Add custom modeling file
Browse files- modeling_gptscratch.py +8 -13
modeling_gptscratch.py
CHANGED
|
@@ -1,15 +1,13 @@
|
|
| 1 |
-
# modeling_gptscratch.py
|
| 2 |
import torch
|
| 3 |
from transformers import PreTrainedModel, GPT2Config
|
| 4 |
from transformers.modeling_outputs import CausalLMOutput
|
| 5 |
-
from .gpt_model import GPTModel
|
| 6 |
|
| 7 |
class GPTScratchForCausalLM(PreTrainedModel):
|
| 8 |
config_class = GPT2Config
|
| 9 |
|
| 10 |
def __init__(self, config, base_model=None):
|
| 11 |
super().__init__(config)
|
| 12 |
-
# 学習時のハイパラに合わせて内部モデルを構築
|
| 13 |
self.inner = base_model or GPTModel({
|
| 14 |
"vocab_size": config.vocab_size,
|
| 15 |
"emb_dim": config.n_embd,
|
|
@@ -18,8 +16,7 @@ class GPTScratchForCausalLM(PreTrainedModel):
|
|
| 18 |
"context_length": config.n_positions,
|
| 19 |
"drop_rate": 0.1,
|
| 20 |
})
|
| 21 |
-
# HF
|
| 22 |
-
self.lm_head = self.inner.out_head
|
| 23 |
|
| 24 |
def forward(self, input_ids, **kwargs):
|
| 25 |
logits = self.inner(input_ids)
|
|
@@ -29,11 +26,9 @@ class GPTScratchForCausalLM(PreTrainedModel):
|
|
| 29 |
def generate(self, input_ids, max_new_tokens=32, eos_token_id=None,
|
| 30 |
do_sample=False, temperature=1.0, top_k=None, top_p=None,
|
| 31 |
repetition_penalty=1.1, **_):
|
| 32 |
-
# 最小実装(Greedy or 簡易サンプリング)
|
| 33 |
for _ in range(max_new_tokens):
|
| 34 |
logits = self.forward(input_ids).logits[:, -1, :]
|
| 35 |
|
| 36 |
-
# 繰り返し抑制
|
| 37 |
if repetition_penalty and repetition_penalty != 1.0:
|
| 38 |
for b in range(input_ids.size(0)):
|
| 39 |
logits[b, input_ids[b]] /= repetition_penalty
|
|
@@ -48,14 +43,14 @@ class GPTScratchForCausalLM(PreTrainedModel):
|
|
| 48 |
probs = torch.where(probs >= thresh, probs, torch.zeros_like(probs))
|
| 49 |
probs = probs / probs.sum(dim=-1, keepdim=True)
|
| 50 |
if top_p is not None:
|
| 51 |
-
|
| 52 |
-
cum =
|
| 53 |
mask = cum > top_p
|
| 54 |
mask[:, 0] = False
|
| 55 |
-
|
| 56 |
-
probs = torch.zeros_like(probs).scatter(-1,
|
| 57 |
probs = probs / probs.sum(dim=-1, keepdim=True)
|
| 58 |
-
next_token = torch.multinomial(probs,
|
| 59 |
else:
|
| 60 |
next_token = torch.argmax(logits, dim=-1, keepdim=True)
|
| 61 |
|
|
@@ -64,7 +59,7 @@ class GPTScratchForCausalLM(PreTrainedModel):
|
|
| 64 |
break
|
| 65 |
return input_ids
|
| 66 |
|
| 67 |
-
#
|
| 68 |
@classmethod
|
| 69 |
def _load_state_dict_into_model(cls, model, state_dict, *args, **kwargs):
|
| 70 |
remap = {}
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
from transformers import PreTrainedModel, GPT2Config
|
| 3 |
from transformers.modeling_outputs import CausalLMOutput
|
| 4 |
+
from .gpt_model import GPTModel
|
| 5 |
|
| 6 |
class GPTScratchForCausalLM(PreTrainedModel):
|
| 7 |
config_class = GPT2Config
|
| 8 |
|
| 9 |
def __init__(self, config, base_model=None):
|
| 10 |
super().__init__(config)
|
|
|
|
| 11 |
self.inner = base_model or GPTModel({
|
| 12 |
"vocab_size": config.vocab_size,
|
| 13 |
"emb_dim": config.n_embd,
|
|
|
|
| 16 |
"context_length": config.n_positions,
|
| 17 |
"drop_rate": 0.1,
|
| 18 |
})
|
| 19 |
+
self.lm_head = self.inner.out_head # expose for HF tools
|
|
|
|
| 20 |
|
| 21 |
def forward(self, input_ids, **kwargs):
|
| 22 |
logits = self.inner(input_ids)
|
|
|
|
| 26 |
def generate(self, input_ids, max_new_tokens=32, eos_token_id=None,
|
| 27 |
do_sample=False, temperature=1.0, top_k=None, top_p=None,
|
| 28 |
repetition_penalty=1.1, **_):
|
|
|
|
| 29 |
for _ in range(max_new_tokens):
|
| 30 |
logits = self.forward(input_ids).logits[:, -1, :]
|
| 31 |
|
|
|
|
| 32 |
if repetition_penalty and repetition_penalty != 1.0:
|
| 33 |
for b in range(input_ids.size(0)):
|
| 34 |
logits[b, input_ids[b]] /= repetition_penalty
|
|
|
|
| 43 |
probs = torch.where(probs >= thresh, probs, torch.zeros_like(probs))
|
| 44 |
probs = probs / probs.sum(dim=-1, keepdim=True)
|
| 45 |
if top_p is not None:
|
| 46 |
+
sp, si = probs.sort(descending=True, dim=-1)
|
| 47 |
+
cum = sp.cumsum(dim=-1)
|
| 48 |
mask = cum > top_p
|
| 49 |
mask[:, 0] = False
|
| 50 |
+
sp[mask] = 0
|
| 51 |
+
probs = torch.zeros_like(probs).scatter(-1, si, sp)
|
| 52 |
probs = probs / probs.sum(dim=-1, keepdim=True)
|
| 53 |
+
next_token = torch.multinomial(probs, 1)
|
| 54 |
else:
|
| 55 |
next_token = torch.argmax(logits, dim=-1, keepdim=True)
|
| 56 |
|
|
|
|
| 59 |
break
|
| 60 |
return input_ids
|
| 61 |
|
| 62 |
+
# absorb old checkpoints whose keys start with 'inner.inner.'
|
| 63 |
@classmethod
|
| 64 |
def _load_state_dict_into_model(cls, model, state_dict, *args, **kwargs):
|
| 65 |
remap = {}
|