting for tool responses. In mathematical reasoning and Wiki QA domains, we show that our method consistently outperforms previous chain-of-thought and tool-augmented baselines on both in-distribution and out-of-distribution test sets, with an average ~6% absolute QA accuracy improvement. LLM agents trained with our method also show more efficient tool use, with inference speed being on average ~1.4x faster than baseline tool-augmented LLMs.
Knowledgeable Preference Alignment for LLMs in Domain-specific Question Answering
Recently, the development of large language models (LLMs) has attracted wide attention in academia and industry. Deploying LLMs to real scenarios is one of the key directions in the current Internet industry. In this paper, we present a novel pipeline to apply LLMs for domain-specific question answering (QA) that incorporates domain knowledge graphs (KGs), addressing an important direction of LLM application. As a real-world application, the content generated by LLMs should be user-friendly to serve the customers. Additionally, the model needs to utilize domain knowledge properly to generate reliable answers. These two issues are the two major difficulties in the LLM application as vanilla fine-tuning can not adequately address them. We think both requirements can be unified as the model preference problem that needs to align with humans to achieve practical application. Thus, we introduce Knowledgeable Preference AlignmenT (KnowPAT), which constructs two kinds of preference set called style preference set and knowledge preference set respectively to tackle the two issues. Besides, we design a new alignment objective to align the LLM preference with human preference, aiming to train a better LLM for real-scenario domain-specific QA to generate reliable and user-friendly answers. Adequate experiments and comprehensive with 15 baseline methods demonstrate that our KnowPAT is an outperforming pipeline for real-scenario domain-specific QA with LLMs. Our code is open-source at https://github.com/zjukg/KnowPAT.
LinkBERT: Pretraining Language Models with Document Links
Language model (LM) pretraining can learn various knowledge from text corpora, helping downstream tasks. However, existing methods such as BERT model a single document, and do not capture dependencies or knowledge that span across documents. In this work, we propose LinkBERT, an LM pretraining method that leverages links between documents, e.g., hyperlinks. Given a text corpus, we view it as a graph of documents and create LM inputs by placing linked documents in the same context. We then pretrain the LM with two joint self-supervised objectives: masked language modeling and our new proposal, document relation prediction. We show that LinkBERT outperforms BERT on various downstream tasks across two domains: the general domain (pretrained on Wikipedia with hyperlinks) and biomedical domain (pretrained on PubMed with citation links). LinkBERT is especially effective for multi-hop reasoning and few-shot QA (+5% absolute improvement on HotpotQA and TriviaQA), and our biomedical LinkBERT sets new states of the art on various BioNLP tasks (+7% on BioASQ and USMLE). We release our pretrained models, LinkBERT and BioLinkBERT, as well as code and data at https://github.com/michiyasunaga/LinkBERT.
ChroniclingAmericaQA: A Large-scale Question Answering Dataset based on Historical American Newspaper Pages
Question answering (QA) and Machine Reading Comprehension (MRC) tasks have significantly advanced in recent years due to the rapid development of deep learning techniques and, more recently, large language models. At the same time, many benchmark datasets have become available for QA and MRC tasks. However, most existing large-scale benchmark datasets have been created predominantly using synchronous document collections like Wikipedia or the Web. Archival document collections, such as historical newspapers, contain valuable information from the past that is still not widely used to train large language models. To further contribute to advancing QA and MRC tasks and to overcome the limitation of previous datasets, we introduce ChroniclingAmericaQA, a large-scale dataset with 485K question-answer pairs created based on the historical newspaper collection Chronicling America. Our dataset is constructed from a subset of the Chronicling America newspaper collection spanning 120 years. One of the significant challenges for utilizing digitized historical newspaper collections is the low quality of OCR text. Therefore, to enable realistic testing of QA models, our dataset can be used in three different ways: answering questions from raw and noisy content, answering questions from cleaner, corrected version of the content, as well as answering questions from scanned images of newspaper pages. This and the fact that ChroniclingAmericaQA spans the longest time period among available QA datasets make it quite a unique and useful resource.
Ada-LEval: Evaluating long-context LLMs with length-adaptable benchmarks
Recently, the large language model (LLM) community has shown increasing interest in enhancing LLMs' capability to handle extremely long documents. As various long-text techniques and model architectures emerge, the precise and detailed evaluation of models' long-text capabilities has become increasingly important. Existing long-text evaluation benchmarks, such as L-Eval and LongBench, construct long-text test sets based on open-source datasets, focusing mainly on QA and summarization tasks. These datasets include test samples of varying lengths (from 2k to 32k+) entangled together, making it challenging to assess model capabilities across different length ranges. Moreover, they do not cover the ultralong settings (100k+ tokens) that the latest LLMs claim to achieve. In this paper, we introduce Ada-LEval, a length-adaptable benchmark for evaluating the long-context understanding of LLMs. Ada-LEval includes two challenging subsets, TSort and BestAnswer, which enable a more reliable evaluation of LLMs' long context capabilities. These benchmarks support intricate manipulation of the length of test cases, and can easily produce text samples up to 128k tokens. We evaluate 4 state-of-the-art closed-source API models and 6 open-source models with Ada-LEval. The evaluation results demonstrate the limitations of current LLMs, especially in ultra-long-context settings. Our code is available at https://github.com/open-compass/Ada-LEval.
ECG-QA: A Comprehensive Question Answering Dataset Combined With Electrocardiogram
Question answering (QA) in the field of healthcare has received much attention due to significant advancements in natural language processing. However, existing healthcare QA datasets primarily focus on medical images, clinical notes, or structured electronic health record tables. This leaves the vast potential of combining electrocardiogram (ECG) data with these systems largely untapped. To address this gap, we present ECG-QA, the first QA dataset specifically designed for ECG analysis. The dataset comprises a total of 70 question templates that cover a wide range of clinically relevant ECG topics, each validated by an ECG expert to ensure their clinical utility. As a result, our dataset includes diverse ECG interpretation questions, including those that require a comparative analysis of two different ECGs. In addition, we have conducted numerous experiments to provide valuable insights for future research directions. We believe that ECG-QA will serve as a valuable resource for the development of intelligent QA systems capable of assisting clinicians in ECG interpretations. Dataset URL: https://github.com/Jwoo5/ecg-qa
NuScenes-MQA: Integrated Evaluation of Captions and QA for Autonomous Driving Datasets using Markup Annotations
Visual Question Answering (VQA) is one of the most important tasks in autonomous driving, which requires accurate recognition and complex situation evaluations. However, datasets annotated in a QA format, which guarantees precise language generation and scene recognition from driving scenes, have not been established yet. In this work, we introduce Markup-QA, a novel dataset annotation technique in which QAs are enclosed within markups. This approach facilitates the simultaneous evaluation of a model's capabilities in sentence generation and VQA. Moreover, using this annotation methodology, we designed the NuScenes-MQA dataset. This dataset empowers the development of vision language models, especially for autonomous driving tasks, by focusing on both descriptive capabilities and precise QA. The dataset is available at https://github.com/turingmotors/NuScenes-MQA.
JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension
Question Answering (QA) is a task in which a machine understands a given document and a question to find an answer. Despite impressive progress in the NLP area, QA is still a challenging problem, especially for non-English languages due to the lack of annotated datasets. In this paper, we present the Japanese Question Answering Dataset, JaQuAD, which is annotated by humans. JaQuAD consists of 39,696 extractive question-answer pairs on Japanese Wikipedia articles. We finetuned a baseline model which achieves 78.92% for F1 score and 63.38% for EM on test set. The dataset and our experiments are available at https://github.com/SkelterLabsInc/JaQuAD.
LiveBench: A Challenging, Contamination-Free LLM Benchmark
Test set contamination, wherein test data from a benchmark ends up in a newer model's training set, is a well-documented obstacle for fair LLM evaluation and can quickly render benchmarks obsolete. To mitigate this, many recent benchmarks crowdsource new prompts and evaluations from human or LLM judges; however, these can introduce significant biases, and break down when scoring hard questions. In this work, we introduce a new benchmark for LLMs designed to be immune to both test set contamination and the pitfalls of LLM judging and human crowdsourcing. We release LiveBench, the first benchmark that (1) contains frequently-updated questions from recent information sources, (2) scores answers automatically according to objective ground-truth values, and (3) contains a wide variety of challenging tasks, spanning math, coding, reasoning, language, instruction following, and data analysis. To achieve this, LiveBench contains questions that are based on recently-released math competitions, arXiv papers, news articles, and datasets, and it contains harder, contamination-free versions of tasks from previous benchmarks such as Big-Bench Hard, AMPS, and IFEval. We evaluate many prominent closed-source models, as well as dozens of open-source models ranging from 0.5B to 110B in size. LiveBench is difficult, with top models achieving below 65% accuracy. We release all questions, code, and model answers. Questions will be added and updated on a monthly basis, and we will release new tasks and harder versions of tasks over time so that LiveBench can distinguish between the capabilities of LLMs as they improve in the future. We welcome community engagement and collaboration for expanding the benchmark tasks and models.
Toward Deconfounding the Influence of Entity Demographics for Question Answering Accuracy
The goal of question answering (QA) is to answer any question. However, major QA datasets have skewed distributions over gender, profession, and nationality. Despite that skew, model accuracy analysis reveals little evidence that accuracy is lower for people based on gender or nationality; instead, there is more variation on professions (question topic). But QA's lack of representation could itself hide evidence of bias, necessitating QA datasets that better represent global diversity.
A Dataset of Information-Seeking Questions and Answers Anchored in Research Papers
Readers of academic research papers often read with the goal of answering specific questions. Question Answering systems that can answer those questions can make consumption of the content much more efficient. However, building such tools requires data that reflect the difficulty of the task arising from complex reasoning about claims made in multiple parts of a paper. In contrast, existing information-seeking question answering datasets usually contain questions about generic factoid-type information. We therefore present QASPER, a dataset of 5,049 questions over 1,585 Natural Language Processing papers. Each question is written by an NLP practitioner who read only the title and abstract of the corresponding paper, and the question seeks information present in the full text. The questions are then answered by a separate set of NLP practitioners who also provide supporting evidence to answers. We find that existing models that do well on other QA tasks do not perform well on answering these questions, underperforming humans by at least 27 F1 points when answering them from entire papers, motivating further research in document-grounded, information-seeking QA, which our dataset is designed to facilitate.
UKP-SQuARE v3: A Platform for Multi-Agent QA Research
The continuous development of Question Answering (QA) datasets has drawn the research community's attention toward multi-domain models. A popular approach is to use multi-dataset models, which are models trained on multiple datasets to learn their regularities and prevent overfitting to a single dataset. However, with the proliferation of QA models in online repositories such as GitHub or Hugging Face, an alternative is becoming viable. Recent works have demonstrated that combining expert agents can yield large performance gains over multi-dataset models. To ease research in multi-agent models, we extend UKP-SQuARE, an online platform for QA research, to support three families of multi-agent systems: i) agent selection, ii) early-fusion of agents, and iii) late-fusion of agents. We conduct experiments to evaluate their inference speed and discuss the performance vs. speed trade-off compared to multi-dataset models. UKP-SQuARE is open-source and publicly available at http://square.ukp-lab.de.
FoQA: A Faroese Question-Answering Dataset
We present FoQA, a Faroese extractive question-answering (QA) dataset with 2,000 samples, created using a semi-automated approach combining Large Language Models (LLMs) and human validation. The dataset was generated from Faroese Wikipedia articles using GPT-4-turbo for initial QA generation, followed by question rephrasing to increase complexity and native speaker validation to ensure quality. We provide baseline performance metrics for FoQA across multiple models, including LLMs and BERT, demonstrating its effectiveness in evaluating Faroese QA performance. The dataset is released in three versions: a validated set of 2,000 samples, a complete set of all 10,001 generated samples, and a set of 2,395 rejected samples for error analysis.
Modern Question Answering Datasets and Benchmarks: A Survey
Question Answering (QA) is one of the most important natural language processing (NLP) tasks. It aims using NLP technologies to generate a corresponding answer to a given question based on the massive unstructured corpus. With the development of deep learning, more and more challenging QA datasets are being proposed, and lots of new methods for solving them are also emerging. In this paper, we investigate influential QA datasets that have been released in the era of deep learning. Specifically, we begin with introducing two of the most common QA tasks - textual question answer and visual question answering - separately, covering the most representative datasets, and then give some current challenges of QA research.
Question-Answering Model for Schizophrenia Symptoms and Their Impact on Daily Life using Mental Health Forums Data
In recent years, there is strong emphasis on mining medical data using machine learning techniques. A common problem is to obtain a noiseless set of textual documents, with a relevant content for the research question, and developing a Question Answering (QA) model for a specific medical field. The purpose of this paper is to present a new methodology for building a medical dataset and obtain a QA model for analysis of symptoms and impact on daily life for a specific disease domain. The ``Mental Health'' forum was used, a forum dedicated to people suffering from schizophrenia and different mental disorders. Relevant posts of active users, who regularly participate, were extrapolated providing a new method of obtaining low-bias content and without privacy issues. Furthermore, it is shown how to pre-process the dataset to convert it into a QA dataset. The Bidirectional Encoder Representations from Transformers (BERT), DistilBERT, RoBERTa, and BioBERT models were fine-tuned and evaluated via F1-Score, Exact Match, Precision and Recall. Accurate empirical experiments demonstrated the effectiveness of the proposed method for obtaining an accurate dataset for QA model implementation. By fine-tuning the BioBERT QA model, we achieved an F1 score of 0.885, showing a considerable improvement and outperforming the state-of-the-art model for mental disorders domain.
