Upload 259 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +145 -0
- LICENSE +224 -0
- README.md +201 -3
- configs/BERT_L12_H192_experiments/4tasks_training.yaml +729 -0
- configs/BERT_L12_H192_experiments/4tasks_training_small_datasets.yaml +292 -0
- configs/BERT_L12_H192_experiments/7tasks_berttiny_training.yaml +416 -0
- configs/BERT_L12_H192_experiments/7tasks_berttiny_training_apex_o2.yaml +9 -0
- configs/BERT_L12_H192_experiments/7tasks_berttiny_training_lamb.yaml +418 -0
- configs/BERT_L12_H192_experiments/7tasks_berttiny_training_moe.yaml +25 -0
- configs/BERT_L12_H192_experiments/7tasks_berttiny_training_moe_lsfp32_gate_softmax_layernorm_fp16.yaml +42 -0
- configs/BERT_L12_H192_experiments/7tasks_berttiny_training_moe_scale_before.yaml +444 -0
- configs/BERT_L12_H192_experiments/base_model_bert_l12_h192.yaml +73 -0
- configs/BERT_L12_H192_experiments/in1k_training.yaml +197 -0
- configs/BERT_L12_H192_experiments/in1k_training_moe.yaml +219 -0
- configs/BERT_L12_H192_experiments/moe_debug.yaml +536 -0
- configs/BERT_L12_H192_experiments/moe_debug_load_ds_checkpoint.yaml +541 -0
- configs/BERT_L12_H192_experiments/mscoco_caption_debug.yaml +234 -0
- configs/BERT_L12_H192_experiments/vqa_debug.yaml +189 -0
- configs/BERT_L12_H384_experiments/base_model_bert_l12_h384.yaml +80 -0
- configs/BERT_L12_H384_experiments/in1k_training.yaml +189 -0
- configs/BERT_L12_H768_experiments/16tasks_training.yaml +738 -0
- configs/BERT_L12_H768_experiments/16tasks_training_apex_o2.yaml +11 -0
- configs/BERT_L12_H768_experiments/16tasks_training_basedense_stage1_64gpu.yaml +739 -0
- configs/BERT_L12_H768_experiments/16tasks_training_basedense_stage2_64gpu.yaml +750 -0
- configs/BERT_L12_H768_experiments/16tasks_training_basemoe_stage1_56gpu.yaml +733 -0
- configs/BERT_L12_H768_experiments/16tasks_training_basemoe_stage2_56gpu.yaml +744 -0
- configs/BERT_L12_H768_experiments/16tasks_training_stage2_64gpu_v1.yaml +750 -0
- configs/BERT_L12_H768_experiments/base_model_bert_l12_h768.yaml +73 -0
- configs/BERT_L12_H768_experiments/bw_mlm_training.yaml +309 -0
- configs/BERT_L12_H768_experiments/finetuning/GLUE_finetuning_experiments/GLUE_CoLA_mlm_finetune.yaml +89 -0
- configs/BERT_L12_H768_experiments/finetuning/GLUE_finetuning_experiments/GLUE_MNLI_mlm_finetune.yaml +89 -0
- configs/BERT_L12_H768_experiments/finetuning/GLUE_finetuning_experiments/GLUE_MRPC_mlm_finetune.yaml +88 -0
- configs/BERT_L12_H768_experiments/finetuning/GLUE_finetuning_experiments/GLUE_QNLI_mlm_finetune.yaml +85 -0
- configs/BERT_L12_H768_experiments/finetuning/GLUE_finetuning_experiments/GLUE_QQP_mlm_finetune.yaml +84 -0
- configs/BERT_L12_H768_experiments/finetuning/GLUE_finetuning_experiments/GLUE_RTE_mlm_finetune.yaml +92 -0
- configs/BERT_L12_H768_experiments/finetuning/GLUE_finetuning_experiments/GLUE_SST2_mlm_finetune.yaml +89 -0
- configs/BERT_L12_H768_experiments/finetuning/GLUE_finetuning_experiments/base.yaml +22 -0
- configs/BERT_L12_H768_experiments/finetuning/flickr30k_caption_finetuning.yaml +151 -0
- configs/BERT_L12_H768_experiments/finetuning/flickr30k_retrieval_finetuning.yaml +132 -0
- configs/BERT_L12_H768_experiments/finetuning/in1k_training.yaml +135 -0
- configs/BERT_L12_H768_experiments/finetuning/in1k_training_384inputsize.yaml +134 -0
- configs/BERT_L12_H768_experiments/finetuning/k400_training.yaml +133 -0
- configs/BERT_L12_H768_experiments/finetuning/mscoco_caption_finetuning.yaml +150 -0
- configs/BERT_L12_H768_experiments/finetuning/mscoco_retrieval_finetuning.yaml +132 -0
- configs/BERT_L12_H768_experiments/finetuning/msvd_caption_finetuning.yaml +144 -0
- configs/BERT_L12_H768_experiments/finetuning/msvd_retrieval_finetuning.yaml +129 -0
- configs/BERT_L12_H768_experiments/finetuning/msvd_retrieval_finetuning_frames8.yaml +125 -0
- configs/BERT_L12_H768_experiments/finetuning/vqa_finetuning_debug.yaml +127 -0
- configs/BERT_L12_H768_experiments/in1k_training.yaml +310 -0
- configs/BERT_L12_H768_experiments/moe_finetuning/GLUE_finetuning_experiments/GLUE_CoLA_mlm_finetune.yaml +89 -0
.gitignore
ADDED
|
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Byte-compiled / optimized / DLL files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
|
| 6 |
+
# C extensions
|
| 7 |
+
*.so
|
| 8 |
+
|
| 9 |
+
# Distribution / packaging
|
| 10 |
+
.Python
|
| 11 |
+
build/
|
| 12 |
+
develop-eggs/
|
| 13 |
+
dist/
|
| 14 |
+
downloads/
|
| 15 |
+
eggs/
|
| 16 |
+
.eggs/
|
| 17 |
+
lib/
|
| 18 |
+
lib64/
|
| 19 |
+
parts/
|
| 20 |
+
sdist/
|
| 21 |
+
var/
|
| 22 |
+
wheels/
|
| 23 |
+
pip-wheel-metadata/
|
| 24 |
+
share/python-wheels/
|
| 25 |
+
*.egg-info/
|
| 26 |
+
.installed.cfg
|
| 27 |
+
*.egg
|
| 28 |
+
MANIFEST
|
| 29 |
+
|
| 30 |
+
# PyInstaller
|
| 31 |
+
# Usually these files are written by a python script from a template
|
| 32 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 33 |
+
*.manifest
|
| 34 |
+
*.spec
|
| 35 |
+
|
| 36 |
+
# Installer logs
|
| 37 |
+
pip-log.txt
|
| 38 |
+
pip-delete-this-directory.txt
|
| 39 |
+
|
| 40 |
+
# Unit test / coverage reports
|
| 41 |
+
htmlcov/
|
| 42 |
+
.tox/
|
| 43 |
+
.nox/
|
| 44 |
+
.coverage
|
| 45 |
+
.coverage.*
|
| 46 |
+
.cache
|
| 47 |
+
nosetests.xml
|
| 48 |
+
coverage.xml
|
| 49 |
+
*.cover
|
| 50 |
+
*.py,cover
|
| 51 |
+
.hypothesis/
|
| 52 |
+
.pytest_cache/
|
| 53 |
+
|
| 54 |
+
# Translations
|
| 55 |
+
*.mo
|
| 56 |
+
*.pot
|
| 57 |
+
|
| 58 |
+
# Django stuff:
|
| 59 |
+
*.log
|
| 60 |
+
local_settings.py
|
| 61 |
+
db.sqlite3
|
| 62 |
+
db.sqlite3-journal
|
| 63 |
+
|
| 64 |
+
# Flask stuff:
|
| 65 |
+
instance/
|
| 66 |
+
.webassets-cache
|
| 67 |
+
|
| 68 |
+
# Scrapy stuff:
|
| 69 |
+
.scrapy
|
| 70 |
+
|
| 71 |
+
# Sphinx documentation
|
| 72 |
+
docs/_build/
|
| 73 |
+
|
| 74 |
+
# PyBuilder
|
| 75 |
+
target/
|
| 76 |
+
|
| 77 |
+
# Jupyter Notebook
|
| 78 |
+
.ipynb_checkpoints
|
| 79 |
+
|
| 80 |
+
# IPython
|
| 81 |
+
profile_default/
|
| 82 |
+
ipython_config.py
|
| 83 |
+
|
| 84 |
+
# pyenv
|
| 85 |
+
.python-version
|
| 86 |
+
|
| 87 |
+
# pipenv
|
| 88 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 89 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 90 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
| 91 |
+
# install all needed dependencies.
|
| 92 |
+
#Pipfile.lock
|
| 93 |
+
|
| 94 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
| 95 |
+
__pypackages__/
|
| 96 |
+
|
| 97 |
+
# Celery stuff
|
| 98 |
+
celerybeat-schedule
|
| 99 |
+
celerybeat.pid
|
| 100 |
+
|
| 101 |
+
# SageMath parsed files
|
| 102 |
+
*.sage.py
|
| 103 |
+
|
| 104 |
+
# Environments
|
| 105 |
+
.env
|
| 106 |
+
.venv
|
| 107 |
+
env/
|
| 108 |
+
venv/
|
| 109 |
+
ENV/
|
| 110 |
+
env.bak/
|
| 111 |
+
venv.bak/
|
| 112 |
+
|
| 113 |
+
# Spyder project settings
|
| 114 |
+
.spyderproject
|
| 115 |
+
.spyproject
|
| 116 |
+
|
| 117 |
+
# Rope project settings
|
| 118 |
+
.ropeproject
|
| 119 |
+
|
| 120 |
+
# mkdocs documentation
|
| 121 |
+
/site
|
| 122 |
+
|
| 123 |
+
# mypy
|
| 124 |
+
.mypy_cache/
|
| 125 |
+
.dmypy.json
|
| 126 |
+
dmypy.json
|
| 127 |
+
|
| 128 |
+
# Pyre type checker
|
| 129 |
+
.pyre/
|
| 130 |
+
|
| 131 |
+
.vscode
|
| 132 |
+
.vscode/*
|
| 133 |
+
.DS_Store
|
| 134 |
+
|
| 135 |
+
output/*
|
| 136 |
+
work_dirs
|
| 137 |
+
work_dirs/*
|
| 138 |
+
work_dirs/
|
| 139 |
+
|
| 140 |
+
data/temp/*
|
| 141 |
+
slurm_tools/
|
| 142 |
+
slurm_run.sh
|
| 143 |
+
|
| 144 |
+
core*
|
| 145 |
+
dist_url_*
|
LICENSE
ADDED
|
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Copyright (c) 2022 - present, SenseTime. All Rights Reserved.
|
| 2 |
+
|
| 3 |
+
Apache License
|
| 4 |
+
Version 2.0, January 2004
|
| 5 |
+
http://www.apache.org/licenses/
|
| 6 |
+
|
| 7 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
| 8 |
+
|
| 9 |
+
1. Definitions.
|
| 10 |
+
|
| 11 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
| 12 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
| 13 |
+
|
| 14 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
| 15 |
+
the copyright owner that is granting the License.
|
| 16 |
+
|
| 17 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
| 18 |
+
other entities that control, are controlled by, or are under common
|
| 19 |
+
control with that entity. For the purposes of this definition,
|
| 20 |
+
"control" means (i) the power, direct or indirect, to cause the
|
| 21 |
+
direction or management of such entity, whether by contract or
|
| 22 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
| 23 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
| 24 |
+
|
| 25 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
| 26 |
+
exercising permissions granted by this License.
|
| 27 |
+
|
| 28 |
+
"Source" form shall mean the preferred form for making modifications,
|
| 29 |
+
including but not limited to software source code, documentation
|
| 30 |
+
source, and configuration files.
|
| 31 |
+
|
| 32 |
+
"Object" form shall mean any form resulting from mechanical
|
| 33 |
+
transformation or translation of a Source form, including but
|
| 34 |
+
not limited to compiled object code, generated documentation,
|
| 35 |
+
and conversions to other media types.
|
| 36 |
+
|
| 37 |
+
"Work" shall mean the work of authorship, whether in Source or
|
| 38 |
+
Object form, made available under the License, as indicated by a
|
| 39 |
+
copyright notice that is included in or attached to the work
|
| 40 |
+
(an example is provided in the Appendix below).
|
| 41 |
+
|
| 42 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
| 43 |
+
form, that is based on (or derived from) the Work and for which the
|
| 44 |
+
editorial revisions, annotations, elaborations, or other modifications
|
| 45 |
+
represent, as a whole, an original work of authorship. For the purposes
|
| 46 |
+
of this License, Derivative Works shall not include works that remain
|
| 47 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
| 48 |
+
the Work and Derivative Works thereof.
|
| 49 |
+
|
| 50 |
+
"Contribution" shall mean any work of authorship, including
|
| 51 |
+
the original version of the Work and any modifications or additions
|
| 52 |
+
to that Work or Derivative Works thereof, that is intentionally
|
| 53 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
| 54 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
| 55 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
| 56 |
+
means any form of electronic, verbal, or written communication sent
|
| 57 |
+
to the Licensor or its representatives, including but not limited to
|
| 58 |
+
communication on electronic mailing lists, source code control systems,
|
| 59 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
| 60 |
+
Licensor for the purpose of discussing and improving the Work, but
|
| 61 |
+
excluding communication that is conspicuously marked or otherwise
|
| 62 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
| 63 |
+
|
| 64 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
| 65 |
+
on behalf of whom a Contribution has been received by Licensor and
|
| 66 |
+
subsequently incorporated within the Work.
|
| 67 |
+
|
| 68 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
| 69 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 70 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 71 |
+
copyright license to reproduce, prepare Derivative Works of,
|
| 72 |
+
publicly display, publicly perform, sublicense, and distribute the
|
| 73 |
+
Work and such Derivative Works in Source or Object form.
|
| 74 |
+
|
| 75 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
| 76 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 77 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 78 |
+
(except as stated in this section) patent license to make, have made,
|
| 79 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
| 80 |
+
where such license applies only to those patent claims licensable
|
| 81 |
+
by such Contributor that are necessarily infringed by their
|
| 82 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
| 83 |
+
with the Work to which such Contribution(s) was submitted. If You
|
| 84 |
+
institute patent litigation against any entity (including a
|
| 85 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
| 86 |
+
or a Contribution incorporated within the Work constitutes direct
|
| 87 |
+
or contributory patent infringement, then any patent licenses
|
| 88 |
+
granted to You under this License for that Work shall terminate
|
| 89 |
+
as of the date such litigation is filed.
|
| 90 |
+
|
| 91 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
| 92 |
+
Work or Derivative Works thereof in any medium, with or without
|
| 93 |
+
modifications, and in Source or Object form, provided that You
|
| 94 |
+
meet the following conditions:
|
| 95 |
+
|
| 96 |
+
(a) You must give any other recipients of the Work or
|
| 97 |
+
Derivative Works a copy of this License; and
|
| 98 |
+
|
| 99 |
+
(b) You must cause any modified files to carry prominent notices
|
| 100 |
+
stating that You changed the files; and
|
| 101 |
+
|
| 102 |
+
(c) You must retain, in the Source form of any Derivative Works
|
| 103 |
+
that You distribute, all copyright, patent, trademark, and
|
| 104 |
+
attribution notices from the Source form of the Work,
|
| 105 |
+
excluding those notices that do not pertain to any part of
|
| 106 |
+
the Derivative Works; and
|
| 107 |
+
|
| 108 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
| 109 |
+
distribution, then any Derivative Works that You distribute must
|
| 110 |
+
include a readable copy of the attribution notices contained
|
| 111 |
+
within such NOTICE file, excluding those notices that do not
|
| 112 |
+
pertain to any part of the Derivative Works, in at least one
|
| 113 |
+
of the following places: within a NOTICE text file distributed
|
| 114 |
+
as part of the Derivative Works; within the Source form or
|
| 115 |
+
documentation, if provided along with the Derivative Works; or,
|
| 116 |
+
within a display generated by the Derivative Works, if and
|
| 117 |
+
wherever such third-party notices normally appear. The contents
|
| 118 |
+
of the NOTICE file are for informational purposes only and
|
| 119 |
+
do not modify the License. You may add Your own attribution
|
| 120 |
+
notices within Derivative Works that You distribute, alongside
|
| 121 |
+
or as an addendum to the NOTICE text from the Work, provided
|
| 122 |
+
that such additional attribution notices cannot be construed
|
| 123 |
+
as modifying the License.
|
| 124 |
+
|
| 125 |
+
You may add Your own copyright statement to Your modifications and
|
| 126 |
+
may provide additional or different license terms and conditions
|
| 127 |
+
for use, reproduction, or distribution of Your modifications, or
|
| 128 |
+
for any such Derivative Works as a whole, provided Your use,
|
| 129 |
+
reproduction, and distribution of the Work otherwise complies with
|
| 130 |
+
the conditions stated in this License.
|
| 131 |
+
|
| 132 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
| 133 |
+
any Contribution intentionally submitted for inclusion in the Work
|
| 134 |
+
by You to the Licensor shall be under the terms and conditions of
|
| 135 |
+
this License, without any additional terms or conditions.
|
| 136 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
| 137 |
+
the terms of any separate license agreement you may have executed
|
| 138 |
+
with Licensor regarding such Contributions.
|
| 139 |
+
|
| 140 |
+
6. Trademarks. This License does not grant permission to use the trade
|
| 141 |
+
names, trademarks, service marks, or product names of the Licensor,
|
| 142 |
+
except as required for reasonable and customary use in describing the
|
| 143 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
| 144 |
+
|
| 145 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
| 146 |
+
agreed to in writing, Licensor provides the Work (and each
|
| 147 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
| 148 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
| 149 |
+
implied, including, without limitation, any warranties or conditions
|
| 150 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
| 151 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
| 152 |
+
appropriateness of using or redistributing the Work and assume any
|
| 153 |
+
risks associated with Your exercise of permissions under this License.
|
| 154 |
+
|
| 155 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
| 156 |
+
whether in tort (including negligence), contract, or otherwise,
|
| 157 |
+
unless required by applicable law (such as deliberate and grossly
|
| 158 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
| 159 |
+
liable to You for damages, including any direct, indirect, special,
|
| 160 |
+
incidental, or consequential damages of any character arising as a
|
| 161 |
+
result of this License or out of the use or inability to use the
|
| 162 |
+
Work (including but not limited to damages for loss of goodwill,
|
| 163 |
+
work stoppage, computer failure or malfunction, or any and all
|
| 164 |
+
other commercial damages or losses), even if such Contributor
|
| 165 |
+
has been advised of the possibility of such damages.
|
| 166 |
+
|
| 167 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
| 168 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
| 169 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
| 170 |
+
or other liability obligations and/or rights consistent with this
|
| 171 |
+
License. However, in accepting such obligations, You may act only
|
| 172 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
| 173 |
+
of any other Contributor, and only if You agree to indemnify,
|
| 174 |
+
defend, and hold each Contributor harmless for any liability
|
| 175 |
+
incurred by, or claims asserted against, such Contributor by reason
|
| 176 |
+
of your accepting any such warranty or additional liability.
|
| 177 |
+
|
| 178 |
+
END OF TERMS AND CONDITIONS
|
| 179 |
+
|
| 180 |
+
APPENDIX: How to apply the Apache License to your work.
|
| 181 |
+
|
| 182 |
+
To apply the Apache License to your work, attach the following
|
| 183 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
| 184 |
+
replaced with your own identifying information. (Don't include
|
| 185 |
+
the brackets!) The text should be enclosed in the appropriate
|
| 186 |
+
comment syntax for the file format. We also recommend that a
|
| 187 |
+
file or class name and description of purpose be included on the
|
| 188 |
+
same "printed page" as the copyright notice for easier
|
| 189 |
+
identification within third-party archives.
|
| 190 |
+
|
| 191 |
+
Copyright 2022 - present, SenseTime
|
| 192 |
+
|
| 193 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
| 194 |
+
you may not use this file except in compliance with the License.
|
| 195 |
+
You may obtain a copy of the License at
|
| 196 |
+
|
| 197 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
| 198 |
+
|
| 199 |
+
Unless required by applicable law or agreed to in writing, software
|
| 200 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
| 201 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 202 |
+
See the License for the specific language governing permissions and
|
| 203 |
+
limitations under the License.
