Update README.md
Browse files
README.md
CHANGED
|
@@ -44,7 +44,7 @@ This model has 137 million parameters, which enables fast and memory efficient i
|
|
| 44 |
Additionally, we provide the following embedding models:
|
| 45 |
|
| 46 |
- [`jina-embeddings-v2-small-en`](https://huggingface.co/jinaai/jina-embeddings-v2-small-en): 33 million parameters.
|
| 47 |
-
- [`jina-embeddings-v2-base-en`](https://huggingface.co/jinaai/jina-embeddings-v2-base-en): 137 million parameters
|
| 48 |
- [`jina-embeddings-v2-base-zh`](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh): Chinese-English Bilingual embeddings.
|
| 49 |
- [`jina-embeddings-v2-base-de`](https://huggingface.co/jinaai/jina-embeddings-v2-base-de): German-English Bilingual embeddings.
|
| 50 |
- [`jina-embeddings-v2-base-es`](https://huggingface.co/jinaai/jina-embeddings-v2-base-es): Spanish-English Bilingual embeddings (soon).
|
|
@@ -148,6 +148,7 @@ embeddings = model.encode(
|
|
| 148 |
]
|
| 149 |
)
|
| 150 |
print(cos_sim(embeddings[0], embeddings[1]))
|
|
|
|
| 151 |
```
|
| 152 |
|
| 153 |
If you only want to handle shorter sequence, such as 2k, pass the `max_length` parameter to the `encode` function:
|
|
@@ -159,14 +160,11 @@ embeddings = model.encode(
|
|
| 159 |
)
|
| 160 |
```
|
| 161 |
|
| 162 |
-
## Fully-managed Embeddings Service
|
| 163 |
-
|
| 164 |
-
Alternatively, you can use Jina AI's [Embeddings platform](https://jina.ai/embeddings/) for fully-managed access to Jina Embeddings models.
|
| 165 |
-
|
| 166 |
## Plans
|
| 167 |
|
| 168 |
-
|
| 169 |
-
|
|
|
|
| 170 |
|
| 171 |
## Contact
|
| 172 |
|
|
|
|
| 44 |
Additionally, we provide the following embedding models:
|
| 45 |
|
| 46 |
- [`jina-embeddings-v2-small-en`](https://huggingface.co/jinaai/jina-embeddings-v2-small-en): 33 million parameters.
|
| 47 |
+
- [`jina-embeddings-v2-base-en`](https://huggingface.co/jinaai/jina-embeddings-v2-base-en): 137 million parameters.
|
| 48 |
- [`jina-embeddings-v2-base-zh`](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh): Chinese-English Bilingual embeddings.
|
| 49 |
- [`jina-embeddings-v2-base-de`](https://huggingface.co/jinaai/jina-embeddings-v2-base-de): German-English Bilingual embeddings.
|
| 50 |
- [`jina-embeddings-v2-base-es`](https://huggingface.co/jinaai/jina-embeddings-v2-base-es): Spanish-English Bilingual embeddings (soon).
|
|
|
|
| 148 |
]
|
| 149 |
)
|
| 150 |
print(cos_sim(embeddings[0], embeddings[1]))
|
| 151 |
+
>>> 0.7230249
|
| 152 |
```
|
| 153 |
|
| 154 |
If you only want to handle shorter sequence, such as 2k, pass the `max_length` parameter to the `encode` function:
|
|
|
|
| 160 |
)
|
| 161 |
```
|
| 162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
## Plans
|
| 164 |
|
| 165 |
+
1. Bilingual embedding models supporting more European & Asian languages, including Spanish, French, Italian and Japanese.
|
| 166 |
+
2. Multimodal embedding models enable Multimodal RAG applications.
|
| 167 |
+
3. High-performt rerankers.
|
| 168 |
|
| 169 |
## Contact
|
| 170 |
|