UKP-SQUARE: An Online Platform for Question Answering Research
Recent advances in NLP and information retrieval have given rise to a diverse set of question answering tasks that are of different formats (e.g., extractive, abstractive), require different model architectures (e.g., generative, discriminative), and setups (e.g., with or without retrieval). Despite having a large number of powerful, specialized QA pipelines (which we refer to as Skills) that consider a single domain, model or setup, there exists no framework where users can easily explore and compare such pipelines and can extend them according to their needs. To address this issue, we present UKP-SQUARE, an extensible online QA platform for researchers which allows users to query and analyze a large collection of modern Skills via a user-friendly web interface and integrated behavioural tests. In addition, QA researchers can develop, manage, and share their custom Skills using our microservices that support a wide range of models (Transformers, Adapters, ONNX), datastores and retrieval techniques (e.g., sparse and dense). UKP-SQUARE is available on https://square.ukp-lab.de.
WikiOmnia: generative QA corpus on the whole Russian Wikipedia
The General QA field has been developing the methodology referencing the Stanford Question answering dataset (SQuAD) as the significant benchmark. However, compiling factual questions is accompanied by time- and labour-consuming annotation, limiting the training data's potential size. We present the WikiOmnia dataset, a new publicly available set of QA-pairs and corresponding Russian Wikipedia article summary sections, composed with a fully automated generative pipeline. The dataset includes every available article from Wikipedia for the Russian language. The WikiOmnia pipeline is available open-source and is also tested for creating SQuAD-formatted QA on other domains, like news texts, fiction, and social media. The resulting dataset includes two parts: raw data on the whole Russian Wikipedia (7,930,873 QA pairs with paragraphs for ruGPT-3 XL and 7,991,040 QA pairs with paragraphs for ruT5-large) and cleaned data with strict automatic verification (over 160,000 QA pairs with paragraphs for ruGPT-3 XL and over 3,400,000 QA pairs with paragraphs for ruT5-large).
SBS Figures: Pre-training Figure QA from Stage-by-Stage Synthesized Images
Building a large-scale figure QA dataset requires a considerable amount of work, from gathering and selecting figures to extracting attributes like text, numbers, and colors, and generating QAs. Although recent developments in LLMs have led to efforts to synthesize figures, most of these focus primarily on QA generation. Additionally, creating figures directly using LLMs often encounters issues such as code errors, similar-looking figures, and repetitive content in figures. To address this issue, we present SBSFigures (Stage-by-Stage Synthetic Figures), a dataset for pre-training figure QA. Our proposed pipeline enables the creation of chart figures with complete annotations of the visualized data and dense QA annotations without any manual annotation process. Our stage-by-stage pipeline makes it possible to create diverse topic and appearance figures efficiently while minimizing code errors. Our SBSFigures demonstrate a strong pre-training effect, making it possible to achieve efficient training with a limited amount of real-world chart data starting from our pre-trained weights.
SynDARin: Synthesising Datasets for Automated Reasoning in Low-Resource Languages
Question Answering (QA) datasets have been instrumental in developing and evaluating Large Language Model (LLM) capabilities. However, such datasets are scarce for languages other than English due to the cost and difficulties of collection and manual annotation. This means that producing novel models and measuring the performance of multilingual LLMs in low-resource languages is challenging. To mitigate this, we propose SynDARin, a method for generating and validating QA datasets for low-resource languages. We utilize parallel content mining to obtain human-curated paragraphs between English and the target language. We use the English data as context to generate synthetic multiple-choice (MC) question-answer pairs, which are automatically translated and further validated for quality. Combining these with their designated non-English human-curated paragraphs form the final QA dataset. The method allows to maintain the content quality, reduces the likelihood of factual errors, and circumvents the need for costly annotation. To test the method, we created a QA dataset with 1.2K samples for the Armenian language. The human evaluation shows that 98% of the generated English data maintains quality and diversity in the question types and topics, while the translation validation pipeline can filter out sim70% of data with poor quality. We use the dataset to benchmark state-of-the-art LLMs, showing their inability to achieve human accuracy with some model performances closer to random chance. This shows that the generated dataset is non-trivial and can be used to evaluate reasoning capabilities in low-resource language.
TheoremQA: A Theorem-driven Question Answering dataset
The recent LLMs like GPT-4 and PaLM-2 have made tremendous progress in solving fundamental math problems like GSM8K by achieving over 90\% accuracy. However, their capabilities to solve more challenging math problems which require domain-specific knowledge (i.e. theorem) have yet to be investigated. In this paper, we introduce TheoremQA, the first theorem-driven question-answering dataset designed to evaluate AI models' capabilities to apply theorems to solve challenging science problems. \dataset is curated by domain experts containing 800 high-quality questions covering 350 theoremse.g. Taylor's theorem, Lagrange's theorem, Huffman coding, Quantum Theorem, Elasticity Theorem, etc from Math, Physics, EE\&CS, and Finance. We evaluate a wide spectrum of 16 large language and code models with different prompting strategies like Chain-of-Thoughts and Program-of-Thoughts. We found that GPT-4's capabilities to solve these problems are unparalleled, achieving an accuracy of 51\% with Program-of-Thoughts Prompting. All the existing open-sourced models are below 15\%, barely surpassing the random-guess baseline. Given the diversity and broad coverage of \dataset, we believe it can be used as a better benchmark to evaluate LLMs' capabilities to solve challenging science problems. The data and code are released in https://github.com/wenhuchen/TheoremQA.
A Survey on Multi-hop Question Answering and Generation
The problem of Question Answering (QA) has attracted significant research interest for long. Its relevance to language understanding and knowledge retrieval tasks, along with the simple setting makes the task of QA crucial for strong AI systems. Recent success on simple QA tasks has shifted the focus to more complex settings. Among these, Multi-Hop QA (MHQA) is one of the most researched tasks over the recent years. The ability to answer multi-hop questions and perform multi step reasoning can significantly improve the utility of NLP systems. Consequently, the field has seen a sudden surge with high quality datasets, models and evaluation strategies. The notion of `multiple hops' is somewhat abstract which results in a large variety of tasks that require multi-hop reasoning. This implies that different datasets and models differ significantly which makes the field challenging to generalize and survey. This work aims to provide a general and formal definition of MHQA task, and organize and summarize existing MHQA frameworks. We also outline the best methods to create MHQA datasets. The paper provides a systematic and thorough introduction as well as the structuring of the existing attempts to this highly interesting, yet quite challenging task.
EHRSQL: A Practical Text-to-SQL Benchmark for Electronic Health Records
We present a new text-to-SQL dataset for electronic health records (EHRs). The utterances were collected from 222 hospital staff members, including physicians, nurses, and insurance review and health records teams. To construct the QA dataset on structured EHR data, we conducted a poll at a university hospital and used the responses to create seed questions. We then manually linked these questions to two open-source EHR databases, MIMIC-III and eICU, and included various time expressions and held-out unanswerable questions in the dataset, which were also collected from the poll. Our dataset poses a unique set of challenges: the model needs to 1) generate SQL queries that reflect a wide range of needs in the hospital, including simple retrieval and complex operations such as calculating survival rate, 2) understand various time expressions to answer time-sensitive questions in healthcare, and 3) distinguish whether a given question is answerable or unanswerable. We believe our dataset, EHRSQL, can serve as a practical benchmark for developing and assessing QA models on structured EHR data and take a step further towards bridging the gap between text-to-SQL research and its real-life deployment in healthcare. EHRSQL is available at https://github.com/glee4810/EHRSQL.
SQUARE: Automatic Question Answering Evaluation using Multiple Positive and Negative References
Evaluation of QA systems is very challenging and expensive, with the most reliable approach being human annotations of correctness of answers for questions. Recent works (AVA, BEM) have shown that transformer LM encoder based similarity metrics transfer well for QA evaluation, but they are limited by the usage of a single correct reference answer. We propose a new evaluation metric: SQuArE (Sentence-level QUestion AnsweRing Evaluation), using multiple reference answers (combining multiple correct and incorrect references) for sentence-form QA. We evaluate SQuArE on both sentence-level extractive (Answer Selection) and generative (GenQA) QA systems, across multiple academic and industrial datasets, and show that it outperforms previous baselines and obtains the highest correlation with human annotations.
QuAC : Question Answering in Context
We present QuAC, a dataset for Question Answering in Context that contains 14K information-seeking QA dialogs (100K questions in total). The dialogs involve two crowd workers: (1) a student who poses a sequence of freeform questions to learn as much as possible about a hidden Wikipedia text, and (2) a teacher who answers the questions by providing short excerpts from the text. QuAC introduces challenges not found in existing machine comprehension datasets: its questions are often more open-ended, unanswerable, or only meaningful within the dialog context, as we show in a detailed qualitative evaluation. We also report results for a number of reference models, including a recently state-of-the-art reading comprehension architecture extended to model dialog context. Our best model underperforms humans by 20 F1, suggesting that there is significant room for future work on this data. Dataset, baseline, and leaderboard available at http://quac.ai.
TQA-Bench: Evaluating LLMs for Multi-Table Question Answering with Scalable Context and Symbolic Extension
The advent of large language models (LLMs) has unlocked great opportunities in complex data management tasks, particularly in question answering (QA) over complicated multi-table relational data. Despite significant progress, systematically evaluating LLMs on multi-table QA remains a critical challenge due to the inherent complexity of analyzing heterogeneous table structures and potential large scale of serialized relational data. Existing benchmarks primarily focus on single-table QA, failing to capture the intricacies of reasoning across multiple relational tables, as required in real-world domains such as finance, healthcare, and e-commerce. To address this gap, we present TQA-Bench, a new multi-table QA benchmark designed to evaluate the capabilities of LLMs in tackling complex QA tasks over relational data. Our benchmark incorporates diverse relational database instances sourced from real-world public datasets and introduces a flexible sampling mechanism to create tasks with varying multi-table context lengths, ranging from 8K to 64K tokens. To ensure robustness and reliability, we integrate symbolic extensions into the evaluation framework, enabling the assessment of LLM reasoning capabilities beyond simple data retrieval or probabilistic pattern matching. We systematically evaluate a range of LLMs, both open-source and closed-source, spanning model scales from 7 billion to 70 billion parameters. Our extensive experiments reveal critical insights into the performance of LLMs in multi-table QA, highlighting both challenges and opportunities for advancing their application in complex, data-driven environments. Our benchmark implementation and results are available at https://github.com/Relaxed-System-Lab/TQA-Bench.
MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms
We introduce a large-scale dataset of math word problems and an interpretable neural math problem solver that learns to map problems to operation programs. Due to annotation challenges, current datasets in this domain have been either relatively small in scale or did not offer precise operational annotations over diverse problem types. We introduce a new representation language to model precise operation programs corresponding to each math problem that aim to improve both the performance and the interpretability of the learned models. Using this representation language, our new dataset, MathQA, significantly enhances the AQuA dataset with fully-specified operational programs. We additionally introduce a neural sequence-to-program model enhanced with automatic problem categorization. Our experiments show improvements over competitive baselines in our MathQA as well as the AQuA dataset. The results are still significantly lower than human performance indicating that the dataset poses new challenges for future research. Our dataset is available at: https://math-qa.github.io/math-QA/
AmQA: Amharic Question Answering Dataset
Question Answering (QA) returns concise answers or answer lists from natural language text given a context document. Many resources go into curating QA datasets to advance robust models' development. There is a surge of QA datasets for languages like English, however, this is not true for Amharic. Amharic, the official language of Ethiopia, is the second most spoken Semitic language in the world. There is no published or publicly available Amharic QA dataset. Hence, to foster the research in Amharic QA, we present the first Amharic QA (AmQA) dataset. We crowdsourced 2628 question-answer pairs over 378 Wikipedia articles. Additionally, we run an XLMR Large-based baseline model to spark open-domain QA research interest. The best-performing baseline achieves an F-score of 69.58 and 71.74 in reader-retriever QA and reading comprehension settings respectively.
RJUA-QA: A Comprehensive QA Dataset for Urology
We introduce RJUA-QA, a novel medical dataset for question answering (QA) and reasoning with clinical evidence, contributing to bridge the gap between general large language models (LLMs) and medical-specific LLM applications. RJUA-QA is derived from realistic clinical scenarios and aims to facilitate LLMs in generating reliable diagnostic and advice. The dataset contains 2,132 curated Question-Context-Answer pairs, corresponding about 25,000 diagnostic records and clinical cases. The dataset covers 67 common urological disease categories, where the disease coverage exceeds 97.6\% of the population seeking medical services in urology. Each data instance in RJUA-QA comprises: (1) a question mirroring real patient to inquiry about clinical symptoms and medical conditions, (2) a context including comprehensive expert knowledge, serving as a reference for medical examination and diagnosis, (3) a doctor response offering the diagnostic conclusion and suggested examination guidance, (4) a diagnosed clinical disease as the recommended diagnostic outcome, and (5) clinical advice providing recommendations for medical examination. RJUA-QA is the first medical QA dataset for clinical reasoning over the patient inquiries, where expert-level knowledge and experience are required for yielding diagnostic conclusions and medical examination advice. A comprehensive evaluation is conducted to evaluate the performance of both medical-specific and general LLMs on the RJUA-QA dataset.