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
X-modaler
|
| 207 |
+
|
| 208 |
+
Copyright 2021 Jingdong Technology Information Technology Co., Ltd
|
| 209 |
+
|
| 210 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
| 211 |
+
you may not use this file except in compliance with the License.
|
| 212 |
+
You may obtain a copy of the License at
|
| 213 |
+
|
| 214 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
| 215 |
+
|
| 216 |
+
Unless required by applicable law or agreed to in writing, software
|
| 217 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
| 218 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 219 |
+
See the License for the specific language governing permissions and
|
| 220 |
+
limitations under the License.
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
|
README.md
CHANGED
|
@@ -1,3 +1,201 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Uni-Perceiver
|
| 2 |
+
|
| 3 |
+
This repository contains training (pre-training, fine-tuning, prompt-tuning), evaluation code and pretrained models for the following papers:
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
> [Uni-Perceiver](https://arxiv.org/abs/2112.01522): Pre-training Unified Architecture for Generic Perception for Zero-shot and Few-shot Tasks, CVPR 2022.
|
| 7 |
+
|
| 8 |
+
> [Uni-Perceiver-MoE](https://arxiv.org/abs/2206.04674): Learning Sparse Generalist Models with Conditional MoEs, NeurIPS 2022.
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Introduction
|
| 13 |
+
|
| 14 |
+
__Uni-Perceiver__ is a generalist model (generic perception model) that can process a variety of modalities and tasks with unified modeling and shared
|
| 15 |
+
parameters. Different perception tasks are modeled as the same formulation, that is, finding the maximum likelihood target for each input through the similarity of their representations. Meanwhile, Uni-Perceiver is pre-trained on several uni-modal and multi-modal tasks, and evaluated on a variety of downstream tasks, including novel tasks that did not appear in the pre-training stage.
|
| 16 |
+
Thanks to the unified formulation, it shows the ability of zero-shot inference on novel tasks, and shows promising performance close to or on par with SOTA results by prompt tuning or finetuning.
|
| 17 |
+
|
| 18 |
+

|
| 19 |
+
|
| 20 |
+
In __Uni-Perceiver-MoE__, we found that the interference among different tasks and modalities can lead to performance degradation of generalist models on some tasks compared with task-specialized models. We introduce the Conditional Mixture-of-Experts (Conditional MoEs) to mitigate such interference. By incorporating the proposed Conditional MoEs, Uni-Perceiver-MoE can effectively mitigate the interference across tasks and modalities, and achieves state-of-the-art results on a series of downstream tasks via prompt tuning on 1% of downstream data. Moreover, the introduction of Conditional MoEs still holds the generalization ability of generalist models to conduct zero-shot inference on new tasks,
|
| 21 |
+
|
| 22 |
+

|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
## Main Results and Pretrained Models
|
| 26 |
+
|
| 27 |
+
### Base Models
|
| 28 |
+
|
| 29 |
+
<table border="1" width="100%">
|
| 30 |
+
<tr align="center">
|
| 31 |
+
<th>Task</th>
|
| 32 |
+
<th>Image Classification</th>
|
| 33 |
+
<th colspan="2">Image Caption</th>
|
| 34 |
+
<th colspan="4">Image Retrieval</th>
|
| 35 |
+
<th>Video Classification</th><th>Video Caption</th><th colspan="2">Video Retrieval</th>
|
| 36 |
+
</tr>
|
| 37 |
+
<tr align="center">
|
| 38 |
+
<td>Dataset</td><td>ImageNet-1k</td><td>MSCOCO</td><td>Flickr30k</td><td colspan="2">MSCOCO</td><td colspan="2">Flickr30k</td><td>Kinetics-400</td><td>MSVD</td><td colspan="2">MSVD</td>
|
| 39 |
+
</tr>
|
| 40 |
+
<tr align="center">
|
| 41 |
+
<td>Split</td><td>ILSVRC 2012 val</td><td>Karpathy test</td><td>test</td><td colspan="2">Karpathy test</td><td colspan="2">test</td><td>test-dev</td><td>val</td><td>val</td><td colspan="2">val</td>
|
| 42 |
+
</tr>
|
| 43 |
+
<tr align="center">
|
| 44 |
+
<td>Metric</td><td>Acc@1</td><td>BLEU-4</td><td>BLEU-4</td><td>R@1 i2t</td><td>R@1 t2i</td><td>R@1 i2t</td><td>R@1 t2i</td><td>Acc@1</td><td>BLEU-4</td><td>R@1 v2t</td><td>R@1 t2v</td>
|
| 45 |
+
</tr>
|
| 46 |
+
</tr>
|
| 47 |
+
<tr align="center">
|
| 48 |
+
<td>Uni-Perceiver<sub>BASE</sub> w/o Tuning</td><td>79.2 </td><td>32.0</td><td>14.7 </td><td>64.9 </td><td>50.7 </td><td>82.3 </td><td>71.1</td> <td>74.5 </td><td>22.6 </td><td>50.3</td><td>38.7 </td>
|
| 49 |
+
</tr>
|
| 50 |
+
<tr align="center">
|
| 51 |
+
<td>Uni-Perceiver<sub>BASE</sub> PT (1%)</td><td>80.9 </td><td>35.5</td><td>30.2</td><td>68.4 </td><td>51.9 </td><td>91.0 </td><td>76.0 </td><td>74.8 </td><td>59.5 </td><td>62.7 </td><td>43.8 </td>
|
| 52 |
+
</tr>
|
| 53 |
+
<tr align="center">
|
| 54 |
+
<td>Uni-Perceiver<sub>BASE</sub> FT (100%)</td><td>84.0</td><td>36.4 </td><td>31.2 </td><td>69.8</td><td>53.9 </td><td>92.7</td><td>77.5</td><td>77.7 </td><td>63.3 </td><td>62.8</td><td>45.8 </td>
|
| 55 |
+
</tr>
|
| 56 |
+
|
| 57 |
+
<tr align="center">
|
| 58 |
+
<td>Uni-Perceiver-MoE<sub>BASE</sub> w/o Tuning</td><td>80.3 </td><td>33.2</td><td>15.9 </td><td>64.6 </td><td>51.6 </td><td>82.1 </td><td>75.8</td> <td>76.8 </td><td>23.4 </td><td>52.8</td><td>40.0 </td>
|
| 59 |
+
</tr>
|
| 60 |
+
<tr align="center">
|
| 61 |
+
<td>Uni-Perceiver-MoE<sub>BASE</sub> PT (1%)</td><td>82.0 </td><td>36.8</td><td>30.7</td><td>68.9 </td><td>52.6 </td><td>91.3 </td><td>78.5 </td><td>77.2 </td><td>60.0 </td><td>65.6 </td><td>45.3 </td>
|
| 62 |
+
</tr>
|
| 63 |
+
<tr align="center">
|
| 64 |
+
<td>Uni-Perceiver-MoE<sub>BASE</sub> FT (100%)</td><td>84.5</td><td>37.3 </td><td>32.4 </td><td>70.5</td><td>54.1 </td><td>93.6</td><td>79.8</td><td>79.3 </td><td>65.4 </td><td>65.0</td><td>47.8 </td>
|
| 65 |
+
</tr>
|
| 66 |
+
</table>
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
### Large Models
|
| 70 |
+
|
| 71 |
+
<table border="1" width="100%">
|
| 72 |
+
<tr align="center">
|
| 73 |
+
<th>Task</th>
|
| 74 |
+
<th>Image Classification</th>
|
| 75 |
+
<th colspan="2">Image Caption</th>
|
| 76 |
+
<th colspan="4">Image Retrieval</th>
|
| 77 |
+
<th>Video Classification</th><th>Video Caption</th><th colspan="2">Video Retrieval</th>
|
| 78 |
+
</tr>
|
| 79 |
+
<tr align="center">
|
| 80 |
+
<td>Dataset</td><td>ImageNet-1k</td><td>MSCOCO</td><td>Flickr30k</td><td colspan="2">MSCOCO</td><td colspan="2">Flickr30k</td><td>Kinetics-400</td><td>MSVD</td><td colspan="2">MSVD</td>
|
| 81 |
+
</tr>
|
| 82 |
+
<tr align="center">
|
| 83 |
+
<td>Split</td><td>ILSVRC 2012 val</td><td>Karpathy test</td><td>test</td><td colspan="2">Karpathy test</td><td colspan="2">test</td><td>test-dev</td><td>val</td><td>val</td><td colspan="2">val</td>
|
| 84 |
+
</tr>
|
| 85 |
+
<tr align="center">
|
| 86 |
+
<td>Metric</td><td>Acc@1</td><td>BLEU-4</td><td>BLEU-4</td><td>R@1 i2t</td><td>R@1 t2i</td><td>R@1 i2t</td><td>R@1 t2i</td><td>Acc@1</td><td>BLEU-4</td><td>R@1 v2t</td><td>R@1 t2v</td>
|
| 87 |
+
</tr>
|
| 88 |
+
<tr align="center">
|
| 89 |
+
<td>Uni-Perceiver<sub>LARGE</sub> w/o Tuning</td><td>82.7 </td><td> 35.3 </td><td> 15.1 </td><td>67.8 </td><td>54.1 </td><td> 83.7</td><td> 74.2 </td><td> 79.5</td><td>24.7 </td><td> 45.4 </td><td>34.2 </td>
|
| 90 |
+
</tr>
|
| 91 |
+
<tr align="center">
|
| 92 |
+
<td>Uni-Perceiver<sub>LARGE</sub> PT (1%)</td><td>84.2 </td><td>38.6 </td><td> 32.9</td><td> 73.3 </td><td>56.2 </td><td>92.1 </td><td> 80.0</td><td> 80.0</td><td> 67.2</td><td> 65.5 </td><td>48.6 </td>
|
| 93 |
+
</tr>
|
| 94 |
+
<tr align="center">
|
| 95 |
+
<td>Uni-Perceiver<sub>LARGE</sub> FT (100%)</td><td>86.2 </td><td> 39.2 </td><td> 35.5 </td><td>74.4 </td><td>57.9 </td><td>94.7 </td><td> 82.1</td><td>81.9 </td><td>68.3 </td><td> 65.2 </td><td>50.8 </td>
|
| 96 |
+
</tr>
|
| 97 |
+
|
| 98 |
+
<tr align="center">
|
| 99 |
+
<td>Uni-Perceiver-MoE<sub>LARGE</sub> w/o Tuning</td><td>83.4 </td><td> 35.5 </td><td> 15.8 </td><td>67.9 </td><td>55.3 </td><td> 83.6</td><td> 75.9 </td><td> 82.1</td><td>24.6 </td><td> 45.7 </td><td>41.9 </td>
|
| 100 |
+
</tr>
|
| 101 |
+
<tr align="center">
|
| 102 |
+
<td>Uni-Perceiver-MoE<sub>LARGE</sub> PT (1%)</td><td>84.9 </td><td>39.3 </td><td> 33.7</td><td> 73.3 </td><td>57.1 </td><td>92.4 </td><td> 80.6</td><td> 83.0</td><td> 67.6</td><td> 66.4 </td><td>50.3 </td>
|
| 103 |
+
</tr>
|
| 104 |
+
<tr align="center">
|
| 105 |
+
<td>Uni-Perceiver-MoE<sub>LARGE</sub> FT (100%)</td><td>86.4 </td><td> 40.5 </td><td> 36.2 </td><td>74.7 </td><td>58.3 </td><td>94.1 </td><td> 83.7</td><td>84.2 </td><td>68.9 </td><td> 67.6 </td><td>52.3 </td>
|
| 106 |
+
</tr>
|
| 107 |
+
</table>
|
| 108 |
+
|
| 109 |
+
* The numbers are slightly better than the original paper of Uni-Perceiver, which are from the reproduced version of Uni-Perceiver used as the baseline of [Uni-Perceiver-MoE](https://arxiv.org/abs/2206.04674).
|
| 110 |
+
* The image resolution for all tasks is `224x224`.
|
| 111 |
+
* See [OtherResults.md](data/other_results.md) for results on more tasks and datasets.
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
## Usage
|
| 116 |
+
### Requirements
|
| 117 |
+
* Linux, CUDA>=10.1, GCC>=5.4
|
| 118 |
+
|
| 119 |
+
* Python >=3.7
|
| 120 |
+
|
| 121 |
+
* pytorch >= 1.8.0
|
| 122 |
+
|
| 123 |
+
* JAVA >= 1.8 (for caption task evaluation)
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
### Installation
|
| 127 |
+
```bash
|
| 128 |
+
git clone https://github.com/fundamentalvision/Uni-Perceiver
|
| 129 |
+
cd Uni-Perceiver
|
| 130 |
+
pip install -r requirements.txt
|
| 131 |
+
```
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
### Data
|
| 135 |
+
See [prepare_data.md](data/prepare_data.md).
|
| 136 |
+
|
| 137 |
+
### Pre-trained Model Weights
|
| 138 |
+
See [checkpoints.md](data/checkpoints.md).
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
### Pre-training
|
| 142 |
+
See [pretraining.md](data/pretraining.md).
|
| 143 |
+
|
| 144 |
+
### Fine-tuning
|
| 145 |
+
See [finetuning.md](data/finetuning.md).
|
| 146 |
+
|
| 147 |
+
### Prompt-tuning
|
| 148 |
+
|
| 149 |
+
See [prompt_tuning.md](data/prompt_tuning.md).
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
### Inference
|
| 153 |
+
|
| 154 |
+
See [inference.md](data/inference.md).
|
| 155 |
+
|
| 156 |
+
### TODO
|
| 157 |
+
|
| 158 |
+
* release more pretrained models
|
| 159 |
+
- [ ] Uni-Perceiver Tiny model
|
| 160 |
+
- [ ] Uni-Perceiver Small model
|
| 161 |
+
- [ ] Uni-Perceiver Huge model
|
| 162 |
+
|
| 163 |
+
* support more datasets and tasks
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
## License
|
| 168 |
+
Uni-Perceiver is licensed under the [Apache-2.0 License](./LICENSE).
