File size: 1,424 Bytes
e971ab7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
---
library_name: transformers.js
base_model:
- neulab/codebert-javascript
pipeline_tag: fill-mask
---
# codebert-javascript (ONNX)
This is an ONNX version of [neulab/codebert-javascript](https://huggingface.co/neulab/codebert-javascript). It was automatically converted and uploaded using [this Hugging Face Space](https://huggingface.co/spaces/onnx-community/convert-to-onnx).
## Usage with Transformers.js
See the pipeline documentation for `fill-mask`: https://huggingface.co/docs/transformers.js/api/pipelines#module_pipelines.FillMaskPipeline
---
This is a `microsoft/codebert-base-mlm` model, trained for 1,000,000 steps (with `batch_size=32`) on **JavaScript** code from the `codeparrot/github-code-clean` dataset, on the masked-language-modeling task.
It is intended to be used in CodeBERTScore: [https://github.com/neulab/code-bert-score](https://github.com/neulab/code-bert-score), but can be used for any other model or task.
For more information, see: [https://github.com/neulab/code-bert-score](https://github.com/neulab/code-bert-score)
## Citation
If you use this model for research, please cite:
```
@article{zhou2023codebertscore,
url = {https://arxiv.org/abs/2302.05527},
author = {Zhou, Shuyan and Alon, Uri and Agarwal, Sumit and Neubig, Graham},
title = {CodeBERTScore: Evaluating Code Generation with Pretrained Models of Code},
publisher = {arXiv},
year = {2023},
}
```
|