A Dataset for Answering Time-Sensitive Questions
Time is an important dimension in our physical world. Lots of facts can evolve with respect to time. For example, the U.S. President might change every four years. Therefore, it is important to consider the time dimension and empower the existing QA models to reason over time. However, the existing QA datasets contain rather few time-sensitive questions, hence not suitable for diagnosing or benchmarking the model's temporal reasoning capability. In order to promote research in this direction, we propose to construct a time-sensitive QA dataset. The dataset is constructed by 1) mining time-evolving facts from WikiData and aligning them to their corresponding Wikipedia page, 2) employing crowd workers to verify and calibrate these noisy facts, 3) generating question-answer pairs based on the annotated time-sensitive facts. Our dataset poses challenges in the aspect of both temporal understanding and temporal reasoning. We evaluate different SoTA long-document QA systems like BigBird and FiD on our dataset. The best-performing model FiD can only achieve 46\% accuracy, still far behind the human performance of 87\%. We demonstrate that these models are still lacking the ability to perform consistent temporal reasoning. Therefore, we believe that our dataset could serve as a benchmark to develop NLP models more sensitive to temporal shifts. The dataset and code are released in~https://github.com/wenhuchen/Time-Sensitive-QA.
Tiny QA Benchmark++: Ultra-Lightweight, Synthetic Multilingual Dataset Generation & Smoke-Tests for Continuous LLM Evaluation
Tiny QA Benchmark++ (TQB++) presents an ultra-lightweight, multilingual smoke-test suite designed to give large-language-model (LLM) pipelines a unit-test style safety net dataset that runs in seconds with minimal cost. Born out of the tight feedback-loop demands building the Comet Opik prompt-optimization SDK, where waiting on heavyweight benchmarks breaks developer flow. TQB++ couples a 52-item English gold set (less than 20 kB) with a tiny synthetic-data generator pypi package built on provider-agnostic LiteLLM. The generator lets practitioners mint their own tiny packs in any language, domain, or difficulty, while ten ready-made packs already cover Arabic, Chinese, French, German, Japanese, Korean, Portuguese, Russian, Spanish, and Turkish. Every dataset ships with Croissant metadata and plug-and-play files for OpenAI-Evals, LangChain, and standard CI tools, so teams can drop deterministic micro-benchmarks directly into pull-request gates, prompt-engineering loops, and production dashboards without touching GPU budgets. A complete TQB++ run adds only a few seconds to pipeline latency yet reliably flags prompt-template errors, tokenizer drift, and fine-tuning side-effects long before full-scale suites like MMLU or BIG-Bench would finish configuring. The entire framework is released to accelerate continuous, resource-efficient quality assurance across the generative-AI ecosystem.
RealMedQA: A pilot biomedical question answering dataset containing realistic clinical questions
Clinical question answering systems have the potential to provide clinicians with relevant and timely answers to their questions. Nonetheless, despite the advances that have been made, adoption of these systems in clinical settings has been slow. One issue is a lack of question-answering datasets which reflect the real-world needs of health professionals. In this work, we present RealMedQA, a dataset of realistic clinical questions generated by humans and an LLM. We describe the process for generating and verifying the QA pairs and assess several QA models on BioASQ and RealMedQA to assess the relative difficulty of matching answers to questions. We show that the LLM is more cost-efficient for generating "ideal" QA pairs. Additionally, we achieve a lower lexical similarity between questions and answers than BioASQ which provides an additional challenge to the top two QA models, as per the results. We release our code and our dataset publicly to encourage further research.
Can a Multichoice Dataset be Repurposed for Extractive Question Answering?
The rapid evolution of Natural Language Processing (NLP) has favored major languages such as English, leaving a significant gap for many others due to limited resources. This is especially evident in the context of data annotation, a task whose importance cannot be underestimated, but which is time-consuming and costly. Thus, any dataset for resource-poor languages is precious, in particular when it is task-specific. Here, we explore the feasibility of repurposing existing datasets for a new NLP task: we repurposed the Belebele dataset (Bandarkar et al., 2023), which was designed for multiple-choice question answering (MCQA), to enable extractive QA (EQA) in the style of machine reading comprehension. We present annotation guidelines and a parallel EQA dataset for English and Modern Standard Arabic (MSA). We also present QA evaluation results for several monolingual and cross-lingual QA pairs including English, MSA, and five Arabic dialects. Our aim is to enable others to adapt our approach for the 120+ other language variants in Belebele, many of which are deemed under-resourced. We also conduct a thorough analysis and share our insights from the process, which we hope will contribute to a deeper understanding of the challenges and the opportunities associated with task reformulation in NLP research.
KaPQA: Knowledge-Augmented Product Question-Answering
Question-answering for domain-specific applications has recently attracted much interest due to the latest advancements in large language models (LLMs). However, accurately assessing the performance of these applications remains a challenge, mainly due to the lack of suitable benchmarks that effectively simulate real-world scenarios. To address this challenge, we introduce two product question-answering (QA) datasets focused on Adobe Acrobat and Photoshop products to help evaluate the performance of existing models on domain-specific product QA tasks. Additionally, we propose a novel knowledge-driven RAG-QA framework to enhance the performance of the models in the product QA task. Our experiments demonstrated that inducing domain knowledge through query reformulation allowed for increased retrieval and generative performance when compared to standard RAG-QA methods. This improvement, however, is slight, and thus illustrates the challenge posed by the datasets introduced.
WixQA: A Multi-Dataset Benchmark for Enterprise Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) is a cornerstone of modern question answering (QA) systems, enabling grounded answers based on external knowledge. Although recent progress has been driven by open-domain datasets, enterprise QA systems need datasets that mirror the concrete, domain-specific issues users raise in day-to-day support scenarios. Critically, evaluating end-to-end RAG systems requires benchmarks comprising not only question--answer pairs but also the specific knowledge base (KB) snapshot from which answers were derived. To address this need, we introduce WixQA, a benchmark suite featuring QA datasets precisely grounded in the released KB corpus, enabling holistic evaluation of retrieval and generation components. WixQA includes three distinct QA datasets derived from Wix.com customer support interactions and grounded in a snapshot of the public Wix Help Center KB: (i) WixQA-ExpertWritten, 200 real user queries with expert-authored, multi-step answers; (ii) WixQA-Simulated, 200 expert-validated QA pairs distilled from user dialogues; and (iii) WixQA-Synthetic, 6,222 LLM-generated QA pairs, with one pair systematically derived from each article in the knowledge base. We release the KB snapshot alongside the datasets under MIT license and provide comprehensive baseline results, forming a unique benchmark for evaluating enterprise RAG systems in realistic enterprise environments.
A^2Search: Ambiguity-Aware Question Answering with Reinforcement Learning
Recent advances in Large Language Models (LLMs) and Reinforcement Learning (RL) have led to strong performance in open-domain question answering (QA). However, existing models still struggle with questions that admit multiple valid answers. Standard QA benchmarks, which typically assume a single gold answer, overlook this reality and thus produce inappropriate training signals. Existing attempts to handle ambiguity often rely on costly manual annotation, which is difficult to scale to multi-hop datasets such as HotpotQA and MuSiQue. In this paper, we present A^2Search, an annotation-free, end-to-end training framework to recognize and handle ambiguity. At its core is an automated pipeline that detects ambiguous questions and gathers alternative answers via trajectory sampling and evidence verification. The model is then optimized with RL using a carefully designed AnsF1 reward, which naturally accommodates multiple answers. Experiments on eight open-domain QA benchmarks demonstrate that A^2Search achieves new state-of-the-art performance. With only a single rollout, A^2Search-7B yields an average AnsF1@1 score of 48.4% across four multi-hop benchmarks, outperforming all strong baselines, including the substantially larger ReSearch-32B (46.2%). Extensive analyses further show that A^2Search resolves ambiguity and generalizes across benchmarks, highlighting that embracing ambiguity is essential for building more reliable QA systems. Our code, data, and model weights can be found at https://github.com/zfj1998/A2Search
MHQA: A Diverse, Knowledge Intensive Mental Health Question Answering Challenge for Language Models
Mental health remains a challenging problem all over the world, with issues like depression, anxiety becoming increasingly common. Large Language Models (LLMs) have seen a vast application in healthcare, specifically in answering medical questions. However, there is a lack of standard benchmarking datasets for question answering (QA) in mental health. Our work presents a novel multiple choice dataset, MHQA (Mental Health Question Answering), for benchmarking Language models (LMs). Previous mental health datasets have focused primarily on text classification into specific labels or disorders. MHQA, on the other hand, presents question-answering for mental health focused on four key domains: anxiety, depression, trauma, and obsessive/compulsive issues, with diverse question types, namely, factoid, diagnostic, prognostic, and preventive. We use PubMed abstracts as the primary source for QA. We develop a rigorous pipeline for LLM-based identification of information from abstracts based on various selection criteria and converting it into QA pairs. Further, valid QA pairs are extracted based on post-hoc validation criteria. Overall, our MHQA dataset consists of 2,475 expert-verified gold standard instances called MHQA-gold and ~56.1k pairs pseudo labeled using external medical references. We report F1 scores on different LLMs along with few-shot and supervised fine-tuning experiments, further discussing the insights for the scores.
SCITAT: A Question Answering Benchmark for Scientific Tables and Text Covering Diverse Reasoning Types
Scientific question answering (SQA) is an important task aimed at answering questions based on papers. However, current SQA datasets have limited reasoning types and neglect the relevance between tables and text, creating a significant gap with real scenarios. To address these challenges, we propose a QA benchmark for scientific tables and text with diverse reasoning types (SciTaT). To cover more reasoning types, we summarize various reasoning types from real-world questions. To involve both tables and text, we require the questions to incorporate tables and text as much as possible. Based on SciTaT, we propose a strong baseline (CaR), which combines various reasoning methods to address different reasoning types and process tables and text at the same time. CaR brings average improvements of 12.9% over other baselines on SciTaT, validating its effectiveness. Error analysis reveals the challenges of SciTaT, such as complex numerical calculations and domain knowledge.
SciDQA: A Deep Reading Comprehension Dataset over Scientific Papers
Scientific literature is typically dense, requiring significant background knowledge and deep comprehension for effective engagement. We introduce SciDQA, a new dataset for reading comprehension that challenges LLMs for a deep understanding of scientific articles, consisting of 2,937 QA pairs. Unlike other scientific QA datasets, SciDQA sources questions from peer reviews by domain experts and answers by paper authors, ensuring a thorough examination of the literature. We enhance the dataset's quality through a process that carefully filters out lower quality questions, decontextualizes the content, tracks the source document across different versions, and incorporates a bibliography for multi-document question-answering. Questions in SciDQA necessitate reasoning across figures, tables, equations, appendices, and supplementary materials, and require multi-document reasoning. We evaluate several open-source and proprietary LLMs across various configurations to explore their capabilities in generating relevant and factual responses. Our comprehensive evaluation, based on metrics for surface-level similarity and LLM judgements, highlights notable performance discrepancies. SciDQA represents a rigorously curated, naturally derived scientific QA dataset, designed to facilitate research on complex scientific text understanding.
ComQA: A Community-sourced Dataset for Complex Factoid Question Answering with Paraphrase Clusters
To bridge the gap between the capabilities of the state-of-the-art in factoid question answering (QA) and what users ask, we need large datasets of real user questions that capture the various question phenomena users are interested in, and the diverse ways in which these questions are formulated. We introduce ComQA, a large dataset of real user questions that exhibit different challenging aspects such as compositionality, temporal reasoning, and comparisons. ComQA questions come from the WikiAnswers community QA platform, which typically contains questions that are not satisfactorily answerable by existing search engine technology. Through a large crowdsourcing effort, we clean the question dataset, group questions into paraphrase clusters, and annotate clusters with their answers. ComQA contains 11,214 questions grouped into 4,834 paraphrase clusters. We detail the process of constructing ComQA, including the measures taken to ensure its high quality while making effective use of crowdsourcing. We also present an extensive analysis of the dataset and the results achieved by state-of-the-art systems on ComQA, demonstrating that our dataset can be a driver of future research on QA.
MetaQA: Combining Expert Agents for Multi-Skill Question Answering
The recent explosion of question answering (QA) datasets and models has increased the interest in the generalization of models across multiple domains and formats by either training on multiple datasets or by combining multiple models. Despite the promising results of multi-dataset models, some domains or QA formats may require specific architectures, and thus the adaptability of these models might be limited. In addition, current approaches for combining models disregard cues such as question-answer compatibility. In this work, we propose to combine expert agents with a novel, flexible, and training-efficient architecture that considers questions, answer predictions, and answer-prediction confidence scores to select the best answer among a list of answer candidates. Through quantitative and qualitative experiments we show that our model i) creates a collaboration between agents that outperforms previous multi-agent and multi-dataset approaches in both in-domain and out-of-domain scenarios, ii) is highly data-efficient to train, and iii) can be adapted to any QA format. We release our code and a dataset of answer predictions from expert agents for 16 QA datasets to foster future developments of multi-agent systems on https://github.com/UKPLab/MetaQA.
EXAMS: A Multi-Subject High School Examinations Dataset for Cross-Lingual and Multilingual Question Answering
We propose EXAMS -- a new benchmark dataset for cross-lingual and multilingual question answering for high school examinations. We collected more than 24,000 high-quality high school exam questions in 16 languages, covering 8 language families and 24 school subjects from Natural Sciences and Social Sciences, among others. EXAMS offers a fine-grained evaluation framework across multiple languages and subjects, which allows precise analysis and comparison of various models. We perform various experiments with existing top-performing multilingual pre-trained models and we show that EXAMS offers multiple challenges that require multilingual knowledge and reasoning in multiple domains. We hope that EXAMS will enable researchers to explore challenging reasoning and knowledge transfer methods and pre-trained models for school question answering in various languages which was not possible before. The data, code, pre-trained models, and evaluation are available at https://github.com/mhardalov/exams-qa.