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
<br></br>
|
| 172 |
+
|
| 173 |
+
## Citing Uni-Perceiver
|
| 174 |
+
If you find Uni-Perceiver useful in your research, please consider giving a star ⭐ and citing:
|
| 175 |
+
```bibtex
|
| 176 |
+
@article{zhu2021uni,
|
| 177 |
+
title={Uni-Perceiver: Pre-training Unified Architecture for Generic Perception for Zero-shot and Few-shot Tasks},
|
| 178 |
+
author={Zhu, Xizhou and Zhu, Jinguo and Li, Hao and Wu, Xiaoshi and Wang, Xiaogang and Li, Hongsheng and Wang, Xiaohua and Dai, Jifeng},
|
| 179 |
+
journal={arXiv preprint arXiv:2112.01522},
|
| 180 |
+
year={2021}
|
| 181 |
+
|
| 182 |
+
}
|
| 183 |
+
```
|
| 184 |
+
|
| 185 |
+
```bibtex
|
| 186 |
+
@article{zhu2022uni,
|
| 187 |
+
title={Uni-Perceiver-MoE: Learning Sparse Generalist Models with Conditional MoEs},
|
| 188 |
+
author={Zhu, Jinguo and Zhu, Xizhou and Wang, Wenhai and Wang, Xiaohua and Li, Hongsheng and Wang, Xiaogang and Dai, Jifeng},
|
| 189 |
+
journal={arXiv preprint arXiv:2206.04674},
|
| 190 |
+
year={2022}
|
| 191 |
+
}
|
| 192 |
+
```
|
| 193 |
+
|
| 194 |
+
### Acknowledgements
|
| 195 |
+
Many thanks to following codes that help us a lot in building this codebase:
|
| 196 |
+
* [Detectron2](https://github.com/facebookresearch/detectron2)
|
| 197 |
+
* [X-modaler](https://github.com/YehLi/xmodaler)
|
| 198 |
+
* [deit](https://github.com/facebookresearch/deit)
|
| 199 |
+
* [VL-BERT](https://github.com/jackroos/VL-BERT)
|
| 200 |
+
* [TimeSformer](https://github.com/facebookresearch/TimeSformer)
|
| 201 |
+
* [CLIP](https://github.com/openai/CLIP)
|
configs/BERT_L12_H192_experiments/4tasks_training.yaml
ADDED
|
@@ -0,0 +1,729 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base_model_bert_l12_h192.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
-
|
| 6 |
+
NAME: 'ImageNet1k'
|
| 7 |
+
SHARED_TARGETS_CFG:
|
| 8 |
+
FILE_PATH: 'open_source_dataset/imagenet_class_name_CLIP_with_endoftext.pkl'
|
| 9 |
+
DISTRIBUTED: False
|
| 10 |
+
|
| 11 |
+
-
|
| 12 |
+
NAME: 'Vocab_Word'
|
| 13 |
+
SHARED_TARGETS_CFG:
|
| 14 |
+
FILE_PATH: 'open_source_dataset/vocabulary_CLIP_with_endoftext.pkl'
|
| 15 |
+
DISTRIBUTED: True
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
TASKS:
|
| 20 |
+
|
| 21 |
+
-
|
| 22 |
+
NAME: imagenet
|
| 23 |
+
DATASETS:
|
| 24 |
+
TRAIN: 'ImageNetDataset'
|
| 25 |
+
# VAL: 'ImageNetDataset'
|
| 26 |
+
TASK_TYPE: 'image_classification'
|
| 27 |
+
DATASET_NAME: 'ImageNet1k'
|
| 28 |
+
TARGET_SET: ['ImageNet1k']
|
| 29 |
+
|
| 30 |
+
DATALOADER:
|
| 31 |
+
TRAIN_BATCH_SIZE: 4
|
| 32 |
+
# TEST_BATCH_SIZE: 2
|
| 33 |
+
NUM_WORKERS: 4
|
| 34 |
+
FEATS_FOLDER: 'open_source_dataset/imagenet'
|
| 35 |
+
S3_PATH: 'cluster2:s3://imagenet'
|
| 36 |
+
ANNO_FOLDER: 'open_source_dataset/imagenet/meta'
|
| 37 |
+
SAMPLING_WEIGHT: 1.0
|
| 38 |
+
CLASS_NAME_FILE: 'open_source_dataset/imagenet_class_name.pkl'
|
| 39 |
+
MIXUP: 0.8
|
| 40 |
+
CUTMIX: 1.0
|
| 41 |
+
MIXUP_PROB: 1.0
|
| 42 |
+
MIXUP_SWITCH_PROB: 0.5
|
| 43 |
+
MIXUP_MODE: 'batch'
|
| 44 |
+
MIXUP_LABEL_SMOOTHING: 0.1
|
| 45 |
+
MODEL:
|
| 46 |
+
MAX_SEQ_LEN: -1
|
| 47 |
+
LABELS_NUM: 1000
|
| 48 |
+
TEMP_NAME: logit_scale_img_cls
|
| 49 |
+
LOSSES:
|
| 50 |
+
NAMES: ['SoftTargetCrossEntropy', 'Accuracy']
|
| 51 |
+
LOSS_WEIGHT: 1.0
|
| 52 |
+
REDUCTION: 'mean'
|
| 53 |
+
# LOSS_FP32: True
|
| 54 |
+
INFERENCE:
|
| 55 |
+
NAME: 'ImageNetEvaler'
|
| 56 |
+
ID_KEY: 'image_id'
|
| 57 |
+
VALUE: 'cls_logits'
|
| 58 |
+
VAL_ANNFILE: 'open_source_dataset/imagenet/meta/val.txt'
|
| 59 |
+
TEST_ANNFILE: ''
|
| 60 |
+
GENERATION_MODE: False
|
| 61 |
+
|
| 62 |
+
-
|
| 63 |
+
NAME: mscoco_caption
|
| 64 |
+
DATASETS:
|
| 65 |
+
TRAIN: 'ImageTextPairDataset'
|
| 66 |
+
# VAL: 'ImageTextPairDataset'
|
| 67 |
+
# TEST: 'ImageTextPairDataset'
|
| 68 |
+
TASK_TYPE: 'image_caption'
|
| 69 |
+
DATASET_NAME: 'MSCOCO'
|
| 70 |
+
TARGET_SET: ['Vocab_Word']
|
| 71 |
+
DATALOADER:
|
| 72 |
+
TRAIN_BATCH_SIZE: 64
|
| 73 |
+
TEST_BATCH_SIZE: 32
|
| 74 |
+
NUM_WORKERS: 4
|
| 75 |
+
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 76 |
+
ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 77 |
+
S3_PATH: 's3://coco/'
|
| 78 |
+
SEQ_PER_SAMPLE: 1
|
| 79 |
+
CACHE_MODE: True
|
| 80 |
+
CIRCULAR_CACHE_MODE: False
|
| 81 |
+
ZIP_MODE: False
|
| 82 |
+
CACHE_ORIGIN_IMAGE: False
|
| 83 |
+
RANDOM_CAPTION: False
|
| 84 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 85 |
+
SAMPLING_WEIGHT: 1.0
|
| 86 |
+
TRANSFORM: 'clip_transforms'
|
| 87 |
+
RANDOM_MASK: True
|
| 88 |
+
MODEL:
|
| 89 |
+
MAX_SEQ_LEN: 50
|
| 90 |
+
EVAL_MAX_SEQ_LEN: 21
|
| 91 |
+
TEMP_NAME: logit_scale_caption
|
| 92 |
+
LOSSES:
|
| 93 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 94 |
+
LOSS_WEIGHT: 0.33333
|
| 95 |
+
REDUCTION: 'mean'
|
| 96 |
+
DECODE_STRATEGY:
|
| 97 |
+
NAME: 'CaptionBeamSearcherV3'
|
| 98 |
+
BEAM_SIZE: 2
|
| 99 |
+
# LEN_PENALTY: 1.0
|
| 100 |
+
INFERENCE:
|
| 101 |
+
NAME: 'COCOEvaler'
|
| 102 |
+
VOCAB: 'CLIP'
|
| 103 |
+
ID_KEY: 'image_id'
|
| 104 |
+
VALUE: 'caption'
|
| 105 |
+
VAL_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_val5k.json'
|
| 106 |
+
TEST_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_test5k.json'
|
| 107 |
+
GENERATION_MODE: True
|
| 108 |
+
|
| 109 |
+
-
|
| 110 |
+
NAME: yfcc_caption
|
| 111 |
+
DATASETS:
|
| 112 |
+
TRAIN: 'ImageTextPairDataset'
|
| 113 |
+
TASK_TYPE: 'image_caption'
|
| 114 |
+
DATASET_NAME: 'YFCC'
|
| 115 |
+
TARGET_SET: ['Vocab_Word']
|
| 116 |
+
DATALOADER:
|
| 117 |
+
TRAIN_BATCH_SIZE: 64
|
| 118 |
+
TEST_BATCH_SIZE: 32
|
| 119 |
+
NUM_WORKERS: 2
|
| 120 |
+
S3_ANNO_FOLDER: 'cluster2:s3://yfcc'
|
| 121 |
+
ANNO_FOLDER: 'open_source_dataset/yfcc'
|
| 122 |
+
ANNO_FILENAME: 'yfcc100m_subset_available_untokenized.json'
|
| 123 |
+
FEATS_FOLDER: 'open_source_dataset/yfcc/'
|
| 124 |
+
S3_PATH: 'cluster2:s3://yfcc/'
|
| 125 |
+
SEQ_PER_SAMPLE: 1
|
| 126 |
+
SAMPLER: NodeDistributed
|
| 127 |
+
CACHE_MODE: True
|
| 128 |
+
CIRCULAR_CACHE_MODE: False
|
| 129 |
+
ZIP_MODE: False
|
| 130 |
+
CACHE_ORIGIN_IMAGE: False
|
| 131 |
+
RANDOM_CAPTION: True
|
| 132 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 133 |
+
SAMPLING_WEIGHT: 1.0
|
| 134 |
+
TRANSFORM: 'clip_transforms'
|
| 135 |
+
MODEL:
|
| 136 |
+
MAX_SEQ_LEN: 50
|
| 137 |
+
TEMP_NAME: logit_scale_caption
|
| 138 |
+
LOSSES:
|
| 139 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 140 |
+
LOSS_WEIGHT: 1.0
|
| 141 |
+
REDUCTION: 'mean'
|
| 142 |
+
INFERENCE:
|
| 143 |
+
VOCAB: 'CLIP'
|
| 144 |
+
GENERATION_MODE: False
|
| 145 |
+
|
| 146 |
+
-
|
| 147 |
+
NAME: cc12m_caption
|
| 148 |
+
DATASETS:
|
| 149 |
+
TRAIN: 'ImageTextPairDataset'
|
| 150 |
+
TASK_TYPE: 'image_caption'
|
| 151 |
+
DATASET_NAME: 'CC12M'
|
| 152 |
+
TARGET_SET: ['Vocab_Word']
|
| 153 |
+
DATALOADER:
|
| 154 |
+
TRAIN_BATCH_SIZE: 64
|
| 155 |
+
TEST_BATCH_SIZE: 32
|
| 156 |
+
NUM_WORKERS: 2
|
| 157 |
+
S3_ANNO_FOLDER: 's3://cc12m/'
|
| 158 |
+
ANNO_FOLDER: 'open_source_dataset/c12m/'
|
| 159 |
+
ANNO_FILENAME: 'train_available.json'
|
| 160 |
+
FEATS_FOLDER: 'open_source_dataset/c12m/'
|
| 161 |
+
S3_PATH: 's3://cc12m/'
|
| 162 |
+
SEQ_PER_SAMPLE: 1
|
| 163 |
+
SAMPLER: NodeDistributed
|
| 164 |
+
CACHE_MODE: True
|
| 165 |
+
CIRCULAR_CACHE_MODE: False
|
| 166 |
+
ZIP_MODE: False
|
| 167 |
+
CACHE_ORIGIN_IMAGE: False
|
| 168 |
+
RANDOM_CAPTION: False
|
| 169 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 170 |
+
SAMPLING_WEIGHT: 1.0
|
| 171 |
+
TRANSFORM: 'clip_transforms'
|
| 172 |
+
MODEL:
|
| 173 |
+
MAX_SEQ_LEN: 50
|
| 174 |
+
TEMP_NAME: logit_scale_caption
|
| 175 |
+
LOSSES:
|
| 176 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 177 |
+
LOSS_WEIGHT: 1.0
|
| 178 |
+
REDUCTION: 'mean'
|
| 179 |
+
INFERENCE:
|
| 180 |
+
VOCAB: 'CLIP'
|
| 181 |
+
GENERATION_MODE: False
|
| 182 |
+
|
| 183 |
+
-
|
| 184 |
+
NAME: cc3m_caption
|
| 185 |
+
DATASETS:
|
| 186 |
+
TRAIN: 'ImageTextPairDataset'
|
| 187 |
+
TASK_TYPE: 'image_caption'
|
| 188 |
+
DATASET_NAME: 'CC3M'
|
| 189 |
+
TARGET_SET: ['Vocab_Word']
|
| 190 |
+
DATALOADER:
|
| 191 |
+
TRAIN_BATCH_SIZE: 64
|
| 192 |
+
TEST_BATCH_SIZE: 32
|
| 193 |
+
NUM_WORKERS: 2
|
| 194 |
+
S3_ANNO_FOLDER: 's3://cc3m/'
|
| 195 |
+
ANNO_FOLDER: 'open_source_dataset/cc3m/'
|
| 196 |
+
ANNO_FILENAME: 'train_spacy.json'
|
| 197 |
+
FEATS_FOLDER: 'open_source_dataset/cc3m/'
|
| 198 |
+
S3_PATH: 's3://cc3m/'
|
| 199 |
+
SEQ_PER_SAMPLE: 1
|
| 200 |
+
SAMPLER: NodeDistributed
|
| 201 |
+
CACHE_MODE: True
|
| 202 |
+
CIRCULAR_CACHE_MODE: False
|
| 203 |
+
ZIP_MODE: False
|
| 204 |
+
CACHE_ORIGIN_IMAGE: False
|
| 205 |
+
RANDOM_CAPTION: False
|
| 206 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 207 |
+
SAMPLING_WEIGHT: 1.0
|
| 208 |
+
TRANSFORM: 'clip_transforms'
|
| 209 |
+
MODEL:
|
| 210 |
+
MAX_SEQ_LEN: 50
|
| 211 |
+
TEMP_NAME: logit_scale_caption
|
| 212 |
+
LOSSES:
|
| 213 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 214 |
+
LOSS_WEIGHT: 1.0
|
| 215 |
+
REDUCTION: 'mean'
|
| 216 |
+
INFERENCE:
|
| 217 |
+
VOCAB: 'CLIP'
|
| 218 |
+
GENERATION_MODE: False
|
| 219 |
+
|
| 220 |
+
-
|
| 221 |
+
NAME: sbu_caption
|
| 222 |
+
DATASETS:
|
| 223 |
+
TRAIN: 'ImageTextPairDataset'
|
| 224 |
+
TASK_TYPE: 'image_caption'
|
| 225 |
+
DATASET_NAME: 'SBU'
|
| 226 |
+
TARGET_SET: ['Vocab_Word']
|
| 227 |
+
DATALOADER:
|
| 228 |
+
TRAIN_BATCH_SIZE: 64
|
| 229 |
+
TEST_BATCH_SIZE: 32
|
| 230 |
+
NUM_WORKERS: 1
|
| 231 |
+
S3_ANNO_FOLDER: 's3://SBU/annotations'
|
| 232 |
+
ANNO_FOLDER: 'open_source_dataset/sbucaption/annotations'
|
| 233 |
+
ANNO_FILENAME: 'subcaption.json'
|
| 234 |
+
FEATS_FOLDER: 'open_source_dataset/sbucaption/'
|
| 235 |
+
S3_PATH: 's3://SBU/images'
|
| 236 |
+
SEQ_PER_SAMPLE: 1
|
| 237 |
+
SAMPLER: NodeDistributed
|
| 238 |
+
CACHE_MODE: True
|
| 239 |
+
CIRCULAR_CACHE_MODE: False
|
| 240 |
+
ZIP_MODE: False
|
| 241 |
+
CACHE_ORIGIN_IMAGE: False
|
| 242 |
+
RANDOM_CAPTION: False
|
| 243 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 244 |
+
SAMPLING_WEIGHT: 1.0
|
| 245 |
+
TRANSFORM: 'clip_transforms'
|
| 246 |
+
MODEL:
|
| 247 |
+
MAX_SEQ_LEN: 50
|
| 248 |
+
TEMP_NAME: logit_scale_caption
|
| 249 |
+
LOSSES:
|
| 250 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 251 |
+
LOSS_WEIGHT: 1.0
|
| 252 |
+
REDUCTION: 'mean'
|
| 253 |
+
INFERENCE:
|
| 254 |
+
VOCAB: 'CLIP'
|
| 255 |
+
GENERATION_MODE: False
|
| 256 |
+
|
| 257 |
+
-
|
| 258 |
+
NAME: vg_caption
|
| 259 |
+
DATASETS:
|
| 260 |
+
TRAIN: 'ImageTextPairDataset'
|
| 261 |
+
TASK_TYPE: 'image_caption'
|
| 262 |
+
DATASET_NAME: 'VG'
|
| 263 |
+
TARGET_SET: ['Vocab_Word']
|
| 264 |
+
DATALOADER:
|
| 265 |
+
TRAIN_BATCH_SIZE: 64
|
| 266 |
+
TEST_BATCH_SIZE: 32
|
| 267 |
+
NUM_WORKERS: 2
|
| 268 |
+
FEATS_FOLDER: 'open_source_dataset/visual_genome/images'
|
| 269 |
+
ANNO_FOLDER: 'open_source_dataset/visual_genome/annotations'
|
| 270 |
+
S3_PATH: 's3://visual_genome/images'
|
| 271 |
+
ANNO_FILENAME: 'vg_captions_128filter.json'
|
| 272 |
+
SEQ_PER_SAMPLE: 1
|
| 273 |
+
CACHE_MODE: True
|
| 274 |
+
CIRCULAR_CACHE_MODE: False
|
| 275 |
+
ZIP_MODE: False
|
| 276 |
+
CACHE_ORIGIN_IMAGE: False
|
| 277 |
+
RANDOM_CAPTION: False
|
| 278 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 279 |
+
SAMPLING_WEIGHT: 1.0
|
| 280 |
+
TRANSFORM: 'clip_transforms'
|
| 281 |
+
MODEL:
|
| 282 |
+
MAX_SEQ_LEN: 30
|
| 283 |
+
TEMP_NAME: logit_scale_caption
|
| 284 |
+
LOSSES:
|
| 285 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 286 |
+
LOSS_WEIGHT: 1.0
|
| 287 |
+
REDUCTION: 'mean'
|
| 288 |
+
INFERENCE:
|
| 289 |
+
VOCAB: 'CLIP'
|
| 290 |
+
GENERATION_MODE: True
|
| 291 |
+
|
| 292 |
+
-
|
| 293 |
+
NAME: mscoco_retrieve
|
| 294 |
+
DATASETS:
|
| 295 |
+
TRAIN: 'ImageTextPairDataset'
|
| 296 |
+
# TEST: 'ImageTextPairDataset'
|
| 297 |
+
TASK_TYPE: 'image_retrieval'
|
| 298 |
+
DATASET_NAME: 'MSCOCO'
|
| 299 |
+
DATALOADER:
|
| 300 |
+
TRAIN_BATCH_SIZE: 100
|
| 301 |
+
TEST_BATCH_SIZE: 32
|
| 302 |
+
NUM_WORKERS: 1
|
| 303 |
+
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 304 |
+
ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 305 |
+
S3_PATH: 's3://coco/'
|
| 306 |
+
SEQ_PER_SAMPLE: 1
|
| 307 |
+
CACHE_MODE: True
|
| 308 |
+
CIRCULAR_CACHE_MODE: False
|
| 309 |
+
ZIP_MODE: False
|
| 310 |
+
CACHE_ORIGIN_IMAGE: False
|
| 311 |
+
RANDOM_CAPTION: False
|
| 312 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 313 |
+
SAMPLING_WEIGHT: 1.0
|
| 314 |
+
TRANSFORM: 'clip_transforms'
|
| 315 |
+
MODEL:
|
| 316 |
+
MAX_SEQ_LEN: 50
|
| 317 |
+
TEMP_NAME: logit_scale_retrieve
|
| 318 |
+
LOSSES:
|
| 319 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 320 |
+
LABELSMOOTHING: 0.1
|
| 321 |