Building Efficient and Effective OpenQA Systems for Low-Resource Languages
Question answering (QA) is the task of answering questions posed in natural language with free-form natural language answers extracted from a given passage. In the OpenQA variant, only a question text is given, and the system must retrieve relevant passages from an unstructured knowledge source and use them to provide answers, which is the case in the mainstream QA systems on the Web. QA systems currently are mostly limited to the English language due to the lack of large-scale labeled QA datasets in non-English languages. In this paper, we show that effective, low-cost OpenQA systems can be developed for low-resource contexts. The key ingredients are (1) weak supervision using machine-translated labeled datasets and (2) a relevant unstructured knowledge source in the target language context. Furthermore, we show that only a few hundred gold assessment examples are needed to reliably evaluate these systems. We apply our method to Turkish as a challenging case study, since English and Turkish are typologically very distinct and Turkish has limited resources for QA. We present SQuAD-TR, a machine translation of SQuAD2.0, and we build our OpenQA system by adapting ColBERT-QA and retraining it over Turkish resources and SQuAD-TR using two versions of Wikipedia dumps spanning two years. We obtain a performance improvement of 24-32% in the Exact Match (EM) score and 22-29% in the F1 score compared to the BM25-based and DPR-based baseline QA reader models. Our results show that SQuAD-TR makes OpenQA feasible for Turkish, which we hope encourages researchers to build OpenQA systems in other low-resource languages. We make all the code, models, and the dataset publicly available at https://github.com/boun-tabi/SQuAD-TR.
Wrong Answers Can Also Be Useful: PlausibleQA -- A Large-Scale QA Dataset with Answer Plausibility Scores
Large Language Models (LLMs) are revolutionizing information retrieval, with chatbots becoming an important source for answering user queries. As by their design, LLMs prioritize generating correct answers, the value of highly plausible yet incorrect answers (candidate answers) tends to be overlooked. However, such answers can still prove useful, for example, they can play a crucial role in tasks like Multiple-Choice Question Answering (MCQA) and QA Robustness Assessment (QARA). Existing QA datasets primarily focus on correct answers without explicit consideration of the plausibility of other candidate answers, limiting opportunity for more nuanced evaluations of models. To address this gap, we introduce PlausibleQA, a large-scale dataset comprising 10,000 questions and 100,000 candidate answers, each annotated with plausibility scores and justifications for their selection. Additionally, the dataset includes 900,000 justifications for pairwise comparisons between candidate answers, further refining plausibility assessments. We evaluate PlausibleQA through human assessments and empirical experiments, demonstrating its utility in MCQA and QARA analysis. Our findings show that plausibility-aware approaches are effective for MCQA distractor generation and QARA. We release PlausibleQA as a resource for advancing QA research and enhancing LLM performance in distinguishing plausible distractors from correct answers.
MLQA: Evaluating Cross-lingual Extractive Question Answering
Question answering (QA) models have shown rapid progress enabled by the availability of large, high-quality benchmark datasets. Such annotated datasets are difficult and costly to collect, and rarely exist in languages other than English, making training QA systems in other languages challenging. An alternative to building large monolingual training datasets is to develop cross-lingual systems which can transfer to a target language without requiring training data in that language. In order to develop such systems, it is crucial to invest in high quality multilingual evaluation benchmarks to measure progress. We present MLQA, a multi-way aligned extractive QA evaluation benchmark intended to spur research in this area. MLQA contains QA instances in 7 languages, namely English, Arabic, German, Spanish, Hindi, Vietnamese and Simplified Chinese. It consists of over 12K QA instances in English and 5K in each other language, with each QA instance being parallel between 4 languages on average. MLQA is built using a novel alignment context strategy on Wikipedia articles, and serves as a cross-lingual extension to existing extractive QA datasets. We evaluate current state-of-the-art cross-lingual representations on MLQA, and also provide machine-translation-based baselines. In all cases, transfer results are shown to be significantly behind training-language performance.
UnifiedQA: Crossing Format Boundaries With a Single QA System
Question answering (QA) tasks have been posed using a variety of formats, such as extractive span selection, multiple choice, etc. This has led to format-specialized models, and even to an implicit division in the QA community. We argue that such boundaries are artificial and perhaps unnecessary, given the reasoning abilities we seek to teach are not governed by the format. As evidence, we use the latest advances in language modeling to build a single pre-trained QA model, UnifiedQA, that performs surprisingly well across 17 QA datasets spanning 4 diverse formats. UnifiedQA performs on par with 9 different models that were trained on individual datasets themselves. Even when faced with 12 unseen datasets of observed formats, UnifiedQA performs surprisingly well, showing strong generalization from its out-of-format training data. Finally, simply fine-tuning this pre-trained QA model into specialized models results in a new state of the art on 6 datasets, establishing UnifiedQA as a strong starting point for building QA systems.
MedQARo: A Large-Scale Benchmark for Medical Question Answering in Romanian
Question answering (QA) is an actively studied topic, being a core natural language processing (NLP) task that needs to be addressed before achieving Artificial General Intelligence (AGI). However, the lack of QA datasets in specific domains and languages hinders the development of robust AI models able to generalize across various domains and languages. To this end, we introduce MedQARo, the first large-scale medical QA benchmark in Romanian, alongside a comprehensive evaluation of state-of-the-art large language models (LLMs). We construct a high-quality and large-scale dataset comprising 102,646 QA pairs related to cancer patients. The questions regard medical case summaries of 1,011 patients, requiring either keyword extraction or reasoning to be answered correctly. MedQARo is the result of a time-consuming manual annotation process carried out by seven physicians specialized in oncology or radiotherapy, who spent a total of about 2,100 work hours to generate the QA pairs. We experiment with four LLMs from distinct families of models on MedQARo. Each model is employed in two scenarios, namely one based on zero-shot prompting and one based on supervised fine-tuning. Our results show that fine-tuned models significantly outperform their zero-shot counterparts, clearly indicating that pretrained models fail to generalize on MedQARo. Our findings demonstrate the importance of both domain-specific and language-specific fine-tuning for reliable clinical QA in Romanian. We publicly release our dataset and code at https://github.com/ana-rogoz/MedQARo.
WorldMedQA-V: a multilingual, multimodal medical examination dataset for multimodal language models evaluation
Multimodal/vision language models (VLMs) are increasingly being deployed in healthcare settings worldwide, necessitating robust benchmarks to ensure their safety, efficacy, and fairness. Multiple-choice question and answer (QA) datasets derived from national medical examinations have long served as valuable evaluation tools, but existing datasets are largely text-only and available in a limited subset of languages and countries. To address these challenges, we present WorldMedQA-V, an updated multilingual, multimodal benchmarking dataset designed to evaluate VLMs in healthcare. WorldMedQA-V includes 568 labeled multiple-choice QAs paired with 568 medical images from four countries (Brazil, Israel, Japan, and Spain), covering original languages and validated English translations by native clinicians, respectively. Baseline performance for common open- and closed-source models are provided in the local language and English translations, and with and without images provided to the model. The WorldMedQA-V benchmark aims to better match AI systems to the diverse healthcare environments in which they are deployed, fostering more equitable, effective, and representative applications.
Question Answering over Electronic Devices: A New Benchmark Dataset and a Multi-Task Learning based QA Framework
Answering questions asked from instructional corpora such as E-manuals, recipe books, etc., has been far less studied than open-domain factoid context-based question answering. This can be primarily attributed to the absence of standard benchmark datasets. In this paper we meticulously create a large amount of data connected with E-manuals and develop suitable algorithm to exploit it. We collect E-Manual Corpus, a huge corpus of 307,957 E-manuals and pretrain RoBERTa on this large corpus. We create various benchmark QA datasets which include question answer pairs curated by experts based upon two E-manuals, real user questions from Community Question Answering Forum pertaining to E-manuals etc. We introduce EMQAP (E-Manual Question Answering Pipeline) that answers questions pertaining to electronics devices. Built upon the pretrained RoBERTa, it harbors a supervised multi-task learning framework which efficiently performs the dual tasks of identifying the section in the E-manual where the answer can be found and the exact answer span within that section. For E-Manual annotated question-answer pairs, we show an improvement of about 40% in ROUGE-L F1 scores over the most competitive baseline. We perform a detailed ablation study and establish the versatility of EMQAP across different circumstances. The code and datasets are shared at https://github.com/abhi1nandy2/EMNLP-2021-Findings, and the corresponding project website is https://sites.google.com/view/emanualqa/home.
The Effect of Natural Distribution Shift on Question Answering Models
We build four new test sets for the Stanford Question Answering Dataset (SQuAD) and evaluate the ability of question-answering systems to generalize to new data. Our first test set is from the original Wikipedia domain and measures the extent to which existing systems overfit the original test set. Despite several years of heavy test set re-use, we find no evidence of adaptive overfitting. The remaining three test sets are constructed from New York Times articles, Reddit posts, and Amazon product reviews and measure robustness to natural distribution shifts. Across a broad range of models, we observe average performance drops of 3.8, 14.0, and 17.4 F1 points, respectively. In contrast, a strong human baseline matches or exceeds the performance of SQuAD models on the original domain and exhibits little to no drop in new domains. Taken together, our results confirm the surprising resilience of the holdout method and emphasize the need to move towards evaluation metrics that incorporate robustness to natural distribution shifts.
FairytaleQA Translated: Enabling Educational Question and Answer Generation in Less-Resourced Languages
Question Answering (QA) datasets are crucial in assessing reading comprehension skills for both machines and humans. While numerous datasets have been developed in English for this purpose, a noticeable void exists in less-resourced languages. To alleviate this gap, our paper introduces machine-translated versions of FairytaleQA, a renowned QA dataset designed to assess and enhance narrative comprehension skills in young children. By employing fine-tuned, modest-scale models, we establish benchmarks for both Question Generation (QG) and QA tasks within the translated datasets. In addition, we present a case study proposing a model for generating question-answer pairs, with an evaluation incorporating quality metrics such as question well-formedness, answerability, relevance, and children suitability. Our evaluation prioritizes quantifying and describing error cases, along with providing directions for future work. This paper contributes to the advancement of QA and QG research in less-resourced languages, promoting accessibility and inclusivity in the development of these models for reading comprehension. The code and data is publicly available at github.com/bernardoleite/fairytaleqa-translated.
Fantastic Questions and Where to Find Them: FairytaleQA -- An Authentic Dataset for Narrative Comprehension
Question answering (QA) is a fundamental means to facilitate assessment and training of narrative comprehension skills for both machines and young children, yet there is scarcity of high-quality QA datasets carefully designed to serve this purpose. In particular, existing datasets rarely distinguish fine-grained reading skills, such as the understanding of varying narrative elements. Drawing on the reading education research, we introduce FairytaleQA, a dataset focusing on narrative comprehension of kindergarten to eighth-grade students. Generated by educational experts based on an evidence-based theoretical framework, FairytaleQA consists of 10,580 explicit and implicit questions derived from 278 children-friendly stories, covering seven types of narrative elements or relations. Our dataset is valuable in two folds: First, we ran existing QA models on our dataset and confirmed that this annotation helps assess models' fine-grained learning skills. Second, the dataset supports question generation (QG) task in the education domain. Through benchmarking with QG models, we show that the QG model trained on FairytaleQA is capable of asking high-quality and more diverse questions.
MMLU-CF: A Contamination-free Multi-task Language Understanding Benchmark
Multiple-choice question (MCQ) datasets like Massive Multitask Language Understanding (MMLU) are widely used to evaluate the commonsense, understanding, and problem-solving abilities of large language models (LLMs). However, the open-source nature of these benchmarks and the broad sources of training data for LLMs have inevitably led to benchmark contamination, resulting in unreliable evaluation results. To alleviate this issue, we propose a contamination-free and more challenging MCQ benchmark called MMLU-CF. This benchmark reassesses LLMs' understanding of world knowledge by averting both unintentional and malicious data leakage. To avoid unintentional data leakage, we source data from a broader domain and design three decontamination rules. To prevent malicious data leakage, we divide the benchmark into validation and test sets with similar difficulty and subject distributions. The test set remains closed-source to ensure reliable results, while the validation set is publicly available to promote transparency and facilitate independent verification. Our evaluation of mainstream LLMs reveals that the powerful GPT-4o achieves merely a 5-shot score of 73.4% and a 0-shot score of 71.9% on the test set, which indicates the effectiveness of our approach in creating a more rigorous and contamination-free evaluation standard. The GitHub repository is available at https://github.com/microsoft/MMLU-CF and the dataset refers to https://huggingface.co/datasets/microsoft/MMLU-CF.
QuAnTS: Question Answering on Time Series
Text offers intuitive access to information. This can, in particular, complement the density of numerical time series, thereby allowing improved interactions with time series models to enhance accessibility and decision-making. While the creation of question-answering datasets and models has recently seen remarkable growth, most research focuses on question answering (QA) on vision and text, with time series receiving minute attention. To bridge this gap, we propose a challenging novel time series QA (TSQA) dataset, QuAnTS, for Question Answering on Time Series data. Specifically, we pose a wide variety of questions and answers about human motion in the form of tracked skeleton trajectories. We verify that the large-scale QuAnTS dataset is well-formed and comprehensive through extensive experiments. Thoroughly evaluating existing and newly proposed baselines then lays the groundwork for a deeper exploration of TSQA using QuAnTS. Additionally, we provide human performances as a key reference for gauging the practical usability of such models. We hope to encourage future research on interacting with time series models through text, enabling better decision-making and more transparent systems.
NativQA: Multilingual Culturally-Aligned Natural Query for LLMs
Natural Question Answering (QA) datasets play a crucial role in evaluating the capabilities of large language models (LLMs), ensuring their effectiveness in real-world applications. Despite the numerous QA datasets that have been developed, there is a notable lack of region-specific datasets generated by native users in their own languages. This gap hinders the effective benchmarking of LLMs for regional and cultural specificities. Furthermore, it also limits the development of fine-tuned models. In this study, we propose a scalable, language-independent framework, NativQA, to seamlessly construct culturally and regionally aligned QA datasets in native languages, for LLM evaluation and tuning. We demonstrate the efficacy of the proposed framework by designing a multilingual natural QA dataset, \mnqa, consisting of ~64k manually annotated QA pairs in seven languages, ranging from high to extremely low resource, based on queries from native speakers from 9 regions covering 18 topics. We benchmark open- and closed-source LLMs with the MultiNativQA dataset. We also showcase the framework efficacy in constructing fine-tuning data especially for low-resource and dialectally-rich languages. We made both the framework NativQA and MultiNativQA dataset publicly available for the community (https://nativqa.gitlab.io).
RealCQA: Scientific Chart Question Answering as a Test-bed for First-Order Logic
We present a comprehensive study of chart visual question-answering(QA) task, to address the challenges faced in comprehending and extracting data from chart visualizations within documents. Despite efforts to tackle this problem using synthetic charts, solutions are limited by the shortage of annotated real-world data. To fill this gap, we introduce a benchmark and dataset for chart visual QA on real-world charts, offering a systematic analysis of the task and a novel taxonomy for template-based chart question creation. Our contribution includes the introduction of a new answer type, 'list', with both ranked and unranked variations. Our study is conducted on a real-world chart dataset from scientific literature, showcasing higher visual complexity compared to other works. Our focus is on template-based QA and how it can serve as a standard for evaluating the first-order logic capabilities of models. The results of our experiments, conducted on a real-world out-of-distribution dataset, provide a robust evaluation of large-scale pre-trained models and advance the field of chart visual QA and formal logic verification for neural networks in general.
ScIRGen: Synthesize Realistic and Large-Scale RAG Dataset for Scientific Research
Scientific researchers need intensive information about datasets to effectively evaluate and develop theories and methodologies. The information needs regarding datasets are implicitly embedded in particular research tasks, rather than explicitly expressed in search queries. However, existing scientific retrieval and question-answering (QA) datasets typically address straightforward questions, which do not align with the distribution of real-world research inquiries. To bridge this gap, we developed ScIRGen, a dataset generation framework for scientific QA \& retrieval that more accurately reflects the information needs of professional science researchers, and uses it to create a large-scale scientific retrieval-augmented generation (RAG) dataset with realistic queries, datasets and papers. Technically, we designed a dataset-oriented information extraction method that leverages academic papers to augment the dataset representation. We then proposed a question generation framework by employing cognitive taxonomy to ensure the quality of synthesized questions. We also design a method to automatically filter synthetic answers based on the perplexity shift of LLMs, which is highly aligned with human judgment of answers' validity. Collectively, these methodologies culminated in the creation of the 61k QA dataset, ScIRGen-Geo. We benchmarked representative methods on the ScIRGen-Geo dataset for their question-answering and retrieval capabilities, finding out that current methods still suffer from reasoning from complex questions. This work advances the development of more sophisticated tools to support the intricate information needs of the scientific community.
SubjECTive-QA: Measuring Subjectivity in Earnings Call Transcripts' QA Through Six-Dimensional Feature Analysis
Fact-checking is extensively studied in the context of misinformation and disinformation, addressing objective inaccuracies. However, a softer form of misinformation involves responses that are factually correct but lack certain features such as clarity and relevance. This challenge is prevalent in formal Question-Answer (QA) settings such as press conferences in finance, politics, sports, and other domains, where subjective answers can obscure transparency. Despite this, there is a lack of manually annotated datasets for subjective features across multiple dimensions. To address this gap, we introduce SubjECTive-QA, a human annotated dataset on Earnings Call Transcripts' (ECTs) QA sessions as the answers given by company representatives are often open to subjective interpretations and scrutiny. The dataset includes 49,446 annotations for long-form QA pairs across six features: Assertive, Cautious, Optimistic, Specific, Clear, and Relevant. These features are carefully selected to encompass the key attributes that reflect the tone of the answers provided during QA sessions across different domain. Our findings are that the best-performing Pre-trained Language Model (PLM), RoBERTa-base, has similar weighted F1 scores to Llama-3-70b-Chat on features with lower subjectivity, such as Relevant and Clear, with a mean difference of 2.17% in their weighted F1 scores. The models perform significantly better on features with higher subjectivity, such as Specific and Assertive, with a mean difference of 10.01% in their weighted F1 scores. Furthermore, testing SubjECTive-QA's generalizability using QAs from White House Press Briefings and Gaggles yields an average weighted F1 score of 65.97% using our best models for each feature, demonstrating broader applicability beyond the financial domain. SubjECTive-QA is publicly available under the CC BY 4.0 license
Implications of Deep Circuits in Improving Quality of Quantum Question Answering
Question Answering (QA) has proved to be an arduous challenge in the area of natural language processing (NLP) and artificial intelligence (AI). Many attempts have been made to develop complete solutions for QA as well as improving significant sub-modules of the QA systems to improve the overall performance through the course of time. Questions are the most important piece of QA, because knowing the question is equivalent to knowing what counts as an answer (Harrah in Philos Sci, 1961 [1]). In this work, we have attempted to understand questions in a better way by using Quantum Machine Learning (QML). The properties of Quantum Computing (QC) have enabled classically intractable data processing. So, in this paper, we have performed question classification on questions from two classes of SelQA (Selection-based Question Answering) dataset using quantum-based classifier algorithms-quantum support vector machine (QSVM) and variational quantum classifier (VQC) from Qiskit (Quantum Information Science toolKIT) for Python. We perform classification with both classifiers in almost similar environments and study the effects of circuit depths while comparing the results of both classifiers. We also use these classification results with our own rule-based QA system and observe significant performance improvement. Hence, this experiment has helped in improving the quality of QA in general.
SD-QA: Spoken Dialectal Question Answering for the Real World
Question answering (QA) systems are now available through numerous commercial applications for a wide variety of domains, serving millions of users that interact with them via speech interfaces. However, current benchmarks in QA research do not account for the errors that speech recognition models might introduce, nor do they consider the language variations (dialects) of the users. To address this gap, we augment an existing QA dataset to construct a multi-dialect, spoken QA benchmark on five languages (Arabic, Bengali, English, Kiswahili, Korean) with more than 68k audio prompts in 24 dialects from 255 speakers. We provide baseline results showcasing the real-world performance of QA systems and analyze the effect of language variety and other sensitive speaker attributes on downstream performance. Last, we study the fairness of the ASR and QA models with respect to the underlying user populations. The dataset, model outputs, and code for reproducing all our experiments are available: https://github.com/ffaisal93/SD-QA.
QGen Studio: An Adaptive Question-Answer Generation, Training and Evaluation Platform
We present QGen Studio: an adaptive question-answer generation, training, and evaluation platform. QGen Studio enables users to leverage large language models (LLMs) to create custom question-answer datasets and fine-tune models on this synthetic data. It features a dataset viewer and model explorer to streamline this process. The dataset viewer provides key metrics and visualizes the context from which the QA pairs are generated, offering insights into data quality. The model explorer supports model comparison, allowing users to contrast the performance of their trained LLMs against other models, supporting performance benchmarking and refinement. QGen Studio delivers an interactive, end-to-end solution for generating QA datasets and training scalable, domain-adaptable models. The studio will be open-sourced soon, allowing users to deploy it locally.
K-QA: A Real-World Medical Q&A Benchmark
Ensuring the accuracy of responses provided by large language models (LLMs) is crucial, particularly in clinical settings where incorrect information may directly impact patient health. To address this challenge, we construct K-QA, a dataset containing 1,212 patient questions originating from real-world conversations held on K Health (an AI-driven clinical platform). We employ a panel of in-house physicians to answer and manually decompose a subset of K-QA into self-contained statements. Additionally, we formulate two NLI-based evaluation metrics approximating recall and precision: (1) comprehensiveness, measuring the percentage of essential clinical information in the generated answer and (2) hallucination rate, measuring the number of statements from the physician-curated response contradicted by the LLM answer. Finally, we use K-QA along with these metrics to evaluate several state-of-the-art models, as well as the effect of in-context learning and medically-oriented augmented retrieval schemes developed by the authors. Our findings indicate that in-context learning improves the comprehensiveness of the models, and augmented retrieval is effective in reducing hallucinations. We make K-QA available to to the community to spur research into medically accurate NLP applications.
Large Language Models Meet Knowledge Graphs for Question Answering: Synthesis and Opportunities
Large language models (LLMs) have demonstrated remarkable performance on question-answering (QA) tasks because of their superior capabilities in natural language understanding and generation. However, LLM-based QA struggles with complex QA tasks due to poor reasoning capacity, outdated knowledge, and hallucinations. Several recent works synthesize LLMs and knowledge graphs (KGs) for QA to address the above challenges. In this survey, we propose a new structured taxonomy that categorizes the methodology of synthesizing LLMs and KGs for QA according to the categories of QA and the KG's role when integrating with LLMs. We systematically survey state-of-the-art advances in synthesizing LLMs and KGs for QA and compare and analyze these approaches in terms of strength, limitations, and KG requirements. We then align the approaches with QA and discuss how these approaches address the main challenges of different complex QA. Finally, we summarize the advancements, evaluation metrics, and benchmark datasets and highlight open challenges and opportunities.
Revolutionizing Database Q&A with Large Language Models: Comprehensive Benchmark and Evaluation
The development of Large Language Models (LLMs) has revolutionized Q&A across various industries, including the database domain. However, there is still a lack of a comprehensive benchmark to evaluate the capabilities of different LLMs and their modular components in database Q&A. To this end, we introduce DQA, the first comprehensive database Q&A benchmark. DQA features an innovative LLM-based method for automating the generation, cleaning, and rewriting of database Q&A, resulting in over 240,000 Q&A pairs in English and Chinese. These Q&A pairs cover nearly all aspects of database knowledge, including database manuals, database blogs, and database tools. This inclusion allows for additional assessment of LLMs' Retrieval-Augmented Generation (RAG) and Tool Invocation Generation (TIG) capabilities in the database Q&A task. Furthermore, we propose a comprehensive LLM-based database Q&A testbed on DQA. This testbed is highly modular and scalable, with both basic and advanced components like Question Classification Routing (QCR), RAG, TIG, and Prompt Template Engineering (PTE). Besides, DQA provides a complete evaluation pipeline, featuring diverse metrics and a standardized evaluation process to ensure comprehensiveness, accuracy, and fairness. We use DQA to evaluate the database Q&A capabilities under the proposed testbed comprehensively. The evaluation reveals findings like (i) the strengths and limitations of nine different LLM-based Q&A bots and (ii) the performance impact and potential improvements of various service components (e.g., QCR, RAG, TIG). We hope our benchmark and findings will better guide the future development of LLM-based database Q&A research.
ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers
We describe a Question Answering (QA) dataset that contains complex questions with conditional answers, i.e. the answers are only applicable when certain conditions apply. We call this dataset ConditionalQA. In addition to conditional answers, the dataset also features: (1) long context documents with information that is related in logically complex ways; (2) multi-hop questions that require compositional logical reasoning; (3) a combination of extractive questions, yes/no questions, questions with multiple answers, and not-answerable questions; (4) questions asked without knowing the answers. We show that ConditionalQA is challenging for many of the existing QA models, especially in selecting answer conditions. We believe that this dataset will motivate further research in answering complex questions over long documents. Data and leaderboard are publicly available at https://github.com/haitian-sun/ConditionalQA.
GQA: A New Dataset for Real-World Visual Reasoning and Compositional Question Answering
We introduce GQA, a new dataset for real-world visual reasoning and compositional question answering, seeking to address key shortcomings of previous VQA datasets. We have developed a strong and robust question engine that leverages scene graph structures to create 22M diverse reasoning questions, all come with functional programs that represent their semantics. We use the programs to gain tight control over the answer distribution and present a new tunable smoothing technique to mitigate question biases. Accompanying the dataset is a suite of new metrics that evaluate essential qualities such as consistency, grounding and plausibility. An extensive analysis is performed for baselines as well as state-of-the-art models, providing fine-grained results for different question types and topologies. Whereas a blind LSTM obtains mere 42.1%, and strong VQA models achieve 54.1%, human performance tops at 89.3%, offering ample opportunity for new research to explore. We strongly hope GQA will provide an enabling resource for the next generation of models with enhanced robustness, improved consistency, and deeper semantic understanding for images and language.
ExpliCIT-QA: Explainable Code-Based Image Table Question Answering
We present ExpliCIT-QA, a system that extends our previous MRT approach for tabular question answering into a multimodal pipeline capable of handling complex table images and providing explainable answers. ExpliCIT-QA follows a modular design, consisting of: (1) Multimodal Table Understanding, which uses a Chain-of-Thought approach to extract and transform content from table images; (2) Language-based Reasoning, where a step-by-step explanation in natural language is generated to solve the problem; (3) Automatic Code Generation, where Python/Pandas scripts are created based on the reasoning steps, with feedback for handling errors; (4) Code Execution to compute the final answer; and (5) Natural Language Explanation that describes how the answer was computed. The system is built for transparency and auditability: all intermediate outputs, parsed tables, reasoning steps, generated code, and final answers are available for inspection. This strategy works towards closing the explainability gap in end-to-end TableVQA systems. We evaluated ExpliCIT-QA on the TableVQA-Bench benchmark, comparing it with existing baselines. We demonstrated improvements in interpretability and transparency, which open the door for applications in sensitive domains like finance and healthcare where auditing results are critical.