+
LOSS_WEIGHT: 1.0
|
| 322 |
+
REDUCTION: 'mean'
|
| 323 |
+
INFERENCE:
|
| 324 |
+
VOCAB: 'CLIP'
|
| 325 |
+
ID_KEY: 'image_id'
|
| 326 |
+
VALUE: 'caption'
|
| 327 |
+
NAME: 'RetrievalEvaler'
|
| 328 |
+
VAL_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_val_set0_2014.jsonline'
|
| 329 |
+
TEST_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_test_set0_2014.jsonline'
|
| 330 |
+
GENERATION_MODE: False
|
| 331 |
+
|
| 332 |
+
-
|
| 333 |
+
NAME: yfcc_retrieve
|
| 334 |
+
DATASETS:
|
| 335 |
+
TRAIN: 'ImageTextPairDataset'
|
| 336 |
+
TASK_TYPE: 'image_retrieval'
|
| 337 |
+
DATASET_NAME: 'YFCC'
|
| 338 |
+
DATALOADER:
|
| 339 |
+
TRAIN_BATCH_SIZE: 64
|
| 340 |
+
TEST_BATCH_SIZE: 32
|
| 341 |
+
NUM_WORKERS: 2
|
| 342 |
+
S3_ANNO_FOLDER: 'cluster2:s3://yfcc'
|
| 343 |
+
ANNO_FOLDER: 'open_source_dataset/yfcc'
|
| 344 |
+
ANNO_FILENAME: 'yfcc100m_subset_available_untokenized.json'
|
| 345 |
+
FEATS_FOLDER: 'open_source_dataset/yfcc/'
|
| 346 |
+
S3_PATH: 'cluster2:s3://yfcc/'
|
| 347 |
+
SAMPLER: NodeDistributed
|
| 348 |
+
CACHE_MODE: True
|
| 349 |
+
CIRCULAR_CACHE_MODE: False
|
| 350 |
+
ZIP_MODE: False
|
| 351 |
+
CACHE_ORIGIN_IMAGE: False
|
| 352 |
+
RANDOM_CAPTION: True
|
| 353 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 354 |
+
SAMPLING_WEIGHT: 1.0
|
| 355 |
+
TRANSFORM: 'clip_transforms'
|
| 356 |
+
MODEL:
|
| 357 |
+
MAX_SEQ_LEN: 50
|
| 358 |
+
TEMP_NAME: logit_scale_retrieve
|
| 359 |
+
LOSSES:
|
| 360 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 361 |
+
LABELSMOOTHING: 0.1
|
| 362 |
+
LOSS_WEIGHT: 0.5
|
| 363 |
+
REDUCTION: 'mean'
|
| 364 |
+
INFERENCE:
|
| 365 |
+
VOCAB: 'CLIP'
|
| 366 |
+
GENERATION_MODE: False
|
| 367 |
+
|
| 368 |
+
-
|
| 369 |
+
NAME: cc12m_retrieve
|
| 370 |
+
DATASETS:
|
| 371 |
+
TRAIN: 'ImageTextPairDataset'
|
| 372 |
+
TASK_TYPE: 'image_retrieval'
|
| 373 |
+
DATASET_NAME: 'CC12M'
|
| 374 |
+
DATALOADER:
|
| 375 |
+
TRAIN_BATCH_SIZE: 64
|
| 376 |
+
TEST_BATCH_SIZE: 32
|
| 377 |
+
NUM_WORKERS: 2
|
| 378 |
+
S3_ANNO_FOLDER: 's3://cc12m/'
|
| 379 |
+
ANNO_FOLDER: 'open_source_dataset/c12m/'
|
| 380 |
+
ANNO_FILENAME: 'train_available.json'
|
| 381 |
+
FEATS_FOLDER: 'open_source_dataset/c12m/'
|
| 382 |
+
S3_PATH: 's3://cc12m/'
|
| 383 |
+
SAMPLER: NodeDistributed
|
| 384 |
+
CACHE_MODE: True
|
| 385 |
+
CIRCULAR_CACHE_MODE: False
|
| 386 |
+
ZIP_MODE: False
|
| 387 |
+
CACHE_ORIGIN_IMAGE: False
|
| 388 |
+
RANDOM_CAPTION: False
|
| 389 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 390 |
+
SAMPLING_WEIGHT: 1.0
|
| 391 |
+
TRANSFORM: 'clip_transforms'
|
| 392 |
+
MODEL:
|
| 393 |
+
MAX_SEQ_LEN: 50
|
| 394 |
+
TEMP_NAME: logit_scale_retrieve
|
| 395 |
+
LOSSES:
|
| 396 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 397 |
+
LABELSMOOTHING: 0.1
|
| 398 |
+
LOSS_WEIGHT: 0.5
|
| 399 |
+
REDUCTION: 'mean'
|
| 400 |
+
INFERENCE:
|
| 401 |
+
VOCAB: 'CLIP'
|
| 402 |
+
GENERATION_MODE: False
|
| 403 |
+
|
| 404 |
+
-
|
| 405 |
+
NAME: cc3m_retrieve
|
| 406 |
+
DATASETS:
|
| 407 |
+
TRAIN: 'ImageTextPairDataset'
|
| 408 |
+
TASK_TYPE: 'image_retrieval'
|
| 409 |
+
DATASET_NAME: 'CC3M'
|
| 410 |
+
DATALOADER:
|
| 411 |
+
TRAIN_BATCH_SIZE: 64
|
| 412 |
+
TEST_BATCH_SIZE: 32
|
| 413 |
+
NUM_WORKERS: 2
|
| 414 |
+
S3_ANNO_FOLDER: 's3://cc3m/'
|
| 415 |
+
ANNO_FOLDER: 'open_source_dataset/cc3m/'
|
| 416 |
+
ANNO_FILENAME: 'train_spacy.json'
|
| 417 |
+
FEATS_FOLDER: 'open_source_dataset/cc3m/'
|
| 418 |
+
S3_PATH: 's3://cc3m/'
|
| 419 |
+
SAMPLER: NodeDistributed
|
| 420 |
+
CACHE_MODE: True
|
| 421 |
+
CIRCULAR_CACHE_MODE: False
|
| 422 |
+
ZIP_MODE: False
|
| 423 |
+
CACHE_ORIGIN_IMAGE: False
|
| 424 |
+
RANDOM_CAPTION: False
|
| 425 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 426 |
+
SAMPLING_WEIGHT: 1.0
|
| 427 |
+
TRANSFORM: 'clip_transforms'
|
| 428 |
+
MODEL:
|
| 429 |
+
MAX_SEQ_LEN: 50
|
| 430 |
+
TEMP_NAME: logit_scale_retrieve
|
| 431 |
+
LOSSES:
|
| 432 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 433 |
+
LABELSMOOTHING: 0.1
|
| 434 |
+
LOSS_WEIGHT: 0.5
|
| 435 |
+
REDUCTION: 'mean'
|
| 436 |
+
INFERENCE:
|
| 437 |
+
VOCAB: 'CLIP'
|
| 438 |
+
GENERATION_MODE: False
|
| 439 |
+
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
-
|
| 443 |
+
NAME: vg_retrieve
|
| 444 |
+
DATASETS:
|
| 445 |
+
TRAIN: 'ImageTextPairDataset'
|
| 446 |
+
TASK_TYPE: 'image_retrieval'
|
| 447 |
+
DATASET_NAME: 'VG'
|
| 448 |
+
DATALOADER:
|
| 449 |
+
TRAIN_BATCH_SIZE: 64
|
| 450 |
+
TEST_BATCH_SIZE: 32
|
| 451 |
+
NUM_WORKERS: 2
|
| 452 |
+
FEATS_FOLDER: 'open_source_dataset/visual_genome/images'
|
| 453 |
+
ANNO_FOLDER: 'open_source_dataset/visual_genome/annotations'
|
| 454 |
+
S3_PATH: 's3://visual_genome/images'
|
| 455 |
+
ANNO_FILENAME: 'vg_captions_128filter.json'
|
| 456 |
+
SEQ_PER_SAMPLE: 1
|
| 457 |
+
CACHE_MODE: True
|
| 458 |
+
CIRCULAR_CACHE_MODE: False
|
| 459 |
+
ZIP_MODE: False
|
| 460 |
+
CACHE_ORIGIN_IMAGE: False
|
| 461 |
+
RANDOM_CAPTION: False
|
| 462 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 463 |
+
SAMPLING_WEIGHT: 1.0
|
| 464 |
+
TRANSFORM: 'clip_transforms'
|
| 465 |
+
MODEL:
|
| 466 |
+
MAX_SEQ_LEN: 30
|
| 467 |
+
TEMP_NAME: logit_scale_retrieve
|
| 468 |
+
LOSSES:
|
| 469 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 470 |
+
LABELSMOOTHING: 0.1
|
| 471 |
+
LOSS_WEIGHT: 0.5
|
| 472 |
+
REDUCTION: 'mean'
|
| 473 |
+
INFERENCE:
|
| 474 |
+
VOCAB: 'CLIP'
|
| 475 |
+
GENERATION_MODE: False
|
| 476 |
+
|
| 477 |
+
-
|
| 478 |
+
NAME: sbu_retrieve
|
| 479 |
+
DATASETS:
|
| 480 |
+
TRAIN: 'ImageTextPairDataset'
|
| 481 |
+
TASK_TYPE: 'image_retrieval'
|
| 482 |
+
DATASET_NAME: 'SBU'
|
| 483 |
+
DATALOADER:
|
| 484 |
+
TRAIN_BATCH_SIZE: 64
|
| 485 |
+
TEST_BATCH_SIZE: 32
|
| 486 |
+
NUM_WORKERS: 1
|
| 487 |
+
S3_ANNO_FOLDER: 's3://SBU/annotations'
|
| 488 |
+
ANNO_FOLDER: 'open_source_dataset/sbucaption/annotations'
|
| 489 |
+
ANNO_FILENAME: 'subcaption.json'
|
| 490 |
+
FEATS_FOLDER: 'open_source_dataset/sbucaption/'
|
| 491 |
+
S3_PATH: 's3://SBU/images'
|
| 492 |
+
SAMPLER: NodeDistributed
|
| 493 |
+
CACHE_MODE: True
|
| 494 |
+
CIRCULAR_CACHE_MODE: False
|
| 495 |
+
ZIP_MODE: False
|
| 496 |
+
CACHE_ORIGIN_IMAGE: False
|
| 497 |
+
RANDOM_CAPTION: False
|
| 498 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 499 |
+
SAMPLING_WEIGHT: 1.0
|
| 500 |
+
TRANSFORM: 'clip_transforms'
|
| 501 |
+
MODEL:
|
| 502 |
+
MAX_SEQ_LEN: 50
|
| 503 |
+
TEMP_NAME: logit_scale_retrieve
|
| 504 |
+
LOSSES:
|
| 505 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 506 |
+
LABELSMOOTHING: 0.1
|
| 507 |
+
LOSS_WEIGHT: 0.5
|
| 508 |
+
REDUCTION: 'mean'
|
| 509 |
+
INFERENCE:
|
| 510 |
+
VOCAB: 'CLIP'
|
| 511 |
+
GENERATION_MODE: False
|
| 512 |
+
|
| 513 |
+
-
|
| 514 |
+
NAME: flickr30k_retrieve
|
| 515 |
+
DATASETS:
|
| 516 |
+
TRAIN: 'ImageTextPairDataset'
|
| 517 |
+
TASK_TYPE: 'image_retrieval'
|
| 518 |
+
TEST: 'ImageTextPairDataset'
|
| 519 |
+
DATASET_NAME: 'FLICKR'
|
| 520 |
+
DATALOADER:
|
| 521 |
+
TRAIN_BATCH_SIZE: 128
|
| 522 |
+
TEST_BATCH_SIZE: 128
|
| 523 |
+
NUM_WORKERS: 2
|
| 524 |
+
FEATS_FOLDER: 'open_source_dataset/flickr30k_images/flickr30k_images/flickr30k_images'
|
| 525 |
+
ANNO_FOLDER: 'open_source_dataset/flickr30k'
|
| 526 |
+
S3_PATH: "s3://open_dataset/flickr30k/flickr30k_images"
|
| 527 |
+
SEQ_PER_SAMPLE: 1
|
| 528 |
+
CACHE_MODE: True
|
| 529 |
+
CIRCULAR_CACHE_MODE: False
|
| 530 |
+
ZIP_MODE: False
|
| 531 |
+
CACHE_ORIGIN_IMAGE: False
|
| 532 |
+
RANDOM_CAPTION: False
|
| 533 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 534 |
+
SAMPLING_WEIGHT: 1.0
|
| 535 |
+
TRANSFORM: 'clip_transforms'
|
| 536 |
+
MODEL:
|
| 537 |
+
MAX_SEQ_LEN: 77
|
| 538 |
+
TEMP_NAME: logit_scale_retrieve
|
| 539 |
+
LOSSES:
|
| 540 |
+
NAMES: ['LabelSmoothingCrossEntropy']
|
| 541 |
+
LABELSMOOTHING: 0.1
|
| 542 |
+
LOSS_WEIGHT: 1.0
|
| 543 |
+
REDUCTION: 'mean'
|
| 544 |
+
INFERENCE:
|
| 545 |
+
VOCAB: 'CLIP'
|
| 546 |
+
ID_KEY: 'image_id'
|
| 547 |
+
VALUE: 'caption'
|
| 548 |
+
NAME: 'RetrievalEvaler'
|
| 549 |
+
VAL_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_val_set0_2014.jsonline'
|
| 550 |
+
TEST_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_test_set0_2014.jsonline'
|
| 551 |
+
GENERATION_MODE: False
|
| 552 |
+
|
| 553 |
+
-
|
| 554 |
+
NAME: flickr30k_caption
|
| 555 |
+
DATASETS:
|
| 556 |
+
TRAIN: 'ImageTextPairDataset'
|
| 557 |
+
TASK_TYPE: 'image_caption'
|
| 558 |
+
TEST: 'ImageTextPairDataset'
|
| 559 |
+
DATASET_NAME: 'FLICKR'
|
| 560 |
+
TARGET_SET: ['Vocab_Word']
|
| 561 |
+
DATALOADER:
|
| 562 |
+
TRAIN_BATCH_SIZE: 32
|
| 563 |
+
TEST_BATCH_SIZE: 8
|
| 564 |
+
NUM_WORKERS: 4
|
| 565 |
+
FEATS_FOLDER: 'open_source_dataset/flickr30k_images/flickr30k_images/flickr30k_images'
|
| 566 |
+
ANNO_FOLDER: 'open_source_dataset/flickr30k'
|
| 567 |
+
S3_PATH: "s3://open_dataset/flickr30k/flickr30k_images"
|
| 568 |
+
SEQ_PER_SAMPLE: 1
|
| 569 |
+
CACHE_MODE: True
|
| 570 |
+
CIRCULAR_CACHE_MODE: False
|
| 571 |
+
ZIP_MODE: False
|
| 572 |
+
CACHE_ORIGIN_IMAGE: False
|
| 573 |
+
RANDOM_CAPTION: False
|
| 574 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 575 |
+
SAMPLING_WEIGHT: 1.0
|
| 576 |
+
TRANSFORM: 'clip_transforms'
|
| 577 |
+
TASK_TYPE: caption
|
| 578 |
+
# DATA_PERCENTAGE: 0.01
|
| 579 |
+
MODEL:
|
| 580 |
+
MAX_SEQ_LEN: 21
|
| 581 |
+
TEMP_NAME: logit_scale_caption
|
| 582 |
+
LOSSES:
|
| 583 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 584 |
+
LABELSMOOTHING: 0.1
|
| 585 |
+
LOSS_WEIGHT: 1.0
|
| 586 |
+
REDUCTION: 'mean'
|
| 587 |
+
DECODE_STRATEGY:
|
| 588 |
+
NAME: 'CaptionBeamSearcherV3'
|
| 589 |
+
BEAM_SIZE: 2
|
| 590 |
+
INFERENCE:
|
| 591 |
+
NAME: 'COCOEvaler'
|
| 592 |
+
VOCAB: 'CLIP'
|
| 593 |
+
ID_KEY: 'image_id'
|
| 594 |
+
VALUE: 'caption'
|
| 595 |
+
VAL_ANNFILE: 'open_source_dataset/flickr30k/captions_val.json'
|
| 596 |
+
TEST_ANNFILE: 'open_source_dataset/flickr30k/captions_test.json'
|
| 597 |
+
GENERATION_MODE: True
|
| 598 |
+
|
| 599 |
+
|
| 600 |
+
ENGINE:
|
| 601 |
+
NAME: 'UnifiedTrainer'
|
| 602 |
+
|
| 603 |
+
MODEL:
|
| 604 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 605 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 606 |
+
|
| 607 |
+
IN_TUNING: True # use IN1k instead of 22k
|
| 608 |
+
SHARE_LAYERNORM: True
|
| 609 |
+
BERT:
|
| 610 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 611 |
+
DROP_PATH_PROB: 0.1
|
| 612 |
+
NUM_HIDDEN_LAYERS: 1
|
| 613 |
+
DROP_PATH_PROB_FIXED: True
|
| 614 |
+
|
| 615 |
+
UNIFY_QKV: True
|
| 616 |
+
|
| 617 |
+
MODEL_EMA: False
|
| 618 |
+
MODEL_EMA_DECAY: 0.9999
|
| 619 |
+
|
| 620 |
+
MAEParamsInit: True
|
| 621 |
+
POSEMBEDFIX: True
|
| 622 |
+
|
| 623 |
+
|
| 624 |
+
IMG_INPUT_SIZE: 224
|
| 625 |
+
PATCH_SIZE: 16
|
| 626 |
+
|
| 627 |
+
LAYER_SCALE: True
|
| 628 |
+
LAYER_SCALE_INIT: 1e-3
|
| 629 |
+
|
| 630 |
+
|
| 631 |
+
DATALOADER:
|
| 632 |
+
USE_WEIGHTED_SAMPLER: True
|
| 633 |
+
UNIFIED_DATASET: True
|
| 634 |
+
NUM_WORKERS: 16
|
| 635 |
+
|
| 636 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 637 |
+
|
| 638 |
+
|
| 639 |
+
|
| 640 |
+
####################################### Optimizer #######################################
|
| 641 |
+
SOLVER:
|
| 642 |
+
NAME: 'Adam'
|
| 643 |
+
TORCH_OPTIMIZER: True
|
| 644 |
+
PARAMS_SEPERATE: True
|
| 645 |
+
# PARAMS_GROUP: True
|
| 646 |
+
# EPOCH: 1
|
| 647 |
+
MAX_ITER: 150000
|
| 648 |
+
CHECKPOINT_PERIOD: 5000
|
| 649 |
+
EVAL_PERIOD: 500000
|
| 650 |
+
BASE_LR: 0.001
|
| 651 |
+
BIAS_LR_FACTOR: 1.0
|
| 652 |
+
WEIGHT_DECAY: 0.05
|
| 653 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 654 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 655 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 656 |
+
MOMENTUM: 0.9
|
| 657 |
+
DAMPENING: 0.0
|
| 658 |
+
NESTEROV: 0.0
|
| 659 |
+
BETAS: [0.9, 0.95]
|
| 660 |
+
EPS: 1e-6
|
| 661 |
+
GRAD_CLIP: 0.1
|
| 662 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 663 |
+
ACCUM_ITER: 0
|
| 664 |
+
AMP_FP16: True
|
| 665 |
+
APEX_FP16: False # dangerous
|
| 666 |
+
|
| 667 |
+
WRITE_PERIOD: 50
|
| 668 |
+
MIN_LOSS_SCLE: 2048.0
|
| 669 |
+
# BF16: False # True
|
| 670 |
+
# ZEROSTAGE: 2
|
| 671 |
+
|
| 672 |
+
LOSS_SCALE_WINDOW: 200
|
| 673 |
+
|
| 674 |
+
|
| 675 |
+
|
| 676 |
+
|
| 677 |
+
|
| 678 |
+
|
| 679 |
+
####################################### lr scheduler #######################################
|
| 680 |
+
LR_SCHEDULER:
|
| 681 |
+
NAME: 'WarmupCosine'
|
| 682 |
+
WARMUP: 5000
|
| 683 |
+
MIN_LR: 0.000001
|
| 684 |
+
|
| 685 |
+
|
| 686 |
+
|
| 687 |
+
|
| 688 |
+
####################################### evaluation #######################################
|
| 689 |
+
INFERENCE:
|
| 690 |
+
|
| 691 |
+
VOCAB: 'CLIP'