Researchy Questions: A Dataset of Multi-Perspective, Decompositional Questions for LLM Web Agents
Existing question answering (QA) datasets are no longer challenging to most powerful Large Language Models (LLMs). Traditional QA benchmarks like TriviaQA, NaturalQuestions, ELI5 and HotpotQA mainly study ``known unknowns'' with clear indications of both what information is missing, and how to find it to answer the question. Hence, good performance on these benchmarks provides a false sense of security. A yet unmet need of the NLP community is a bank of non-factoid, multi-perspective questions involving a great deal of unclear information needs, i.e. ``unknown uknowns''. We claim we can find such questions in search engine logs, which is surprising because most question-intent queries are indeed factoid. We present Researchy Questions, a dataset of search engine queries tediously filtered to be non-factoid, ``decompositional'' and multi-perspective. We show that users spend a lot of ``effort'' on these questions in terms of signals like clicks and session length, and that they are also challenging for GPT-4. We also show that ``slow thinking'' answering techniques, like decomposition into sub-questions shows benefit over answering directly. We release sim 100k Researchy Questions, along with the Clueweb22 URLs that were clicked.
MultiOCR-QA: Dataset for Evaluating Robustness of LLMs in Question Answering on Multilingual OCR Texts
Optical Character Recognition (OCR) plays a crucial role in digitizing historical and multilingual documents, yet OCR errors -- imperfect extraction of the text, including character insertion, deletion and permutation -- can significantly impact downstream tasks like question-answering (QA). In this work, we introduce a multilingual QA dataset MultiOCR-QA, designed to analyze the effects of OCR noise on QA systems' performance. The MultiOCR-QA dataset comprises 60K question-answer pairs covering three languages, English, French, and German. The dataset is curated from OCR-ed old documents, allowing for the evaluation of OCR-induced challenges on question answering. We evaluate MultiOCR-QA on various levels and types of OCR errors to access the robustness of LLMs in handling real-world digitization errors. Our findings show that QA systems are highly prone to OCR induced errors and exhibit performance degradation on noisy OCR text.
The TechQA Dataset
We introduce TechQA, a domain-adaptation question answering dataset for the technical support domain. The TechQA corpus highlights two real-world issues from the automated customer support domain. First, it contains actual questions posed by users on a technical forum, rather than questions generated specifically for a competition or a task. Second, it has a real-world size -- 600 training, 310 dev, and 490 evaluation question/answer pairs -- thus reflecting the cost of creating large labeled datasets with actual data. Consequently, TechQA is meant to stimulate research in domain adaptation rather than being a resource to build QA systems from scratch. The dataset was obtained by crawling the IBM Developer and IBM DeveloperWorks forums for questions with accepted answers that appear in a published IBM Technote---a technical document that addresses a specific technical issue. We also release a collection of the 801,998 publicly available Technotes as of April 4, 2019 as a companion resource that might be used for pretraining, to learn representations of the IT domain language.
Context Filtering with Reward Modeling in Question Answering
Question Answering (QA) in NLP is the task of finding answers to a query within a relevant context retrieved by a retrieval system. Yet, the mix of relevant and irrelevant information in these contexts can hinder performance enhancements in QA tasks. To address this, we introduce a context filtering approach that removes non-essential details, summarizing crucial content through Reward Modeling. This method emphasizes keeping vital data while omitting the extraneous during summarization model training. We offer a framework for developing efficient QA models by discerning useful information from dataset pairs, bypassing the need for costly human evaluation. Furthermore, we show that our approach can significantly outperform the baseline, as evidenced by a 6.8-fold increase in the EM Per Token (EPT) metric, which we propose as a measure of token efficiency, indicating a notable token-efficiency boost for low-resource settings.
MultiTabQA: Generating Tabular Answers for Multi-Table Question Answering
Recent advances in tabular question answering (QA) with large language models are constrained in their coverage and only answer questions over a single table. However, real-world queries are complex in nature, often over multiple tables in a relational database or web page. Single table questions do not involve common table operations such as set operations, Cartesian products (joins), or nested queries. Furthermore, multi-table operations often result in a tabular output, which necessitates table generation capabilities of tabular QA models. To fill this gap, we propose a new task of answering questions over multiple tables. Our model, MultiTabQA, not only answers questions over multiple tables, but also generalizes to generate tabular answers. To enable effective training, we build a pre-training dataset comprising of 132,645 SQL queries and tabular answers. Further, we evaluate the generated tables by introducing table-specific metrics of varying strictness assessing various levels of granularity of the table structure. MultiTabQA outperforms state-of-the-art single table QA models adapted to a multi-table QA setting by finetuning on three datasets: Spider, Atis and GeoQuery.
SpaceQA: Answering Questions about the Design of Space Missions and Space Craft Concepts
We present SpaceQA, to the best of our knowledge the first open-domain QA system in Space mission design. SpaceQA is part of an initiative by the European Space Agency (ESA) to facilitate the access, sharing and reuse of information about Space mission design within the agency and with the public. We adopt a state-of-the-art architecture consisting of a dense retriever and a neural reader and opt for an approach based on transfer learning rather than fine-tuning due to the lack of domain-specific annotated data. Our evaluation on a test set produced by ESA is largely consistent with the results originally reported by the evaluated retrievers and confirms the need of fine tuning for reading comprehension. As of writing this paper, ESA is piloting SpaceQA internally.
Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks
We identify label errors in the test sets of 10 of the most commonly-used computer vision, natural language, and audio datasets, and subsequently study the potential for these label errors to affect benchmark results. Errors in test sets are numerous and widespread: we estimate an average of at least 3.3% errors across the 10 datasets, where for example label errors comprise at least 6% of the ImageNet validation set. Putative label errors are identified using confident learning algorithms and then human-validated via crowdsourcing (51% of the algorithmically-flagged candidates are indeed erroneously labeled, on average across the datasets). Traditionally, machine learning practitioners choose which model to deploy based on test accuracy - our findings advise caution here, proposing that judging models over correctly labeled test sets may be more useful, especially for noisy real-world datasets. Surprisingly, we find that lower capacity models may be practically more useful than higher capacity models in real-world datasets with high proportions of erroneously labeled data. For example, on ImageNet with corrected labels: ResNet-18 outperforms ResNet-50 if the prevalence of originally mislabeled test examples increases by just 6%. On CIFAR-10 with corrected labels: VGG-11 outperforms VGG-19 if the prevalence of originally mislabeled test examples increases by just 5%. Test set errors across the 10 datasets can be viewed at https://labelerrors.com and all label errors can be reproduced by https://github.com/cleanlab/label-errors.
Synthetic Dataset Creation and Fine-Tuning of Transformer Models for Question Answering in Serbian
In this paper, we focus on generating a synthetic question answering (QA) dataset using an adapted Translate-Align-Retrieve method. Using this method, we created the largest Serbian QA dataset of more than 87K samples, which we name SQuAD-sr. To acknowledge the script duality in Serbian, we generated both Cyrillic and Latin versions of the dataset. We investigate the dataset quality and use it to fine-tune several pre-trained QA models. Best results were obtained by fine-tuning the BERTi\'c model on our Latin SQuAD-sr dataset, achieving 73.91% Exact Match and 82.97% F1 score on the benchmark XQuAD dataset, which we translated into Serbian for the purpose of evaluation. The results show that our model exceeds zero-shot baselines, but fails to go beyond human performance. We note the advantage of using a monolingual pre-trained model over multilingual, as well as the performance increase gained by using Latin over Cyrillic. By performing additional analysis, we show that questions about numeric values or dates are more likely to be answered correctly than other types of questions. Finally, we conclude that SQuAD-sr is of sufficient quality for fine-tuning a Serbian QA model, in the absence of a manually crafted and annotated dataset.
Transforming Question Answering Datasets Into Natural Language Inference Datasets
Existing datasets for natural language inference (NLI) have propelled research on language understanding. We propose a new method for automatically deriving NLI datasets from the growing abundance of large-scale question answering datasets. Our approach hinges on learning a sentence transformation model which converts question-answer pairs into their declarative forms. Despite being primarily trained on a single QA dataset, we show that it can be successfully applied to a variety of other QA resources. Using this system, we automatically derive a new freely available dataset of over 500k NLI examples (QA-NLI), and show that it exhibits a wide range of inference phenomena rarely seen in previous NLI datasets.
ProMQA-Assembly: Multimodal Procedural QA Dataset on Assembly
Assistants on assembly tasks have a large potential to benefit humans from everyday tasks to industrial settings. However, no testbeds support application-oriented system evaluation in a practical setting, especially in assembly. To foster the development, we propose a new multimodal QA dataset on assembly activities. Our dataset, ProMQA-Assembly, consists of 391 QA pairs that require the multimodal understanding of human-activity recordings and their instruction manuals in an online-style manner. In the development, we adopt a semi-automated QA annotation approach, where LLMs generate candidates and humans verify them, as a cost-effective method, and further improve it by integrating fine-grained action labels to diversify question types. Furthermore, we create instruction task graphs for the target tasks of assembling toy vehicles. These newly created task graphs are used in our benchmarking experiment, as well as to facilitate the human verification process in the QA annotation. Utilizing our dataset, we benchmark models, including competitive proprietary multimodal models. Our results suggest great room for improvement for the current models. We believe our new evaluation dataset can contribute to the further development of procedural-activity assistants.
Suvach -- Generated Hindi QA benchmark
Current evaluation benchmarks for question answering (QA) in Indic languages often rely on machine translation of existing English datasets. This approach suffers from bias and inaccuracies inherent in machine translation, leading to datasets that may not reflect the true capabilities of EQA models for Indic languages. This paper proposes a new benchmark specifically designed for evaluating Hindi EQA models and discusses the methodology to do the same for any task. This method leverages large language models (LLMs) to generate a high-quality dataset in an extractive setting, ensuring its relevance for the target language. We believe this new resource will foster advancements in Hindi NLP research by providing a more accurate and reliable evaluation tool.
AutoCoreset: An Automatic Practical Coreset Construction Framework
A coreset is a tiny weighted subset of an input set, that closely resembles the loss function, with respect to a certain set of queries. Coresets became prevalent in machine learning as they have shown to be advantageous for many applications. While coreset research is an active research area, unfortunately, coresets are constructed in a problem-dependent manner, where for each problem, a new coreset construction algorithm is usually suggested, a process that may take time or may be hard for new researchers in the field. Even the generic frameworks require additional (problem-dependent) computations or proofs to be done by the user. Besides, many problems do not have (provable) small coresets, limiting their applicability. To this end, we suggest an automatic practical framework for constructing coresets, which requires (only) the input data and the desired cost function from the user, without the need for any other task-related computation to be done by the user. To do so, we reduce the problem of approximating a loss function to an instance of vector summation approximation, where the vectors we aim to sum are loss vectors of a specific subset of the queries, such that we aim to approximate the image of the function on this subset. We show that while this set is limited, the coreset is quite general. An extensive experimental study on various machine learning applications is also conducted. Finally, we provide a ``plug and play" style implementation, proposing a user-friendly system that can be easily used to apply coresets for many problems. Full open source code can be found at https://github.com/alaamaalouf/AutoCoreset{https://github.com/alaamaalouf/AutoCoreset}. We believe that these contributions enable future research and easier use and applications of coresets.
Empower Large Language Model to Perform Better on Industrial Domain-Specific Question Answering
Large Language Model (LLM) has gained popularity and achieved remarkable results in open-domain tasks, but its performance in real industrial domain-specific scenarios is average since there is no specific knowledge in it. This issue has attracted widespread attention, but there are few relevant benchmarks available. In this paper, we provide a benchmark Question Answering (QA) dataset named MSQA, which is about Microsoft products and IT technical problems encountered by customers. This dataset contains industry cloud-specific QA knowledge, which is not available for general LLM, so it is well suited for evaluating methods aimed at improving domain-specific capabilities of LLM. In addition, we propose a new model interaction paradigm that can empower LLM to achieve better performance on domain-specific tasks where it is not proficient. Extensive experiments demonstrate that the approach following our model fusion framework outperforms the commonly used LLM with retrieval methods.
Loquacious Set: 25,000 Hours of Transcribed and Diverse English Speech Recognition Data for Research and Commercial Use
Automatic speech recognition (ASR) research is driven by the availability of common datasets between industrial researchers and academics, encouraging comparisons and evaluations. LibriSpeech, despite its long success as an ASR benchmark, is now limited by its size and focus on clean, read speech, leading to near-zero word error rates. More recent datasets, including MOSEL, YODAS, Gigaspeech, OWSM, Libriheavy or People's Speech suffer from major limitations including licenses that researchers in the industry cannot use, unreliable transcriptions, incorrect audio data, or the lack of evaluation sets. This work presents the Loquacious Set, a 25,000-hour curated collection of commercially usable English speech. Featuring hundreds of thousands of speakers with diverse accents and a wide range of speech types (read, spontaneous, talks, clean, noisy), the Loquacious Set is designed to work for academics and researchers in the industry to build ASR systems in real-world scenarios.
QuALITY: Question Answering with Long Input Texts, Yes!
To enable building and testing models on long-document comprehension, we introduce QuALITY, a multiple-choice QA dataset with context passages in English that have an average length of about 5,000 tokens, much longer than typical current models can process. Unlike in prior work with passages, our questions are written and validated by contributors who have read the entire passage, rather than relying on summaries or excerpts. In addition, only half of the questions are answerable by annotators working under tight time constraints, indicating that skimming and simple search are not enough to consistently perform well. Our baseline models perform poorly on this task (55.4%) and significantly lag behind human performance (93.5%).