|
| 692 |
+
ITER_BASED: True
|
| 693 |
+
|
| 694 |
+
|
| 695 |
+
find_unused_parameters: true
|
| 696 |
+
|
| 697 |
+
# ENCODERS:
|
| 698 |
+
# -
|
| 699 |
+
# NAME: VisualEncoder
|
| 700 |
+
# TYPE: VisualEncoder
|
| 701 |
+
# DROP_PATH_PROB: 0.0
|
| 702 |
+
# HIDDEN_SIZE: 192
|
| 703 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 704 |
+
# HIDDEN_ACT: "gelu"
|
| 705 |
+
# NUM_ATTENTION_HEADS: 3
|
| 706 |
+
# INTERMEDIATE_SIZE: 768
|
| 707 |
+
# INTERMEDIATE_DROP: 0.
|
| 708 |
+
# FFN_DROPOUT_PROB: 0.
|
| 709 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 710 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 711 |
+
# NUM_GENERATION_LAYERS: 0
|
| 712 |
+
# DROP_PATH_PROB_FIXED: True
|
| 713 |
+
|
| 714 |
+
# -
|
| 715 |
+
# NAME: TextEncoder
|
| 716 |
+
# TYPE: TextEncoder
|
| 717 |
+
# DROP_PATH_PROB: 0.0
|
| 718 |
+
# HIDDEN_SIZE: 192
|
| 719 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 720 |
+
# HIDDEN_ACT: "gelu"
|
| 721 |
+
# NUM_ATTENTION_HEADS: 3
|
| 722 |
+
# INTERMEDIATE_SIZE: 768
|
| 723 |
+
# INTERMEDIATE_DROP: 0.
|
| 724 |
+
# FFN_DROPOUT_PROB: 0.
|
| 725 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 726 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 727 |
+
# NUM_GENERATION_LAYERS: 0
|
| 728 |
+
# DROP_PATH_PROB_FIXED: True
|
| 729 |
+
|
configs/BERT_L12_H192_experiments/4tasks_training_small_datasets.yaml
ADDED
|
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base_model_bert_l12_h192.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
-
|
| 6 |
+
NAME: 'ImageNet1k'
|
| 7 |
+
SHARED_TARGETS_CFG:
|
| 8 |
+
FILE_PATH: 'small_source_dataset/imagenet_class_name_CLIP_with_endoftext.pkl'
|
| 9 |
+
DISTRIBUTED: False
|
| 10 |
+
|
| 11 |
+
-
|
| 12 |
+
NAME: 'Vocab_Word'
|
| 13 |
+
SHARED_TARGETS_CFG:
|
| 14 |
+
FILE_PATH: 'small_source_dataset/vocabulary_CLIP_with_endoftext.pkl'
|
| 15 |
+
DISTRIBUTED: True
|
| 16 |
+
|
| 17 |
+
TASKS:
|
| 18 |
+
|
| 19 |
+
-
|
| 20 |
+
NAME: imagenet
|
| 21 |
+
DATASETS:
|
| 22 |
+
TRAIN: 'ImageNetDataset'
|
| 23 |
+
VAL: 'ImageNetDataset'
|
| 24 |
+
TASK_TYPE: 'image_classification'
|
| 25 |
+
DATASET_NAME: 'ImageNet1k'
|
| 26 |
+
TARGET_SET: ['ImageNet1k']
|
| 27 |
+
|
| 28 |
+
DATALOADER:
|
| 29 |
+
TRAIN_BATCH_SIZE: 4
|
| 30 |
+
# TEST_BATCH_SIZE: 2
|
| 31 |
+
NUM_WORKERS: 4
|
| 32 |
+
FEATS_FOLDER: 'small_source_dataset/imagenet'
|
| 33 |
+
ANNO_FOLDER: 'small_source_dataset/imagenet/meta'
|
| 34 |
+
SAMPLING_WEIGHT: 1.0
|
| 35 |
+
MIXUP: 0.8
|
| 36 |
+
CUTMIX: 1.0
|
| 37 |
+
MIXUP_PROB: 1.0
|
| 38 |
+
MIXUP_SWITCH_PROB: 0.5
|
| 39 |
+
MIXUP_MODE: 'batch'
|
| 40 |
+
MIXUP_LABEL_SMOOTHING: 0.1
|
| 41 |
+
MODEL:
|
| 42 |
+
MAX_SEQ_LEN: -1
|
| 43 |
+
LABELS_NUM: 1000
|
| 44 |
+
TEMP_NAME: logit_scale_img_cls
|
| 45 |
+
LOSSES:
|
| 46 |
+
NAMES: ['SoftTargetCrossEntropy', 'Accuracy']
|
| 47 |
+
LOSS_WEIGHT: 1.0
|
| 48 |
+
REDUCTION: 'mean'
|
| 49 |
+
# LOSS_FP32: True
|
| 50 |
+
INFERENCE:
|
| 51 |
+
NAME: 'ImageNetEvaler'
|
| 52 |
+
ID_KEY: 'image_id'
|
| 53 |
+
VALUE: 'cls_logits'
|
| 54 |
+
VAL_ANNFILE: 'small_source_dataset/imagenet/meta/val.txt'
|
| 55 |
+
TEST_ANNFILE: ''
|
| 56 |
+
GENERATION_MODE: False
|
| 57 |
+
|
| 58 |
+
-
|
| 59 |
+
NAME: bookswiki_pretrain
|
| 60 |
+
DATASETS:
|
| 61 |
+
TRAIN: 'GeneralCorpusDataset'
|
| 62 |
+
TASK_TYPE: 'text_mlm'
|
| 63 |
+
DATASET_NAME: 'BooksWiki'
|
| 64 |
+
TARGET_SET: ['Vocab_Word']
|
| 65 |
+
DATALOADER:
|
| 66 |
+
TRAIN_BATCH_SIZE: 128
|
| 67 |
+
TEST_BATCH_SIZE: 32
|
| 68 |
+
NUM_WORKERS: 2
|
| 69 |
+
ANNO_FOLDER: 'small_source_dataset/bert_pretrain_data/bookswiki'
|
| 70 |
+
SEQ_PER_SAMPLE: 1
|
| 71 |
+
SAMPLER: NodeDistributed
|
| 72 |
+
CACHE_MODE: True
|
| 73 |
+
SEQ_PER_SAMPLE: 128
|
| 74 |
+
MIN_SEQ_PER_SAMPLE: 128
|
| 75 |
+
APPEND_EOS: True
|
| 76 |
+
ONE_STREAM: False
|
| 77 |
+
SAMPLING_WEIGHT: 1.0
|
| 78 |
+
RANDOM_MASK: True
|
| 79 |
+
MODEL:
|
| 80 |
+
MAX_SEQ_LEN: 128
|
| 81 |
+
TEMP_NAME: logit_scale_text_mlm
|
| 82 |
+
LOSSES:
|
| 83 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 84 |
+
LOSS_WEIGHT: 0.33333
|
| 85 |
+
REDUCTION: 'mean'
|
| 86 |
+
INFERENCE:
|
| 87 |
+
VOCAB: 'CLIP'
|
| 88 |
+
GENERATION_MODE: False
|
| 89 |
+
|
| 90 |
+
-
|
| 91 |
+
NAME: mscoco_caption
|
| 92 |
+
DATASETS:
|
| 93 |
+
TRAIN: 'ImageTextPairDataset'
|
| 94 |
+
# VAL: 'ImageTextPairDataset'
|
| 95 |
+
TEST: 'ImageTextPairDataset'
|
| 96 |
+
TASK_TYPE: 'image_caption'
|
| 97 |
+
DATASET_NAME: 'MSCOCO'
|
| 98 |
+
TARGET_SET: ['Vocab_Word']
|
| 99 |
+
DATALOADER:
|
| 100 |
+
TRAIN_BATCH_SIZE: 64
|
| 101 |
+
TEST_BATCH_SIZE: 32
|
| 102 |
+
NUM_WORKERS: 4
|
| 103 |
+
FEATS_FOLDER: 'small_source_dataset/mscoco_caption/coco_origin'
|
| 104 |
+
ANNO_FOLDER: 'small_source_dataset/mscoco_caption/annotations'
|
| 105 |
+
SEQ_PER_SAMPLE: 1
|
| 106 |
+
SAMPLING_WEIGHT: 1.0
|
| 107 |
+
TRANSFORM: 'clip_transforms'
|
| 108 |
+
RANDOM_MASK: True
|
| 109 |
+
MODEL:
|
| 110 |
+
MAX_SEQ_LEN: 50
|
| 111 |
+
EVAL_MAX_SEQ_LEN: 21
|
| 112 |
+
TEMP_NAME: logit_scale_caption
|
| 113 |
+
LOSSES:
|
| 114 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 115 |
+
LOSS_WEIGHT: 0.33333
|
| 116 |
+
REDUCTION: 'mean'
|
| 117 |
+
DECODE_STRATEGY:
|
| 118 |
+
NAME: 'CaptionBeamSearcherV3'
|
| 119 |
+
BEAM_SIZE: 2
|
| 120 |
+
# LEN_PENALTY: 1.0
|
| 121 |
+
INFERENCE:
|
| 122 |
+
NAME: 'COCOEvaler'
|
| 123 |
+
VOCAB: 'CLIP'
|
| 124 |
+
ID_KEY: 'image_id'
|
| 125 |
+
VALUE: 'caption'
|
| 126 |
+
VAL_ANNFILE: 'small_source_dataset/mscoco_caption/annotations/captions_val5k.json'
|
| 127 |
+
TEST_ANNFILE: 'small_source_dataset/mscoco_caption/annotations/captions_test5k.json'
|
| 128 |
+
GENERATION_MODE: True
|
| 129 |
+
|
| 130 |
+
-
|
| 131 |
+
NAME: mscoco_retrieve
|
| 132 |
+
DATASETS:
|
| 133 |
+
TRAIN: 'ImageTextPairDataset'
|
| 134 |
+
TEST: 'ImageTextPairDataset'
|
| 135 |
+
TASK_TYPE: 'image_retrieval'
|
| 136 |
+
DATASET_NAME: 'MSCOCO'
|
| 137 |
+
DATALOADER:
|
| 138 |
+
TRAIN_BATCH_SIZE: 100
|
| 139 |
+
TEST_BATCH_SIZE: 32
|
| 140 |
+
NUM_WORKERS: 1
|
| 141 |
+
FEATS_FOLDER: 'small_source_dataset/mscoco_caption/coco_origin'
|
| 142 |
+
ANNO_FOLDER: 'small_source_dataset/mscoco_caption/annotations'
|
| 143 |
+
SEQ_PER_SAMPLE: 1
|
| 144 |
+
SAMPLING_WEIGHT: 1.0
|
| 145 |
+
TRANSFORM: 'clip_transforms'
|
| 146 |
+
MODEL:
|
| 147 |
+
MAX_SEQ_LEN: 50
|
| 148 |
+
TEMP_NAME: logit_scale_retrieve
|
| 149 |
+
LOSSES:
|
| 150 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 151 |
+
LABELSMOOTHING: 0.1
|
| 152 |
+
LOSS_WEIGHT: 1.0
|
| 153 |
+
REDUCTION: 'mean'
|
| 154 |
+
INFERENCE:
|
| 155 |
+
VOCAB: 'CLIP'
|
| 156 |
+
ID_KEY: 'image_id'
|
| 157 |
+
VALUE: 'caption'
|
| 158 |
+
NAME: 'RetrievalEvaler'
|
| 159 |
+
GENERATION_MODE: False
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
ENGINE:
|
| 164 |
+
NAME: 'UnifiedTrainer'
|
| 165 |
+
|
| 166 |
+
MODEL:
|
| 167 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 168 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 169 |
+
|
| 170 |
+
IN_TUNING: True # use IN1k instead of 22k
|
| 171 |
+
SHARE_LAYERNORM: True
|
| 172 |
+
BERT:
|
| 173 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 174 |
+
DROP_PATH_PROB: 0.0
|
| 175 |
+
NUM_HIDDEN_LAYERS: 1
|
| 176 |
+
DROP_PATH_PROB_FIXED: True
|
| 177 |
+
|
| 178 |
+
UNIFY_QKV: True
|
| 179 |
+
|
| 180 |
+
MODEL_EMA: False
|
| 181 |
+
MODEL_EMA_DECAY: 0.9999
|
| 182 |
+
|
| 183 |
+
MAEParamsInit: True
|
| 184 |
+
POSEMBEDFIX: True
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
IMG_INPUT_SIZE: 224
|
| 188 |
+
PATCH_SIZE: 16
|
| 189 |
+
|
| 190 |
+
LAYER_SCALE: True
|
| 191 |
+
LAYER_SCALE_INIT: 1e-3
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
DATALOADER:
|
| 195 |
+
USE_WEIGHTED_SAMPLER: True
|
| 196 |
+
UNIFIED_DATASET: True
|
| 197 |
+
NUM_WORKERS: 16
|
| 198 |
+
|
| 199 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
####################################### Optimizer #######################################
|
| 204 |
+
SOLVER:
|
| 205 |
+
NAME: 'Adam'
|
| 206 |
+
TORCH_OPTIMIZER: True
|
| 207 |
+
PARAMS_SEPERATE: True
|
| 208 |
+
# PARAMS_GROUP: True
|
| 209 |
+
# EPOCH: 1
|
| 210 |
+
MAX_ITER: 150000
|
| 211 |
+
CHECKPOINT_PERIOD: 5000
|
| 212 |
+
EVAL_PERIOD: 500000
|
| 213 |
+
BASE_LR: 0.001
|
| 214 |
+
BIAS_LR_FACTOR: 1.0
|
| 215 |
+
WEIGHT_DECAY: 0.05
|
| 216 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 217 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 218 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 219 |
+
MOMENTUM: 0.9
|
| 220 |
+
DAMPENING: 0.0
|
| 221 |
+
NESTEROV: 0.0
|
| 222 |
+
BETAS: [0.9, 0.95]
|
| 223 |
+
EPS: 1e-6
|
| 224 |
+
GRAD_CLIP: 0.1
|
| 225 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 226 |
+
ACCUM_ITER: 0
|
| 227 |
+
AMP_FP16: True
|
| 228 |
+
APEX_FP16: False # dangerous
|
| 229 |
+
|
| 230 |
+
WRITE_PERIOD: 50
|
| 231 |
+
MIN_LOSS_SCLE: 2048.0
|
| 232 |
+
# BF16: False # True
|
| 233 |
+
# ZEROSTAGE: 2
|
| 234 |
+
|
| 235 |
+
LOSS_SCALE_WINDOW: 200
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
####################################### lr scheduler #######################################
|
| 243 |
+
LR_SCHEDULER:
|
| 244 |
+
NAME: 'WarmupCosine'
|
| 245 |
+
WARMUP: 5000
|
| 246 |
+
MIN_LR: 0.000001
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
####################################### evaluation #######################################
|
| 252 |
+
INFERENCE:
|
| 253 |
+
|
| 254 |
+
VOCAB: 'CLIP'
|
| 255 |
+
ITER_BASED: True
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
find_unused_parameters: true
|
| 259 |
+
|
| 260 |
+
# ENCODERS:
|
| 261 |
+
# -
|
| 262 |
+
# NAME: VisualEncoder
|
| 263 |
+
# TYPE: VisualEncoder
|
| 264 |
+
# DROP_PATH_PROB: 0.0
|
| 265 |
+
# HIDDEN_SIZE: 192
|
| 266 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 267 |
+
# HIDDEN_ACT: "gelu"
|
| 268 |
+
# NUM_ATTENTION_HEADS: 3
|
| 269 |
+
# INTERMEDIATE_SIZE: 768
|
| 270 |
+
# INTERMEDIATE_DROP: 0.
|
| 271 |
+
# FFN_DROPOUT_PROB: 0.
|
| 272 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 273 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 274 |
+
# NUM_GENERATION_LAYERS: 0
|
| 275 |
+
# DROP_PATH_PROB_FIXED: True
|
| 276 |
+
|
| 277 |
+
# -
|
| 278 |
+
# NAME: TextEncoder
|
| 279 |
+
# TYPE: TextEncoder
|
| 280 |
+
# DROP_PATH_PROB: 0.0
|
| 281 |
+
# HIDDEN_SIZE: 192
|
| 282 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 283 |
+
# HIDDEN_ACT: "gelu"
|
| 284 |
+
# NUM_ATTENTION_HEADS: 3
|
| 285 |
+
# INTERMEDIATE_SIZE: 768
|
| 286 |
+
# INTERMEDIATE_DROP: 0.
|
| 287 |
+
# FFN_DROPOUT_PROB: 0.
|
| 288 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 289 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 290 |
+
# NUM_GENERATION_LAYERS: 0
|
| 291 |
+
# DROP_PATH_PROB_FIXED: True
|
| 292 |
+
|
configs/BERT_L12_H192_experiments/7tasks_berttiny_training.yaml
ADDED
|
@@ -0,0 +1,416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base_model_bert_l12_h192.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
-
|
| 6 |
+
NAME: 'ImageNet1k'
|
| 7 |
+
SHARED_TARGETS_CFG:
|
| 8 |
+
FILE_PATH: 'open_source_dataset/imagenet_class_name_CLIP_with_endoftext.pkl'
|
| 9 |
+
DISTRIBUTED: False
|
| 10 |
+
|
| 11 |
+
-
|
| 12 |
+
NAME: 'Vocab_Word'
|
| 13 |
+
SHARED_TARGETS_CFG:
|
| 14 |
+
FILE_PATH: 'open_source_dataset/vocabulary_CLIP_with_endoftext.pkl'
|
| 15 |
+
DISTRIBUTED: True
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
TASKS:
|
| 20 |
+
|
| 21 |
+
-
|
| 22 |
+
NAME: imagenet
|
| 23 |
+
DATASETS:
|
| 24 |
+
TRAIN: 'ImageNetDataset'
|
| 25 |
+
VAL: 'ImageNetDataset'
|
| 26 |
+
TASK_TYPE: 'image_classification'
|
| 27 |
+
DATASET_NAME: 'ImageNet1k'
|
| 28 |
+
TARGET_SET: ['ImageNet1k']
|
| 29 |
+
|
| 30 |
+
DATALOADER:
|
| 31 |
+
TRAIN_BATCH_SIZE: 720
|
| 32 |
+
TEST_BATCH_SIZE: 256
|
| 33 |
+
NUM_WORKERS: 4
|
| 34 |
+
FEATS_FOLDER: 'open_source_dataset/imagenet'
|
| 35 |
+
S3_PATH: 'cluster2:s3://imagenet'
|
| 36 |
+
ANNO_FOLDER: 'open_source_dataset/imagenet/meta'
|
| 37 |
+
SAMPLING_WEIGHT: 2.5
|
| 38 |
+
CLASS_NAME_FILE: 'open_source_dataset/imagenet_class_name.pkl'
|
| 39 |
+
MIXUP: 0.8
|
| 40 |
+
CUTMIX: 1.0
|
| 41 |
+
MIXUP_PROB: 1.0
|
| 42 |
+
MIXUP_SWITCH_PROB: 0.5
|
| 43 |
+
MIXUP_MODE: 'batch'
|
| 44 |
+
MIXUP_LABEL_SMOOTHING: 0.1
|
| 45 |
+
MODEL:
|
| 46 |
+
MAX_SEQ_LEN: -1
|
| 47 |
+
LABELS_NUM: 1000
|
| 48 |
+
TEMP_NAME: logit_scale_img_cls
|
| 49 |
+
LOSSES:
|
| 50 |
+
NAMES: ['SoftTargetCrossEntropy', 'Accuracy']
|
| 51 |
+
LOSS_WEIGHT: 1.0
|
| 52 |
+
REDUCTION: 'mean'
|
| 53 |
+
# LOSS_FP32: True
|
| 54 |
+
INFERENCE:
|
| 55 |
+
NAME: 'ImageNetEvaler'
|
| 56 |
+
ID_KEY: 'image_id'
|
| 57 |
+
VALUE: 'cls_logits'
|
| 58 |
+
VAL_ANNFILE: 'open_source_dataset/imagenet/meta/val.txt'
|
| 59 |
+
TEST_ANNFILE: ''
|
| 60 |
+
GENERATION_MODE: False
|
| 61 |
+
|
| 62 |
+
-
|
| 63 |
+
NAME: bookswiki_pretrain
|
| 64 |
+
DATASETS:
|
| 65 |
+
TRAIN: 'GeneralCorpusDataset'
|
| 66 |
+
TASK_TYPE: 'text_mlm'
|
| 67 |
+
DATASET_NAME: 'BooksWiki'
|
| 68 |
+
TARGET_SET: ['Vocab_Word']
|
| 69 |
+
VERSION: 'v2'
|
| 70 |
+
DATALOADER:
|
| 71 |
+
TRAIN_BATCH_SIZE: 512
|
| 72 |
+
TEST_BATCH_SIZE: 32
|
| 73 |
+
NUM_WORKERS: 2
|
| 74 |
+
ANNO_FOLDER: 'open_source_dataset/text_corpus' # 'open_source_dataset/bert_pretrain_data/bookswiki'
|
| 75 |
+
# ANNO_FOLDER: 'open_source_dataset/bert_pretrain_data/bookswiki'
|
| 76 |
+
SEQ_PER_SAMPLE: 1
|
| 77 |
+
SAMPLER: NodeDistributed
|
| 78 |
+
CACHE_MODE: True
|
| 79 |
+
SEQ_PER_SAMPLE: 128
|
| 80 |
+
MIN_SEQ_PER_SAMPLE: 128
|
| 81 |
+
APPEND_EOS: True
|
| 82 |
+
ONE_STREAM: False
|
| 83 |
+
SAMPLING_WEIGHT: 3.5
|
| 84 |
+
RANDOM_MASK: True
|
| 85 |
+
MODEL:
|
| 86 |
+
MAX_SEQ_LEN: 128
|
| 87 |
+
TEMP_NAME: logit_scale_text_mlm
|
| 88 |
+
LOSSES:
|
| 89 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 90 |
+
LOSS_WEIGHT: 0.33333
|
| 91 |
+
REDUCTION: 'mean'
|
| 92 |
+
INFERENCE:
|
| 93 |
+
VOCAB: 'CLIP'
|
| 94 |
+
GENERATION_MODE: False
|
| 95 |
+
|
| 96 |
+
########## Image Captioning ###########
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
-
|
| 100 |
+
NAME: cc12m_caption
|
| 101 |
+
DATASETS:
|
| 102 |
+
TRAIN: 'ImageTextPairDataset'
|
| 103 |
+
TASK_TYPE: 'image_caption'
|
| 104 |
+
DATASET_NAME: 'CC12M'
|
| 105 |
+
TARGET_SET: ['Vocab_Word']
|
| 106 |
+
DATALOADER:
|
| 107 |
+
TRAIN_BATCH_SIZE: 300
|
| 108 |
+
TEST_BATCH_SIZE: 32
|
| 109 |
+
NUM_WORKERS: 2
|
| 110 |
+
ANNO_FOLDER: 'open_source_dataset/c12m/'
|
| 111 |
+
ANNO_FILENAME: 'train_available.json'
|
| 112 |
+
FEATS_FOLDER: 'open_source_dataset/c12m/'
|
| 113 |
+
S3_PATH: 's3://cc12m/'
|
| 114 |
+
SEQ_PER_SAMPLE: 1
|
| 115 |
+
SAMPLER: NodeDistributed
|
| 116 |
+
CACHE_MODE: True
|
| 117 |
+
CIRCULAR_CACHE_MODE: False
|
| 118 |
+
ZIP_MODE: False
|
| 119 |
+
CACHE_ORIGIN_IMAGE: False
|
| 120 |
+
RANDOM_CAPTION: False
|
| 121 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 122 |
+
SAMPLING_WEIGHT: 1.6889
|
| 123 |
+
TRANSFORM: 'clip_transforms'
|
| 124 |
+
MODEL:
|
| 125 |
+
MAX_SEQ_LEN: 50
|
| 126 |
+
TEMP_NAME: logit_scale_caption
|
| 127 |
+
LOSSES:
|
| 128 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 129 |
+
LOSS_WEIGHT: 0.33333
|
| 130 |
+
REDUCTION: 'mean'
|
| 131 |
+
INFERENCE:
|
| 132 |
+
VOCAB: 'CLIP'
|
| 133 |
+
GENERATION_MODE: False
|
| 134 |
+
|
| 135 |
+
-
|
| 136 |
+
NAME: cc3m_caption
|
| 137 |
+
DATASETS:
|
| 138 |
+
TRAIN: 'ImageTextPairDataset'
|
| 139 |
+
TASK_TYPE: 'image_caption'
|
| 140 |
+
DATASET_NAME: 'CC3M'
|
| 141 |
+
TARGET_SET: ['Vocab_Word']
|
| 142 |
+
DATALOADER:
|
| 143 |
+
TRAIN_BATCH_SIZE: 300
|
| 144 |
+
TEST_BATCH_SIZE: 32
|
| 145 |
+
NUM_WORKERS: 2
|
| 146 |
+
ANNO_FOLDER: 's3://cc3m/'
|
| 147 |
+
ANNO_FILENAME: 'train_spacy.json'
|
| 148 |
+
FEATS_FOLDER: 'open_source_dataset/cc3m/'
|
| 149 |
+
S3_PATH: 's3://cc3m/'
|
| 150 |
+
SEQ_PER_SAMPLE: 1
|
| 151 |
+
SAMPLER: NodeDistributed
|
| 152 |
+
CACHE_MODE: True
|
| 153 |
+
CIRCULAR_CACHE_MODE: False
|
| 154 |
+
ZIP_MODE: False
|
| 155 |
+
CACHE_ORIGIN_IMAGE: False
|
| 156 |
+
RANDOM_CAPTION: False
|
| 157 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 158 |
+
SAMPLING_WEIGHT: 0.8780
|
| 159 |
+
TRANSFORM: 'clip_transforms'
|
| 160 |
+
MODEL:
|
| 161 |
+
MAX_SEQ_LEN: 50
|
| 162 |
+
TEMP_NAME: logit_scale_caption
|
| 163 |
+
LOSSES:
|
| 164 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 165 |
+
LOSS_WEIGHT: 0.33333
|
| 166 |
+
REDUCTION: 'mean'
|
| 167 |
+
INFERENCE:
|
| 168 |
+
VOCAB: 'CLIP'
|
| 169 |
+
GENERATION_MODE: False
|
| 170 |
+
|
| 171 |
+
-
|
| 172 |
+
NAME: vg_caption
|
| 173 |
+
DATASETS:
|
| 174 |
+
TRAIN: 'ImageTextPairDataset'
|
| 175 |
+
TASK_TYPE: 'image_caption'
|
| 176 |
+
DATASET_NAME: 'VG'
|
| 177 |
+
TARGET_SET: ['Vocab_Word']
|
| 178 |
+
DATALOADER:
|
| 179 |
+
TRAIN_BATCH_SIZE: 300
|
| 180 |
+
TEST_BATCH_SIZE: 32
|
| 181 |
+
NUM_WORKERS: 2
|
| 182 |
+
FEATS_FOLDER: 'open_source_dataset/visual_genome/images'
|
| 183 |
+
ANNO_FOLDER: 'open_source_dataset/visual_genome/annotations'
|
| 184 |
+
S3_PATH: 's3://visual_genome/images'
|
| 185 |
+
ANNO_FILENAME: 'vg_captions_128filter.json'
|
| 186 |
+
SEQ_PER_SAMPLE: 1
|
| 187 |
+
CACHE_MODE: True
|
| 188 |
+
CIRCULAR_CACHE_MODE: False
|
| 189 |
+
ZIP_MODE: False
|
| 190 |
+
CACHE_ORIGIN_IMAGE: False
|
| 191 |
+
RANDOM_CAPTION: False
|
| 192 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 193 |
+
SAMPLING_WEIGHT: 0.5895
|
| 194 |
+
TRANSFORM: 'clip_transforms'
|
| 195 |
+
MODEL:
|
| 196 |
+
MAX_SEQ_LEN: 30
|
| 197 |
+
TEMP_NAME: logit_scale_caption
|
| 198 |
+
LOSSES:
|
| 199 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 200 |
+
LOSS_WEIGHT: 0.33333
|
| 201 |
+
REDUCTION: 'mean'
|
| 202 |
+
INFERENCE:
|
| 203 |
+
VOCAB: 'CLIP'
|
| 204 |
+
GENERATION_MODE: True
|
| 205 |
+
|
| 206 |
+
-
|
| 207 |
+
NAME: mscoco_caption
|
| 208 |
+
DATASETS:
|
| 209 |
+
TRAIN: 'ImageTextPairDataset'
|
| 210 |
+
# VAL: 'ImageTextPairDataset'
|
| 211 |
+
TEST: 'ImageTextPairDataset'
|
| 212 |
+
TASK_TYPE: 'image_caption'
|
| 213 |
+
DATASET_NAME: 'MSCOCO'
|
| 214 |
+
TARGET_SET: ['Vocab_Word']
|
| 215 |
+
DATALOADER:
|
| 216 |
+
TRAIN_BATCH_SIZE: 300
|
| 217 |
+
TEST_BATCH_SIZE: 32
|
| 218 |
+
NUM_WORKERS: 4
|
| 219 |
+
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 220 |
+
ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 221 |
+
S3_PATH: 's3://coco/'
|
| 222 |
+
SEQ_PER_SAMPLE: 1
|
| 223 |
+
CACHE_MODE: True
|
| 224 |
+
CIRCULAR_CACHE_MODE: False
|
| 225 |
+
ZIP_MODE: False
|
| 226 |
+
CACHE_ORIGIN_IMAGE: False
|
| 227 |
+
RANDOM_CAPTION: False
|
| 228 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 229 |
+
SAMPLING_WEIGHT: 0.3817
|
| 230 |
+
TRANSFORM: 'clip_transforms'
|
| 231 |
+
RANDOM_MASK: True
|
| 232 |
+
MODEL:
|
| 233 |
+
MAX_SEQ_LEN: 50
|
| 234 |
+
EVAL_MAX_SEQ_LEN: 21
|
| 235 |
+
TEMP_NAME: logit_scale_caption
|
| 236 |
+
LOSSES:
|
| 237 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 238 |
+
LOSS_WEIGHT: 0.33333
|
| 239 |
+
REDUCTION: 'mean'
|
| 240 |
+
DECODE_STRATEGY:
|
| 241 |
+
NAME: 'CaptionBeamSearcherV3'
|
| 242 |
+
BEAM_SIZE: 2
|
| 243 |
+
# LEN_PENALTY: 1.0
|
| 244 |
+
INFERENCE:
|
| 245 |
+
NAME: 'COCOEvaler'
|
| 246 |
+
VOCAB: 'CLIP'
|
| 247 |
+
ID_KEY: 'image_id'
|
| 248 |
+
VALUE: 'caption'
|
| 249 |
+
VAL_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_val5k.json'
|
| 250 |
+
TEST_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_test5k.json'
|
| 251 |
+
GENERATION_MODE: True
|
| 252 |
+
|
| 253 |
+
-
|
| 254 |
+
NAME: sbu_caption
|
| 255 |
+
DATASETS:
|
| 256 |
+
TRAIN: 'ImageTextPairDataset'
|
| 257 |
+
TASK_TYPE: 'image_caption'
|
| 258 |
+
DATASET_NAME: 'SBU'
|
| 259 |
+
TARGET_SET: ['Vocab_Word']
|
| 260 |
+
DATALOADER:
|
| 261 |
+
TRAIN_BATCH_SIZE: 300
|
| 262 |
+
TEST_BATCH_SIZE: 32
|
| 263 |
+
NUM_WORKERS: 1
|
| 264 |
+
ANNO_FOLDER: 'open_source_dataset/sbucaption/annotations'
|
| 265 |
+
ANNO_FILENAME: 'subcaption.json'
|
| 266 |
+
FEATS_FOLDER: 'open_source_dataset/sbucaption/'
|
| 267 |
+
S3_PATH: 's3://SBU/images'
|
| 268 |
+
SEQ_PER_SAMPLE: 1
|
| 269 |
+
SAMPLER: NodeDistributed
|
| 270 |
+
CACHE_MODE: True
|
| 271 |
+
CIRCULAR_CACHE_MODE: False
|
| 272 |
+
ZIP_MODE: False
|
| 273 |
+
CACHE_ORIGIN_IMAGE: False
|
| 274 |
+
RANDOM_CAPTION: False
|
| 275 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 276 |
+
SAMPLING_WEIGHT: 0.4618
|
| 277 |
+
TRANSFORM: 'clip_transforms'
|
| 278 |
+
MODEL:
|
| 279 |
+
MAX_SEQ_LEN: 50
|
| 280 |
+
TEMP_NAME: logit_scale_caption
|
| 281 |
+
LOSSES:
|
| 282 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 283 |
+
LOSS_WEIGHT: 0.33333
|
| 284 |
+
REDUCTION: 'mean'
|
| 285 |
+
INFERENCE:
|
| 286 |
+
VOCAB: 'CLIP'
|
| 287 |