TWEAC: Transformer with Extendable QA Agent Classifiers
Question answering systems should help users to access knowledge on a broad range of topics and to answer a wide array of different questions. Most systems fall short of this expectation as they are only specialized in one particular setting, e.g., answering factual questions with Wikipedia data. To overcome this limitation, we propose composing multiple QA agents within a meta-QA system. We argue that there exist a wide range of specialized QA agents in literature. Thus, we address the central research question of how to effectively and efficiently identify suitable QA agents for any given question. We study both supervised and unsupervised approaches to address this challenge, showing that TWEAC -- Transformer with Extendable Agent Classifiers -- achieves the best performance overall with 94% accuracy. We provide extensive insights on the scalability of TWEAC, demonstrating that it scales robustly to over 100 QA agents with each providing just 1000 examples of questions they can answer. Our code and data is available: https://github.com/UKPLab/TWEAC-qa-agent-selection
Revisiting the Open-Domain Question Answering Pipeline
Open-domain question answering (QA) is the tasl of identifying answers to natural questions from a large corpus of documents. The typical open-domain QA system starts with information retrieval to select a subset of documents from the corpus, which are then processed by a machine reader to select the answer spans. This paper describes Mindstone, an open-domain QA system that consists of a new multi-stage pipeline that employs a traditional BM25-based information retriever, RM3-based neural relevance feedback, neural ranker, and a machine reading comprehension stage. This paper establishes a new baseline for end-to-end performance on question answering for Wikipedia/SQuAD dataset (EM=58.1, F1=65.8), with substantial gains over the previous state of the art (Yang et al., 2019b). We also show how the new pipeline enables the use of low-resolution labels, and can be easily tuned to meet various timing requirements.
AIReg-Bench: Benchmarking Language Models That Assess AI Regulation Compliance
As governments move to regulate AI, there is growing interest in using Large Language Models (LLMs) to assess whether or not an AI system complies with a given AI Regulation (AIR). However, there is presently no way to benchmark the performance of LLMs at this task. To fill this void, we introduce AIReg-Bench: the first benchmark dataset designed to test how well LLMs can assess compliance with the EU AI Act (AIA). We created this dataset through a two-step process: (1) by prompting an LLM with carefully structured instructions, we generated 120 technical documentation excerpts (samples), each depicting a fictional, albeit plausible, AI system - of the kind an AI provider might produce to demonstrate their compliance with AIR; (2) legal experts then reviewed and annotated each sample to indicate whether, and in what way, the AI system described therein violates specific Articles of the AIA. The resulting dataset, together with our evaluation of whether frontier LLMs can reproduce the experts' compliance labels, provides a starting point to understand the opportunities and limitations of LLM-based AIR compliance assessment tools and establishes a benchmark against which subsequent LLMs can be compared. The dataset and evaluation code are available at https://github.com/camlsys/aireg-bench.
The Challenge of Achieving Attributability in Multilingual Table-to-Text Generation with Question-Answer Blueprints
Multilingual Natural Language Generation (NLG) is challenging due to the lack of training data for low-resource languages. However, some low-resource languages have up to tens of millions of speakers globally, making it important to improve NLG tools for them. Table-to-Text NLG is an excellent measure of models' reasoning abilities but is very challenging in the multilingual setting. System outputs are often not attributable, or faithful, to the data in the source table. Intermediate planning techniques like Question-Answer (QA) blueprints have been shown to improve attributability on summarisation tasks. This work explores whether QA blueprints make multilingual Table-to-Text outputs more attributable to the input tables. This paper extends the challenging multilingual Table-to-Text dataset, TaTA, which includes African languages, with QA blueprints. Sequence-to-sequence language models are then finetuned on this dataset, with and without blueprints. Results show that QA blueprints improve performance for models finetuned and evaluated only on English examples, but do not demonstrate gains in the multilingual setting. This is due to inaccuracies in machine translating the blueprints from English into target languages when generating the training data, and models failing to rely closely on the blueprints they generate. An in-depth analysis is conducted on why this is challenging.
QuArch: A Question-Answering Dataset for AI Agents in Computer Architecture
We introduce QuArch, a dataset of 1500 human-validated question-answer pairs designed to evaluate and enhance language models' understanding of computer architecture. The dataset covers areas including processor design, memory systems, and performance optimization. Our analysis highlights a significant performance gap: the best closed-source model achieves 84% accuracy, while the top small open-source model reaches 72%. We observe notable struggles in memory systems, interconnection networks, and benchmarking. Fine-tuning with QuArch improves small model accuracy by up to 8%, establishing a foundation for advancing AI-driven computer architecture research. The dataset and leaderboard are at https://harvard-edge.github.io/QuArch/.
Constructing A Multi-hop QA Dataset for Comprehensive Evaluation of Reasoning Steps
A multi-hop question answering (QA) dataset aims to test reasoning and inference skills by requiring a model to read multiple paragraphs to answer a given question. However, current datasets do not provide a complete explanation for the reasoning process from the question to the answer. Further, previous studies revealed that many examples in existing multi-hop datasets do not require multi-hop reasoning to answer a question. In this study, we present a new multi-hop QA dataset, called 2WikiMultiHopQA, which uses structured and unstructured data. In our dataset, we introduce the evidence information containing a reasoning path for multi-hop questions. The evidence information has two benefits: (i) providing a comprehensive explanation for predictions and (ii) evaluating the reasoning skills of a model. We carefully design a pipeline and a set of templates when generating a question-answer pair that guarantees the multi-hop steps and the quality of the questions. We also exploit the structured format in Wikidata and use logical rules to create questions that are natural but still require multi-hop reasoning. Through experiments, we demonstrate that our dataset is challenging for multi-hop models and it ensures that multi-hop reasoning is required.
Structured Outputs Enable General-Purpose LLMs to be Medical Experts
Medical question-answering (QA) is a critical task for evaluating how effectively large language models (LLMs) encode clinical knowledge and assessing their potential applications in medicine. Despite showing promise on multiple-choice tests, LLMs frequently struggle with open-ended medical questions, producing responses with dangerous hallucinations or lacking comprehensive coverage of critical aspects. Existing approaches attempt to address these challenges through domain-specific fine-tuning, but this proves resource-intensive and difficult to scale across models. To improve the comprehensiveness and factuality of medical responses, we propose a novel approach utilizing structured medical reasoning. Our method guides LLMs through an seven-step cognitive process inspired by clinical diagnosis, enabling more accurate and complete answers without additional training. Experiments on the MedLFQA benchmark demonstrate that our approach achieves the highest Factuality Score of 85.8, surpassing fine-tuned models. Notably, this improvement transfers to smaller models, highlighting the method's efficiency and scalability. Our code and datasets are available.
Large Language Models are Complex Table Parsers
With the Generative Pre-trained Transformer 3.5 (GPT-3.5) exhibiting remarkable reasoning and comprehension abilities in Natural Language Processing (NLP), most Question Answering (QA) research has primarily centered around general QA tasks based on GPT, neglecting the specific challenges posed by Complex Table QA. In this paper, we propose to incorporate GPT-3.5 to address such challenges, in which complex tables are reconstructed into tuples and specific prompt designs are employed for dialogues. Specifically, we encode each cell's hierarchical structure, position information, and content as a tuple. By enhancing the prompt template with an explanatory description of the meaning of each tuple and the logical reasoning process of the task, we effectively improve the hierarchical structure awareness capability of GPT-3.5 to better parse the complex tables. Extensive experiments and results on Complex Table QA datasets, i.e., the open-domain dataset HiTAB and the aviation domain dataset AIT-QA show that our approach significantly outperforms previous work on both datasets, leading to state-of-the-art (SOTA) performance.
BiRdQA: A Bilingual Dataset for Question Answering on Tricky Riddles
A riddle is a question or statement with double or veiled meanings, followed by an unexpected answer. Solving riddle is a challenging task for both machine and human, testing the capability of understanding figurative, creative natural language and reasoning with commonsense knowledge. We introduce BiRdQA, a bilingual multiple-choice question answering dataset with 6614 English riddles and 8751 Chinese riddles. For each riddle-answer pair, we provide four distractors with additional information from Wikipedia. The distractors are automatically generated at scale with minimal bias. Existing monolingual and multilingual QA models fail to perform well on our dataset, indicating that there is a long way to go before machine can beat human on solving tricky riddles. The dataset has been released to the community.
Telco-DPR: A Hybrid Dataset for Evaluating Retrieval Models of 3GPP Technical Specifications
This paper proposes a Question-Answering (QA) system for the telecom domain using 3rd Generation Partnership Project (3GPP) technical documents. Alongside, a hybrid dataset, Telco-DPR, which consists of a curated 3GPP corpus in a hybrid format, combining text and tables, is presented. Additionally, the dataset includes a set of synthetic question/answer pairs designed to evaluate the retrieval performance of QA systems on this type of data. The retrieval models, including the sparse model, Best Matching 25 (BM25), as well as dense models, such as Dense Passage Retriever (DPR) and Dense Hierarchical Retrieval (DHR), are evaluated and compared using top-K accuracy and Mean Reciprocal Rank (MRR). The results show that DHR, a retriever model utilising hierarchical passage selection through fine-tuning at both the document and passage levels, outperforms traditional methods in retrieving relevant technical information, achieving a Top-10 accuracy of 86.2%. Additionally, the Retriever-Augmented Generation (RAG) technique, used in the proposed QA system, is evaluated to demonstrate the benefits of using the hybrid dataset and the DHR. The proposed QA system, using the developed RAG model and the Generative Pretrained Transformer (GPT)-4, achieves a 14% improvement in answer accuracy, when compared to a previous benchmark on the same dataset.
GermanQuAD and GermanDPR: Improving Non-English Question Answering and Passage Retrieval
A major challenge of research on non-English machine reading for question answering (QA) is the lack of annotated datasets. In this paper, we present GermanQuAD, a dataset of 13,722 extractive question/answer pairs. To improve the reproducibility of the dataset creation approach and foster QA research on other languages, we summarize lessons learned and evaluate reformulation of question/answer pairs as a way to speed up the annotation process. An extractive QA model trained on GermanQuAD significantly outperforms multilingual models and also shows that machine-translated training data cannot fully substitute hand-annotated training data in the target language. Finally, we demonstrate the wide range of applications of GermanQuAD by adapting it to GermanDPR, a training dataset for dense passage retrieval (DPR), and train and evaluate the first non-English DPR model.
CoReQA: Uncovering Potentials of Language Models in Code Repository Question Answering
Large language models that enhance software development tasks, such as code generation, code completion, and code question answering (QA), have been extensively studied in both academia and the industry. The models are integrated into popular intelligent IDEs like JetBrains and Cursor. Current benchmarks for evaluating models' code comprehension capabilities primarily focus on code generation or completion, often neglecting QA, which is a crucial aspect of understanding code. Existing code QA benchmarks are derived from code comments with predefined patterns (e.g., CodeQA) or focus on specific domains, such as education (e.g., CS1QA). These benchmarks fail to capture the real-world complexity of software engineering and user requirements for understanding code repositories. To address this gap, we introduce CoReQA, a benchmark for Code Repository-level question answering, constructed from GitHub issues and comments from 176 popular repositories across four programming languages. Since questions and answers may include both natural language and code snippets, traditional evaluation metrics such as BLEU are inadequate for assessing repository-level QA performance. Thus, we provide an LLM-as-a-judge framework to evaluate QA performance from five aspects. Based on CoReQA, we evaluate the performance of three baselines, including two short-context models using generic retrieval strategies and one long-context model that utilizes the entire repository context. Evaluation results show that state-of-the-art proprietary and long-context models struggle to address repository-level questions effectively. Our analysis highlights the limitations of language models in assisting developers in understanding repositories and suggests future directions for improving repository comprehension systems through effective context retrieval methodologies.
PubMedQA: A Dataset for Biomedical Research Question Answering
We introduce PubMedQA, a novel biomedical question answering (QA) dataset collected from PubMed abstracts. The task of PubMedQA is to answer research questions with yes/no/maybe (e.g.: Do preoperative statins reduce atrial fibrillation after coronary artery bypass grafting?) using the corresponding abstracts. PubMedQA has 1k expert-annotated, 61.2k unlabeled and 211.3k artificially generated QA instances. Each PubMedQA instance is composed of (1) a question which is either an existing research article title or derived from one, (2) a context which is the corresponding abstract without its conclusion, (3) a long answer, which is the conclusion of the abstract and, presumably, answers the research question, and (4) a yes/no/maybe answer which summarizes the conclusion. PubMedQA is the first QA dataset where reasoning over biomedical research texts, especially their quantitative contents, is required to answer the questions. Our best performing model, multi-phase fine-tuning of BioBERT with long answer bag-of-word statistics as additional supervision, achieves 68.1% accuracy, compared to single human performance of 78.0% accuracy and majority-baseline of 55.2% accuracy, leaving much room for improvement. PubMedQA is publicly available at https://pubmedqa.github.io.
Consensus or Conflict? Fine-Grained Evaluation of Conflicting Answers in Question-Answering
Large Language Models (LLMs) have demonstrated strong performance in question answering (QA) tasks. However, Multi-Answer Question Answering (MAQA), where a question may have several valid answers, remains challenging. Traditional QA settings often assume consistency across evidences, but MAQA can involve conflicting answers. Constructing datasets that reflect such conflicts is costly and labor-intensive, while existing benchmarks often rely on synthetic data, restrict the task to yes/no questions, or apply unverified automated annotation. To advance research in this area, we extend the conflict-aware MAQA setting to require models not only to identify all valid answers, but also to detect specific conflicting answer pairs, if any. To support this task, we introduce a novel cost-effective methodology for leveraging fact-checking datasets to construct NATCONFQA, a new benchmark for realistic, conflict-aware MAQA, enriched with detailed conflict labels, for all answer pairs. We evaluate eight high-end LLMs on NATCONFQA, revealing their fragility in handling various types of conflicts and the flawed strategies they employ to resolve them.
CoverBench: A Challenging Benchmark for Complex Claim Verification
There is a growing line of research on verifying the correctness of language models' outputs. At the same time, LMs are being used to tackle complex queries that require reasoning. We introduce CoverBench, a challenging benchmark focused on verifying LM outputs in complex reasoning settings. Datasets that can be used for this purpose are often designed for other complex reasoning tasks (e.g., QA) targeting specific use-cases (e.g., financial tables), requiring transformations, negative sampling and selection of hard examples to collect such a benchmark. CoverBench provides a diversified evaluation for complex claim verification in a variety of domains, types of reasoning, relatively long inputs, and a variety of standardizations, such as multiple representations for tables where available, and a consistent schema. We manually vet the data for quality to ensure low levels of label noise. Finally, we report a variety of competitive baseline results to show CoverBench is challenging and has very significant headroom. The data is available at https://huggingface.co/datasets/google/coverbench .
On Monotonic Aggregation for Open-domain QA
Question answering (QA) is a critical task for speech-based retrieval from knowledge sources, by sifting only the answers without requiring to read supporting documents. Specifically, open-domain QA aims to answer user questions on unrestricted knowledge sources. Ideally, adding a source should not decrease the accuracy, but we find this property (denoted as "monotonicity") does not hold for current state-of-the-art methods. We identify the cause, and based on that we propose Judge-Specialist framework. Our framework consists of (1) specialist retrievers/readers to cover individual sources, and (2) judge, a dedicated language model to select the final answer. Our experiments show that our framework not only ensures monotonicity, but also outperforms state-of-the-art multi-source QA methods on Natural Questions. Additionally, we show that our models robustly preserve the monotonicity against noise from speech recognition. We publicly release our code and setting.
Chat-TS: Enhancing Multi-Modal Reasoning Over Time-Series and Natural Language Data
Time-series analysis is critical for a wide range of fields such as healthcare, finance, transportation, and energy, among many others. The practical applications often involve analyzing time-series data alongside contextual information in the form of natural language to support informed decisions. However, current time-series models are limited in their ability to perform reasoning that involves both time-series and their textual content. In this work, we address this gap by introducing Chat-TS, a large language model (LLM) based framework, designed to support reasoning over time series and textual data. Unlike traditional models, Chat-TS integrates time-series tokens into LLMs' vocabulary, enhancing its reasoning ability over both modalities without compromising the core natural language capabilities, enabling practical analysis and reasoning across modalities. To support learning and evaluation in this setup, we contribute new datasets: the TS Instruct Training Dataset which pairs diverse time-series data with relevant text instructions and responses for instruction tuning, the TS Instruct Question and Answer (QA) Gold Dataset which provides multiple-choice questions designed to evaluate multimodal reasoning, and a TS Instruct Quantitative Probing Set which contains a small subset of the TS Instruct QA tasks alongside math and decision-making questions for LLM evaluation. We designed a training strategy to preserve the inherent reasoning capabilities of LLMs while augmenting them for time-series reasoning. Experiments show that Chat-TS achieves state-of-the-art performance in multi-modal reasoning tasks by maintaining strong natural language proficiency while improving time-series reasoning. ~To ensure replicability and facilitate future research, all models, datasets, and code will be available at [\texttt{Github-URL].}
Can LLMs Generate High-Quality Test Cases for Algorithm Problems? TestCase-Eval: A Systematic Evaluation of Fault Coverage and Exposure
We introduce TestCase-Eval, a new benchmark for systematic evaluation of LLMs in test-case generation. TestCase-Eval includes 500 algorithm problems and 100,000 human-crafted solutions from the Codeforces platform. It focuses on two pivotal tasks: (1) Fault Coverage, which measures how well LLM-generated test sets probe diverse input scenarios and cover a wide range of potential failure modes. (2) Fault Exposure, which evaluates whether LLMs can craft a tailored test input that reveals a specific incorrect code implementation. We provide a comprehensive assessment of 19 state-of-the-art open-source and proprietary LLMs on TestCase-Eval, offering insights into their strengths and limitations in generating effective test cases for algorithm problems.
A Puzzle-Based Dataset for Natural Language Inference
We provide here a dataset for tasks related to natural language understanding and natural language inference. The dataset contains logical puzzles in natural language from three domains: comparing puzzles, knighs and knaves, and zebra puzzles. Each puzzle is associated with the entire set of atomic questions that can be generated based on the relations and individuals occurring in the text. For each question we provide the correct answer: entailment, contradiction or ambiguity. The answer's correctness is verified against theorem provers. Good puzzles have two properties: (i) each piece of information is necessary and (ii) no unnecessary information is provided. These properties make puzzles interesting candidates for machine comprehension tasks.
DREAM: Improving Situational QA by First Elaborating the Situation
When people answer questions about a specific situation, e.g., "I cheated on my mid-term exam last week. Was that wrong?", cognitive science suggests that they form a mental picture of that situation before answering. While we do not know how language models (LMs) answer such questions, we conjecture that they may answer more accurately if they are also provided with additional details about the question situation, elaborating the "scene". To test this conjecture, we train a new model, DREAM, to answer questions that elaborate the scenes that situated questions are about, and then provide those elaborations as additional context to a question-answering (QA) model. We find that DREAM is able to create better scene elaborations (more accurate, useful, and consistent) than a representative state-of-the-art, zero-shot model (Macaw). We also find that using the scene elaborations as additional context improves the answer accuracy of a downstream QA system, including beyond that obtainable by simply further finetuning the QA system on DREAM's training data. These results suggest that adding focused elaborations about a situation can improve a system's reasoning about it, and may serve as an effective way of injecting new scenario based knowledge into QA models. Finally, our approach is dataset-neutral; we observe improved QA performance across different models, with even bigger gains on models with fewer parameters. We make our dataset and model publicly available at https://github.com/allenai/dream.
Using Interactive Feedback to Improve the Accuracy and Explainability of Question Answering Systems Post-Deployment
Most research on question answering focuses on the pre-deployment stage; i.e., building an accurate model for deployment. In this paper, we ask the question: Can we improve QA systems further post-deployment based on user interactions? We focus on two kinds of improvements: 1) improving the QA system's performance itself, and 2) providing the model with the ability to explain the correctness or incorrectness of an answer. We collect a retrieval-based QA dataset, FeedbackQA, which contains interactive feedback from users. We collect this dataset by deploying a base QA system to crowdworkers who then engage with the system and provide feedback on the quality of its answers. The feedback contains both structured ratings and unstructured natural language explanations. We train a neural model with this feedback data that can generate explanations and re-score answer candidates. We show that feedback data not only improves the accuracy of the deployed QA system but also other stronger non-deployed systems. The generated explanations also help users make informed decisions about the correctness of answers. Project page: https://mcgill-nlp.github.io/feedbackqa/
IfQA: A Dataset for Open-domain Question Answering under Counterfactual Presuppositions
Although counterfactual reasoning is a fundamental aspect of intelligence, the lack of large-scale counterfactual open-domain question-answering (QA) benchmarks makes it difficult to evaluate and improve models on this ability. To address this void, we introduce the first such dataset, named IfQA, where each question is based on a counterfactual presupposition via an "if" clause. For example, if Los Angeles was on the east coast of the U.S., what would be the time difference between Los Angeles and Paris? Such questions require models to go beyond retrieving direct factual knowledge from the Web: they must identify the right information to retrieve and reason about an imagined situation that may even go against the facts built into their parameters. The IfQA dataset contains over 3,800 questions that were annotated annotated by crowdworkers on relevant Wikipedia passages. Empirical analysis reveals that the IfQA dataset is highly challenging for existing open-domain QA methods, including supervised retrieve-then-read pipeline methods (EM score 36.2), as well as recent few-shot approaches such as chain-of-thought prompting with GPT-3 (EM score 27.4). The unique challenges posed by the IfQA benchmark will push open-domain QA research on both retrieval and counterfactual reasoning fronts.
WikiWhy: Answering and Explaining Cause-and-Effect Questions
As large language models (LLMs) grow larger and more sophisticated, assessing their "reasoning" capabilities in natural language grows more challenging. Recent question answering (QA) benchmarks that attempt to assess reasoning are often limited by a narrow scope of covered situations and subject matters. We introduce WikiWhy, a QA dataset built around a novel auxiliary task: explaining why an answer is true in natural language. WikiWhy contains over 9,000 "why" question-answer-rationale triples, grounded on Wikipedia facts across a diverse set of topics. Each rationale is a set of supporting statements connecting the question to the answer. WikiWhy serves as a benchmark for the reasoning capabilities of LLMs because it demands rigorous explicit rationales for each answer to demonstrate the acquisition of implicit commonsense knowledge, which is unlikely to be easily memorized. GPT-3 baselines achieve only 38.7% human-evaluated correctness in the end-to-end answer & explain condition, leaving significant room for future improvements.
SimpleQA Verified: A Reliable Factuality Benchmark to Measure Parametric Knowledge
We introduce SimpleQA Verified, a 1,000-prompt benchmark for evaluating Large Language Model (LLM) short-form factuality based on OpenAI's SimpleQA. It addresses critical limitations in OpenAI's benchmark, including noisy and incorrect labels, topical biases, and question redundancy. SimpleQA Verified was created through a rigorous multi-stage filtering process involving de-duplication, topic balancing, and source reconciliation to produce a more reliable and challenging evaluation set, alongside improvements in the autorater prompt. On this new benchmark, Gemini 2.5 Pro achieves a state-of-the-art F1-score of 55.6, outperforming other frontier models, including GPT-5. This work provides the research community with a higher-fidelity tool to track genuine progress in parametric model factuality and to mitigate hallucinations. The benchmark dataset, evaluation code, and leaderboard are available at: https://www.kaggle.com/benchmarks/deepmind/simpleqa-verified.
KazQAD: Kazakh Open-Domain Question Answering Dataset
We introduce KazQAD -- a Kazakh open-domain question answering (ODQA) dataset -- that can be used in both reading comprehension and full ODQA settings, as well as for information retrieval experiments. KazQAD contains just under 6,000 unique questions with extracted short answers and nearly 12,000 passage-level relevance judgements. We use a combination of machine translation, Wikipedia search, and in-house manual annotation to ensure annotation efficiency and data quality. The questions come from two sources: translated items from the Natural Questions (NQ) dataset (only for training) and the original Kazakh Unified National Testing (UNT) exam (for development and testing). The accompanying text corpus contains more than 800,000 passages from the Kazakh Wikipedia. As a supplementary dataset, we release around 61,000 question-passage-answer triples from the NQ dataset that have been machine-translated into Kazakh. We develop baseline retrievers and readers that achieve reasonable scores in retrieval (NDCG@10 = 0.389 MRR = 0.382), reading comprehension (EM = 38.5 F1 = 54.2), and full ODQA (EM = 17.8 F1 = 28.7) settings. Nevertheless, these results are substantially lower than state-of-the-art results for English QA collections, and we think that there should still be ample room for improvement. We also show that the current OpenAI's ChatGPTv3.5 is not able to answer KazQAD test questions in the closed-book setting with acceptable quality. The dataset is freely available under the Creative Commons licence (CC BY-SA) at https://github.com/IS2AI/KazQAD.
Toward Formal Data Set Verification for Building Effective Machine Learning Models
In order to properly train a machine learning model, data must be properly collected. To guarantee a proper data collection, verifying that the collected data set holds certain properties is a possible solution. For example, guaranteeing that the data set contains samples across the whole input space, or that the data set is balanced w.r.t. different classes. We present a formal approach for verifying a set of arbitrarily stated properties over a data set. The proposed approach relies on the transformation of the data set into a first order logic formula, which can be later verified w.r.t. the different properties also stated in the same logic. A prototype tool, which uses the z3 solver, has been developed; the prototype can take as an input a set of properties stated in a formal language and formally verify a given data set w.r.t. to the given set of properties. Preliminary experimental results show the feasibility and performance of the proposed approach, and furthermore the flexibility for expressing properties of interest.
Key-Value Memory Networks for Directly Reading Documents
Directly reading documents and being able to answer questions from them is an unsolved challenge. To avoid its inherent difficulty, question answering (QA) has been directed towards using Knowledge Bases (KBs) instead, which has proven effective. Unfortunately KBs often suffer from being too restrictive, as the schema cannot support certain types of answers, and too sparse, e.g. Wikipedia contains much more information than Freebase. In this work we introduce a new method, Key-Value Memory Networks, that makes reading documents more viable by utilizing different encodings in the addressing and output stages of the memory read operation. To compare using KBs, information extraction or Wikipedia documents directly in a single framework we construct an analysis tool, WikiMovies, a QA dataset that contains raw text alongside a preprocessed KB, in the domain of movies. Our method reduces the gap between all three settings. It also achieves state-of-the-art results on the existing WikiQA benchmark.
MapQaTor: A System for Efficient Annotation of Map Query Datasets
Mapping and navigation services like Google Maps, Apple Maps, Openstreet Maps, are essential for accessing various location-based data, yet they often struggle to handle natural language geospatial queries. Recent advancements in Large Language Models (LLMs) show promise in question answering (QA), but creating reliable geospatial QA datasets from map services remains challenging. We introduce MapQaTor, a web application that streamlines the creation of reproducible, traceable map-based QA datasets. With its plug-and-play architecture, MapQaTor enables seamless integration with any maps API, allowing users to gather and visualize data from diverse sources with minimal setup. By caching API responses, the platform ensures consistent ground truth, enhancing the reliability of the data even as real-world information evolves. MapQaTor centralizes data retrieval, annotation, and visualization within a single platform, offering a unique opportunity to evaluate the current state of LLM-based geospatial reasoning while advancing their capabilities for improved geospatial understanding. Evaluation metrics show that, MapQaTor speeds up the annotation process by at least 30 times compared to manual methods, underscoring its potential for developing geospatial resources, such as complex map reasoning datasets. The website is live at: https://mapqator.github.io/ and a demo video is available at: https://youtu.be/7_aV9Wmhs6Q.