+
GENERATION_MODE: False
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
ENGINE:
|
| 291 |
+
NAME: 'UnifiedTrainer'
|
| 292 |
+
|
| 293 |
+
MODEL:
|
| 294 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 295 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 296 |
+
|
| 297 |
+
IN_TUNING: True # use IN1k instead of 22k
|
| 298 |
+
SHARE_LAYERNORM: True
|
| 299 |
+
BERT:
|
| 300 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 301 |
+
DROP_PATH_PROB: 0.0
|
| 302 |
+
DROP_PATH_PROB_FIXED: True
|
| 303 |
+
|
| 304 |
+
MODEL_EMA: False
|
| 305 |
+
MODEL_EMA_DECAY: 0.9999
|
| 306 |
+
|
| 307 |
+
MAEParamsInit: True
|
| 308 |
+
POSEMBEDFIX: True
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
IMG_INPUT_SIZE: 224
|
| 312 |
+
PATCH_SIZE: 16
|
| 313 |
+
|
| 314 |
+
LAYER_SCALE: True
|
| 315 |
+
LAYER_SCALE_INIT: 1e-3
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
DATALOADER:
|
| 319 |
+
USE_WEIGHTED_SAMPLER: True
|
| 320 |
+
UNIFIED_DATASET: True
|
| 321 |
+
NUM_WORKERS: 32
|
| 322 |
+
|
| 323 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
####################################### Optimizer #######################################
|
| 328 |
+
SOLVER:
|
| 329 |
+
NAME: 'Adam'
|
| 330 |
+
TORCH_OPTIMIZER: True
|
| 331 |
+
PARAMS_SEPERATE: True
|
| 332 |
+
# PARAMS_GROUP: True
|
| 333 |
+
# EPOCH: 1
|
| 334 |
+
MAX_ITER: 150000
|
| 335 |
+
CHECKPOINT_PERIOD: 5000
|
| 336 |
+
EVAL_PERIOD: 500000
|
| 337 |
+
BASE_LR: 0.001
|
| 338 |
+
BIAS_LR_FACTOR: 1.0
|
| 339 |
+
WEIGHT_DECAY: 0.05
|
| 340 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 341 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 342 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 343 |
+
MOMENTUM: 0.9
|
| 344 |
+
DAMPENING: 0.0
|
| 345 |
+
NESTEROV: 0.0
|
| 346 |
+
BETAS: [0.9, 0.95]
|
| 347 |
+
EPS: 1e-6
|
| 348 |
+
GRAD_CLIP: 0.1
|
| 349 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 350 |
+
ACCUM_ITER: 0
|
| 351 |
+
AMP_FP16: True
|
| 352 |
+
APEX_FP16: False # dangerous
|
| 353 |
+
|
| 354 |
+
WRITE_PERIOD: 50
|
| 355 |
+
MIN_LOSS_SCLE: 2048.0
|
| 356 |
+
# BF16: False # True
|
| 357 |
+
# ZEROSTAGE: 2
|
| 358 |
+
|
| 359 |
+
LOSS_SCALE_WINDOW: 200
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
####################################### lr scheduler #######################################
|
| 367 |
+
LR_SCHEDULER:
|
| 368 |
+
NAME: 'WarmupCosine'
|
| 369 |
+
WARMUP: 5000
|
| 370 |
+
MIN_LR: 0.000001
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
####################################### evaluation #######################################
|
| 376 |
+
INFERENCE:
|
| 377 |
+
|
| 378 |
+
VOCAB: 'CLIP'
|
| 379 |
+
ITER_BASED: True
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
find_unused_parameters: true
|
| 383 |
+
|
| 384 |
+
# ENCODERS:
|
| 385 |
+
# -
|
| 386 |
+
# NAME: VisualEncoder
|
| 387 |
+
# TYPE: VisualEncoder
|
| 388 |
+
# DROP_PATH_PROB: 0.0
|
| 389 |
+
# HIDDEN_SIZE: 192
|
| 390 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 391 |
+
# HIDDEN_ACT: "gelu"
|
| 392 |
+
# NUM_ATTENTION_HEADS: 3
|
| 393 |
+
# INTERMEDIATE_SIZE: 768
|
| 394 |
+
# INTERMEDIATE_DROP: 0.
|
| 395 |
+
# FFN_DROPOUT_PROB: 0.
|
| 396 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 397 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 398 |
+
# NUM_GENERATION_LAYERS: 0
|
| 399 |
+
# DROP_PATH_PROB_FIXED: True
|
| 400 |
+
|
| 401 |
+
# -
|
| 402 |
+
# NAME: TextEncoder
|
| 403 |
+
# TYPE: TextEncoder
|
| 404 |
+
# DROP_PATH_PROB: 0.0
|
| 405 |
+
# HIDDEN_SIZE: 192
|
| 406 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 407 |
+
# HIDDEN_ACT: "gelu"
|
| 408 |
+
# NUM_ATTENTION_HEADS: 3
|
| 409 |
+
# INTERMEDIATE_SIZE: 768
|
| 410 |
+
# INTERMEDIATE_DROP: 0.
|
| 411 |
+
# FFN_DROPOUT_PROB: 0.
|
| 412 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 413 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 414 |
+
# NUM_GENERATION_LAYERS: 0
|
| 415 |
+
# DROP_PATH_PROB_FIXED: True
|
| 416 |
+
|
configs/BERT_L12_H192_experiments/7tasks_berttiny_training_apex_o2.yaml
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "7tasks_berttiny_training.yaml"
|
| 2 |
+
|
| 3 |
+
####################################### Optimizer #######################################
|
| 4 |
+
SOLVER:
|
| 5 |
+
|
| 6 |
+
AMP_FP16: False
|
| 7 |
+
APEX_FP16: True # dangerous
|
| 8 |
+
APEX_OPT_LEVEL: 'O2'
|
| 9 |
+
CHECKPOINT_PERIOD: 100000
|
configs/BERT_L12_H192_experiments/7tasks_berttiny_training_lamb.yaml
ADDED
|
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base_model_bert_l12_h192.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
-
|
| 6 |
+
NAME: 'ImageNet1k'
|
| 7 |
+
SHARED_TARGETS_CFG:
|
| 8 |
+
FILE_PATH: 'open_source_dataset/imagenet_class_name_CLIP_with_endoftext.pkl'
|
| 9 |
+
DISTRIBUTED: False
|
| 10 |
+
|
| 11 |
+
-
|
| 12 |
+
NAME: 'Vocab_Word'
|
| 13 |
+
SHARED_TARGETS_CFG:
|
| 14 |
+
FILE_PATH: 'open_source_dataset/vocabulary_CLIP_with_endoftext.pkl'
|
| 15 |
+
DISTRIBUTED: True
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
TASKS:
|
| 20 |
+
|
| 21 |
+
-
|
| 22 |
+
NAME: imagenet
|
| 23 |
+
DATASETS:
|
| 24 |
+
TRAIN: 'ImageNetDataset'
|
| 25 |
+
VAL: 'ImageNetDataset'
|
| 26 |
+
TASK_TYPE: 'image_classification'
|
| 27 |
+
DATASET_NAME: 'ImageNet1k'
|
| 28 |
+
TARGET_SET: ['ImageNet1k']
|
| 29 |
+
|
| 30 |
+
DATALOADER:
|
| 31 |
+
TRAIN_BATCH_SIZE: 720
|
| 32 |
+
TEST_BATCH_SIZE: 256
|
| 33 |
+
NUM_WORKERS: 4
|
| 34 |
+
FEATS_FOLDER: 'open_source_dataset/imagenet'
|
| 35 |
+
S3_PATH: 'cluster2:s3://imagenet'
|
| 36 |
+
ANNO_FOLDER: 'open_source_dataset/imagenet/meta'
|
| 37 |
+
SAMPLING_WEIGHT: 2.5
|
| 38 |
+
CLASS_NAME_FILE: 'open_source_dataset/imagenet_class_name.pkl'
|
| 39 |
+
MIXUP: 0.8
|
| 40 |
+
CUTMIX: 1.0
|
| 41 |
+
MIXUP_PROB: 1.0
|
| 42 |
+
MIXUP_SWITCH_PROB: 0.5
|
| 43 |
+
MIXUP_MODE: 'batch'
|
| 44 |
+
MIXUP_LABEL_SMOOTHING: 0.1
|
| 45 |
+
MODEL:
|
| 46 |
+
MAX_SEQ_LEN: -1
|
| 47 |
+
LABELS_NUM: 1000
|
| 48 |
+
TEMP_NAME: logit_scale_img_cls
|
| 49 |
+
LOSSES:
|
| 50 |
+
NAMES: ['SoftTargetCrossEntropy', 'Accuracy']
|
| 51 |
+
LOSS_WEIGHT: 1.0
|
| 52 |
+
REDUCTION: 'mean'
|
| 53 |
+
# LOSS_FP32: True
|
| 54 |
+
INFERENCE:
|
| 55 |
+
NAME: 'ImageNetEvaler'
|
| 56 |
+
ID_KEY: 'image_id'
|
| 57 |
+
VALUE: 'cls_logits'
|
| 58 |
+
VAL_ANNFILE: 'open_source_dataset/imagenet/meta/val.txt'
|
| 59 |
+
TEST_ANNFILE: ''
|
| 60 |
+
GENERATION_MODE: False
|
| 61 |
+
|
| 62 |
+
-
|
| 63 |
+
NAME: bookswiki_pretrain
|
| 64 |
+
DATASETS:
|
| 65 |
+
TRAIN: 'GeneralCorpusDataset'
|
| 66 |
+
TASK_TYPE: 'text_mlm'
|
| 67 |
+
DATASET_NAME: 'BooksWiki'
|
| 68 |
+
TARGET_SET: ['Vocab_Word']
|
| 69 |
+
VERSION: 'v2'
|
| 70 |
+
DATALOADER:
|
| 71 |
+
TRAIN_BATCH_SIZE: 512
|
| 72 |
+
TEST_BATCH_SIZE: 32
|
| 73 |
+
NUM_WORKERS: 2
|
| 74 |
+
ANNO_FOLDER: 'open_source_dataset/text_corpus' # 'open_source_dataset/bert_pretrain_data/bookswiki'
|
| 75 |
+
# ANNO_FOLDER: 'open_source_dataset/bert_pretrain_data/bookswiki'
|
| 76 |
+
SEQ_PER_SAMPLE: 1
|
| 77 |
+
SAMPLER: NodeDistributed
|
| 78 |
+
CACHE_MODE: True
|
| 79 |
+
SEQ_PER_SAMPLE: 128
|
| 80 |
+
MIN_SEQ_PER_SAMPLE: 128
|
| 81 |
+
APPEND_EOS: True
|
| 82 |
+
ONE_STREAM: False
|
| 83 |
+
SAMPLING_WEIGHT: 3.5
|
| 84 |
+
RANDOM_MASK: True
|
| 85 |
+
MODEL:
|
| 86 |
+
MAX_SEQ_LEN: 128
|
| 87 |
+
TEMP_NAME: logit_scale_text_mlm
|
| 88 |
+
LOSSES:
|
| 89 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 90 |
+
LOSS_WEIGHT: 0.33333
|
| 91 |
+
REDUCTION: 'mean'
|
| 92 |
+
INFERENCE:
|
| 93 |
+
VOCAB: 'CLIP'
|
| 94 |
+
GENERATION_MODE: False
|
| 95 |
+
|
| 96 |
+
########## Image Captioning ###########
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
-
|
| 100 |
+
NAME: cc12m_caption
|
| 101 |
+
DATASETS:
|
| 102 |
+
TRAIN: 'ImageTextPairDataset'
|
| 103 |
+
TASK_TYPE: 'image_caption'
|
| 104 |
+
DATASET_NAME: 'CC12M'
|
| 105 |
+
TARGET_SET: ['Vocab_Word']
|
| 106 |
+
DATALOADER:
|
| 107 |
+
TRAIN_BATCH_SIZE: 300
|
| 108 |
+
TEST_BATCH_SIZE: 32
|
| 109 |
+
NUM_WORKERS: 2
|
| 110 |
+
S3_ANNO_FOLDER: 's3://cc12m/'
|
| 111 |
+
ANNO_FOLDER: 'open_source_dataset/c12m/'
|
| 112 |
+
ANNO_FILENAME: 'train_available.json'
|
| 113 |
+
FEATS_FOLDER: 'open_source_dataset/c12m/'
|
| 114 |
+
S3_PATH: 's3://cc12m/'
|
| 115 |
+
SEQ_PER_SAMPLE: 1
|
| 116 |
+
SAMPLER: NodeDistributed
|
| 117 |
+
CACHE_MODE: True
|
| 118 |
+
CIRCULAR_CACHE_MODE: False
|
| 119 |
+
ZIP_MODE: False
|
| 120 |
+
CACHE_ORIGIN_IMAGE: False
|
| 121 |
+
RANDOM_CAPTION: False
|
| 122 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 123 |
+
SAMPLING_WEIGHT: 1.6889
|
| 124 |
+
TRANSFORM: 'clip_transforms'
|
| 125 |
+
MODEL:
|
| 126 |
+
MAX_SEQ_LEN: 50
|
| 127 |
+
TEMP_NAME: logit_scale_caption
|
| 128 |
+
LOSSES:
|
| 129 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 130 |
+
LOSS_WEIGHT: 0.33333
|
| 131 |
+
REDUCTION: 'mean'
|
| 132 |
+
INFERENCE:
|
| 133 |
+
VOCAB: 'CLIP'
|
| 134 |
+
GENERATION_MODE: False
|
| 135 |
+
|
| 136 |
+
-
|
| 137 |
+
NAME: cc3m_caption
|
| 138 |
+
DATASETS:
|
| 139 |
+
TRAIN: 'ImageTextPairDataset'
|
| 140 |
+
TASK_TYPE: 'image_caption'
|
| 141 |
+
DATASET_NAME: 'CC3M'
|
| 142 |
+
TARGET_SET: ['Vocab_Word']
|
| 143 |
+
DATALOADER:
|
| 144 |
+
TRAIN_BATCH_SIZE: 300
|
| 145 |
+
TEST_BATCH_SIZE: 32
|
| 146 |
+
NUM_WORKERS: 2
|
| 147 |
+
ANNO_FOLDER: 's3://cc3m/'
|
| 148 |
+
ANNO_FILENAME: 'train_spacy.json'
|
| 149 |
+
FEATS_FOLDER: 'open_source_dataset/cc3m/'
|
| 150 |
+
S3_PATH: 's3://cc3m/'
|
| 151 |
+
SEQ_PER_SAMPLE: 1
|
| 152 |
+
SAMPLER: NodeDistributed
|
| 153 |
+
CACHE_MODE: True
|
| 154 |
+
CIRCULAR_CACHE_MODE: False
|
| 155 |
+
ZIP_MODE: False
|
| 156 |
+
CACHE_ORIGIN_IMAGE: False
|
| 157 |
+
RANDOM_CAPTION: False
|
| 158 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 159 |
+
SAMPLING_WEIGHT: 0.8780
|
| 160 |
+
TRANSFORM: 'clip_transforms'
|
| 161 |
+
MODEL:
|
| 162 |
+
MAX_SEQ_LEN: 50
|
| 163 |
+
TEMP_NAME: logit_scale_caption
|
| 164 |
+
LOSSES:
|
| 165 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 166 |
+
LOSS_WEIGHT: 0.33333
|
| 167 |
+
REDUCTION: 'mean'
|
| 168 |
+
INFERENCE:
|
| 169 |
+
VOCAB: 'CLIP'
|
| 170 |
+
GENERATION_MODE: False
|
| 171 |
+
|
| 172 |
+
-
|
| 173 |
+
NAME: vg_caption
|
| 174 |
+
DATASETS:
|
| 175 |
+
TRAIN: 'ImageTextPairDataset'
|
| 176 |
+
TASK_TYPE: 'image_caption'
|
| 177 |
+
DATASET_NAME: 'VG'
|
| 178 |
+
TARGET_SET: ['Vocab_Word']
|
| 179 |
+
DATALOADER:
|
| 180 |
+
TRAIN_BATCH_SIZE: 300
|
| 181 |
+
TEST_BATCH_SIZE: 32
|
| 182 |
+
NUM_WORKERS: 2
|
| 183 |
+
FEATS_FOLDER: 'open_source_dataset/visual_genome/images'
|
| 184 |
+
ANNO_FOLDER: 'open_source_dataset/visual_genome/annotations'
|
| 185 |
+
S3_PATH: 's3://visual_genome/images'
|
| 186 |
+
ANNO_FILENAME: 'vg_captions_128filter.json'
|
| 187 |
+
SEQ_PER_SAMPLE: 1
|
| 188 |
+
CACHE_MODE: True
|
| 189 |
+
CIRCULAR_CACHE_MODE: False
|
| 190 |
+
ZIP_MODE: False
|
| 191 |
+
CACHE_ORIGIN_IMAGE: False
|
| 192 |
+
RANDOM_CAPTION: False
|
| 193 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 194 |
+
SAMPLING_WEIGHT: 0.5895
|
| 195 |
+
TRANSFORM: 'clip_transforms'
|
| 196 |
+
MODEL:
|
| 197 |
+
MAX_SEQ_LEN: 30
|
| 198 |
+
TEMP_NAME: logit_scale_caption
|
| 199 |
+
LOSSES:
|
| 200 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 201 |
+
LOSS_WEIGHT: 0.33333
|
| 202 |
+
REDUCTION: 'mean'
|
| 203 |
+
INFERENCE:
|
| 204 |
+
VOCAB: 'CLIP'
|
| 205 |
+
GENERATION_MODE: True
|
| 206 |
+
|
| 207 |
+
-
|
| 208 |
+
NAME: mscoco_caption
|
| 209 |
+
DATASETS:
|
| 210 |
+
TRAIN: 'ImageTextPairDataset'
|
| 211 |
+
# VAL: 'ImageTextPairDataset'
|
| 212 |
+
TEST: 'ImageTextPairDataset'
|
| 213 |
+
TASK_TYPE: 'image_caption'
|
| 214 |
+
DATASET_NAME: 'MSCOCO'
|
| 215 |
+
TARGET_SET: ['Vocab_Word']
|
| 216 |
+
DATALOADER:
|
| 217 |
+
TRAIN_BATCH_SIZE: 300
|
| 218 |
+
TEST_BATCH_SIZE: 32
|
| 219 |
+
NUM_WORKERS: 4
|
| 220 |
+
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 221 |
+
ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 222 |
+
S3_PATH: 's3://coco/'
|
| 223 |
+
SEQ_PER_SAMPLE: 1
|
| 224 |
+
CACHE_MODE: True
|
| 225 |
+
CIRCULAR_CACHE_MODE: False
|
| 226 |
+
ZIP_MODE: False
|
| 227 |
+
CACHE_ORIGIN_IMAGE: False
|
| 228 |
+
RANDOM_CAPTION: False
|
| 229 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 230 |
+
SAMPLING_WEIGHT: 0.3817
|
| 231 |
+
TRANSFORM: 'clip_transforms'
|
| 232 |
+
RANDOM_MASK: True
|
| 233 |
+
MODEL:
|
| 234 |
+
MAX_SEQ_LEN: 50
|
| 235 |
+
EVAL_MAX_SEQ_LEN: 21
|
| 236 |
+
TEMP_NAME: logit_scale_caption
|
| 237 |
+
LOSSES:
|
| 238 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 239 |
+
LOSS_WEIGHT: 0.33333
|
| 240 |
+
REDUCTION: 'mean'
|
| 241 |
+
DECODE_STRATEGY:
|
| 242 |
+
NAME: 'CaptionBeamSearcherV3'
|
| 243 |
+
BEAM_SIZE: 2
|
| 244 |
+
# LEN_PENALTY: 1.0
|
| 245 |
+
INFERENCE:
|
| 246 |
+
NAME: 'COCOEvaler'
|
| 247 |
+
VOCAB: 'CLIP'
|
| 248 |
+
ID_KEY: 'image_id'
|
| 249 |
+
VALUE: 'caption'
|
| 250 |
+
VAL_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_val5k.json'
|
| 251 |
+
TEST_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_test5k.json'
|
| 252 |
+
GENERATION_MODE: True
|
| 253 |
+
|
| 254 |
+
-
|
| 255 |
+
NAME: sbu_caption
|
| 256 |
+
DATASETS:
|
| 257 |
+
TRAIN: 'ImageTextPairDataset'
|
| 258 |
+
TASK_TYPE: 'image_caption'
|
| 259 |
+
DATASET_NAME: 'SBU'
|
| 260 |
+
TARGET_SET: ['Vocab_Word']
|
| 261 |
+
DATALOADER:
|
| 262 |
+
TRAIN_BATCH_SIZE: 300
|
| 263 |
+
TEST_BATCH_SIZE: 32
|
| 264 |
+
NUM_WORKERS: 1
|
| 265 |
+
S3_ANNO_FOLDER: 's3://SBU/annotations'
|
| 266 |
+
ANNO_FOLDER: 'open_source_dataset/sbucaption/annotations'
|
| 267 |
+
ANNO_FILENAME: 'subcaption.json'
|
| 268 |
+
FEATS_FOLDER: 'open_source_dataset/sbucaption/'
|
| 269 |
+
S3_PATH: 's3://SBU/images'
|
| 270 |
+
SEQ_PER_SAMPLE: 1
|
| 271 |
+
SAMPLER: NodeDistributed
|
| 272 |
+
CACHE_MODE: True
|
| 273 |
+
CIRCULAR_CACHE_MODE: False
|
| 274 |
+
ZIP_MODE: False
|
| 275 |
+
CACHE_ORIGIN_IMAGE: False
|
| 276 |
+
RANDOM_CAPTION: False
|
| 277 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 278 |
+
SAMPLING_WEIGHT: 0.4618
|
| 279 |
+
TRANSFORM: 'clip_transforms'
|
| 280 |
+
MODEL:
|
| 281 |
+
MAX_SEQ_LEN: 50
|
| 282 |
+
TEMP_NAME: logit_scale_caption
|
| 283 |
+
LOSSES:
|
| 284 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 285 |
+
LOSS_WEIGHT: 0.33333
|
| 286 |
+
REDUCTION: 'mean'
|
| 287 |
+
INFERENCE:
|
| 288 |
+
VOCAB: 'CLIP'
|
| 289 |
+
GENERATION_MODE: False
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
ENGINE:
|
| 293 |
+
NAME: 'UnifiedTrainer'
|
| 294 |
+
|
| 295 |
+
MODEL:
|
| 296 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 297 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 298 |
+
|
| 299 |
+
IN_TUNING: True # use IN1k instead of 22k
|
| 300 |
+
SHARE_LAYERNORM: True
|
| 301 |
+
BERT:
|
| 302 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 303 |
+
DROP_PATH_PROB: 0.0
|
| 304 |
+
DROP_PATH_PROB_FIXED: True
|
| 305 |
+
|
| 306 |
+
MODEL_EMA: False
|
| 307 |
+
MODEL_EMA_DECAY: 0.9999
|
| 308 |
+
|
| 309 |
+
MAEParamsInit: True
|
| 310 |
+
POSEMBEDFIX: True
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
IMG_INPUT_SIZE: 224
|
| 314 |
+
PATCH_SIZE: 16
|
| 315 |
+
|
| 316 |
+
LAYER_SCALE: True
|
| 317 |
+
LAYER_SCALE_INIT: 1e-3
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
DATALOADER:
|
| 321 |
+
USE_WEIGHTED_SAMPLER: True
|
| 322 |
+
UNIFIED_DATASET: True
|
| 323 |
+
NUM_WORKERS: 32
|
| 324 |
+
|
| 325 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
####################################### Optimizer #######################################
|
| 330 |
+
SOLVER:
|
| 331 |
+
NAME: 'LAMB'
|
| 332 |
+
TORCH_OPTIMIZER: True
|
| 333 |
+
PARAMS_SEPERATE: True
|
| 334 |
+
# PARAMS_GROUP: True
|
| 335 |
+
# EPOCH: 1
|
| 336 |
+
MAX_ITER: 150000
|
| 337 |
+
CHECKPOINT_PERIOD: 5000
|
| 338 |
+
EVAL_PERIOD: 500000
|
| 339 |
+
BASE_LR: 0.01
|
| 340 |
+
BIAS_LR_FACTOR: 1.0
|
| 341 |
+
WEIGHT_DECAY: 0.05
|
| 342 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 343 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 344 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 345 |
+
MOMENTUM: 0.9
|
| 346 |
+
DAMPENING: 0.0
|
| 347 |
+
NESTEROV: 0.0
|
| 348 |
+
BETAS: [0.9, 0.95]
|
| 349 |
+
EPS: 1e-6
|
| 350 |
+
GRAD_CLIP: 0.1
|
| 351 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 352 |
+
ACCUM_ITER: 0
|
| 353 |
+
AMP_FP16: True
|
| 354 |
+
APEX_FP16: False # dangerous
|
| 355 |
+
|
| 356 |
+
WRITE_PERIOD: 50
|
| 357 |
+
MIN_LOSS_SCLE: 2048.0
|
| 358 |
+
# BF16: False # True
|
| 359 |
+
# ZEROSTAGE: 2
|
| 360 |
+
|
| 361 |
+
LOSS_SCALE_WINDOW: 200
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
####################################### lr scheduler #######################################
|
| 369 |
+
LR_SCHEDULER:
|
| 370 |
+
NAME: 'WarmupCosine'
|
| 371 |
+
WARMUP: 5000
|
| 372 |
+
MIN_LR: 0.000001
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
####################################### evaluation #######################################
|
| 378 |
+
INFERENCE:
|
| 379 |
+
|
| 380 |
+
VOCAB: 'CLIP'
|
| 381 |
+
ITER_BASED: True
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
find_unused_parameters: true
|
| 385 |
+
|
| 386 |
+
# ENCODERS:
|
| 387 |
+
# -
|
| 388 |
+
# NAME: VisualEncoder
|
| 389 |
+
# TYPE: VisualEncoder
|
| 390 |
+
# DROP_PATH_PROB: 0.0
|
| 391 |
+
# HIDDEN_SIZE: 192
|
| 392 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 393 |
+
# HIDDEN_ACT: "gelu"
|
| 394 |
+
# NUM_ATTENTION_HEADS: 3
|
| 395 |
+
# INTERMEDIATE_SIZE: 768
|
| 396 |
+
# INTERMEDIATE_DROP: 0.
|
| 397 |
+
# FFN_DROPOUT_PROB: 0.
|
| 398 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 399 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 400 |
+
# NUM_GENERATION_LAYERS: 0
|
| 401 |
+
# DROP_PATH_PROB_FIXED: True
|
| 402 |
+
|
| 403 |
+
# -
|
| 404 |
+
# NAME: TextEncoder
|
| 405 |
+
# TYPE: TextEncoder
|
| 406 |
+
# DROP_PATH_PROB: 0.0
|
| 407 |
+
# HIDDEN_SIZE: 192
|
| 408 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 409 |
+
# HIDDEN_ACT: "gelu"
|
| 410 |
+
# NUM_ATTENTION_HEADS: 3
|
| 411 |
+
# INTERMEDIATE_SIZE: 768
|
| 412 |
+
# INTERMEDIATE_DROP: 0.
|
| 413 |
+
# FFN_DROPOUT_PROB: 0.
|
| 414 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 415 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 416 |
+
# NUM_GENERATION_LAYERS: 0
|
| 417 |
+
# DROP_PATH_PROB_FIXED: True
|
| 418 |
+
|
configs/BERT_L12_H192_experiments/7tasks_berttiny_training_moe.yaml
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "7tasks_berttiny_training.yaml"
|
| 2 |
+
|
| 3 |
+
MOE:
|
| 4 |
+
MOE: True
|
| 5 |
+
MOE_TYPE: 'attribute'
|
| 6 |
+
TAG_Transform: True
|
| 7 |
+
ATTRIBUTE_LENGTH: 8
|
| 8 |
+
EP_WORLD_SIZE: 1 # tag moe only
|
| 9 |
+
NUM_EXPERTS: 8
|
| 10 |
+
TOP_K: 2
|
| 11 |
+
CAPACITY_FACTOR: 3.0
|
| 12 |
+
EVAL_MIN_CAPACITY: 4.0
|
| 13 |
+
MIN_CAPACITY: 4
|
| 14 |
+
NOISY_GATE_POLICY: 'vmoe'
|
| 15 |
+
MOE_PARAM_GROUP: True
|
| 16 |
+
MOE_EXPERT_TYPE: 'FFN,SA'
|
| 17 |
+
SA_LINEAR_OUT_MOE: True
|
| 18 |
+
MOE_EXPERT_LOCATION: 'all' # 'odd'
|
| 19 |
+
# MOE_LAYER_START_IDX: 3
|
| 20 |
+
# MOE_LAYER_END_IDX: 21
|
| 21 |
+
# MOE_LAYER_START_IDX: 18
|
| 22 |
+
# MOE_LAYER_END_IDX: 12
|
| 23 |
+
BATCH_PRIO: True
|
| 24 |
+
USE_TUTEL: True
|
| 25 |
+
FFN_SHARE_GATE_DECISION: True
|
configs/BERT_L12_H192_experiments/7tasks_berttiny_training_moe_lsfp32_gate_softmax_layernorm_fp16.yaml
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "7tasks_berttiny_training.yaml"
|
| 2 |
+
|
| 3 |
+
MOE:
|
| 4 |
+
MOE: True
|
| 5 |
+
MOE_TYPE: 'attribute'
|
| 6 |
+
TAG_Transform: True
|
| 7 |
+
ATTRIBUTE_LENGTH: 8
|
| 8 |
+
EP_WORLD_SIZE: 1 # tag moe only
|
| 9 |
+
NUM_EXPERTS: 8
|
| 10 |
+
TOP_K: 2
|
| 11 |
+
CAPACITY_FACTOR: 3.0
|
| 12 |
+
EVAL_MIN_CAPACITY: 4.0
|
| 13 |
+
MIN_CAPACITY: 4
|
| 14 |
+
NOISY_GATE_POLICY: 'vmoe'
|
| 15 |
+
MOE_PARAM_GROUP: True
|
| 16 |
+
MOE_EXPERT_TYPE: 'FFN,SA'
|
| 17 |
+
SA_LINEAR_OUT_MOE: True
|
| 18 |
+
MOE_EXPERT_LOCATION: 'all' # 'odd'
|
| 19 |
+
# MOE_LAYER_START_IDX: 3
|
| 20 |
+
# MOE_LAYER_END_IDX: 21
|
| 21 |
+
# MOE_LAYER_START_IDX: 18
|
| 22 |
+
# MOE_LAYER_END_IDX: 12
|
| 23 |
+
BATCH_PRIO: True
|
| 24 |
+
USE_TUTEL: True
|
| 25 |
+
FFN_SHARE_GATE_DECISION: True
|
| 26 |
+
|
| 27 |
+
MODEL:
|
| 28 |
+
LAYER_SCALE_FP32: True
|
| 29 |
+
GATE_FP32: False
|
| 30 |
+
TAG_TRANSFORM_FP32: False
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
SOLVER:
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
FORCE_SOFTMAX_FP16: True
|
| 37 |
+
FORCE_LN_FP16: True
|
| 38 |
+
FORCE_NORM_FP16: True
|
| 39 |
+
# FORCE_TEMP_FP16: True
|
| 40 |
+
FORCE_EMBED_FP16: True
|
| 41 |
+
|
| 42 |
+
# FORCE_EXPERT_ADDING_FP16: True
|
configs/BERT_L12_H192_experiments/7tasks_berttiny_training_moe_scale_before.yaml
ADDED
|
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base_model_bert_l12_h192.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
-
|
| 6 |
+
NAME: 'ImageNet1k'
|
| 7 |
+
SHARED_TARGETS_CFG:
|
| 8 |
+
FILE_PATH: 'open_source_dataset/imagenet_class_name_CLIP_with_endoftext.pkl'
|
| 9 |
+
DISTRIBUTED: False
|
| 10 |
+
|
| 11 |
+
-
|
| 12 |
+
NAME: 'Vocab_Word'
|
| 13 |
+
SHARED_TARGETS_CFG:
|
| 14 |
+
FILE_PATH: 'open_source_dataset/vocabulary_CLIP_with_endoftext.pkl'
|
| 15 |
+
DISTRIBUTED: True
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
TASKS:
|
| 20 |
+
|
| 21 |
+
-
|
| 22 |
+
NAME: imagenet
|
| 23 |
+
DATASETS:
|
| 24 |
+
TRAIN: 'ImageNetDataset'
|
| 25 |
+
VAL: 'ImageNetDataset'
|
| 26 |
+
TASK_TYPE: 'image_classification'
|
| 27 |
+
DATASET_NAME: 'ImageNet1k'
|
| 28 |
+
TARGET_SET: ['ImageNet1k']
|
| 29 |
+
|
| 30 |
+
DATALOADER:
|
| 31 |
+
TRAIN_BATCH_SIZE: 720
|
| 32 |
+
# TEST_BATCH_SIZE: 2
|
| 33 |
+
NUM_WORKERS: 4
|
| 34 |
+
FEATS_FOLDER: 'open_source_dataset/imagenet'
|
| 35 |
+
S3_PATH: 'cluster2:s3://imagenet'
|
| 36 |
+
ANNO_FOLDER: 'open_source_dataset/imagenet/meta'
|
| 37 |
+
SAMPLING_WEIGHT: 2.5
|
| 38 |
+
CLASS_NAME_FILE: 'open_source_dataset/imagenet_class_name.pkl'
|
| 39 |
+
MIXUP: 0.8
|
| 40 |
+
CUTMIX: 1.0
|
| 41 |
+
MIXUP_PROB: 1.0
|
| 42 |
+
MIXUP_SWITCH_PROB: 0.5
|
| 43 |
+
MIXUP_MODE: 'batch'
|
| 44 |
+
MIXUP_LABEL_SMOOTHING: 0.1
|
| 45 |
+
MODEL:
|
| 46 |
+
MAX_SEQ_LEN: -1
|
| 47 |
+
LABELS_NUM: 1000
|
| 48 |
+
TEMP_NAME: logit_scale_img_cls
|
| 49 |
+
LOSSES:
|
| 50 |
+
NAMES: ['SoftTargetCrossEntropy', 'Accuracy']
|
| 51 |
+
LOSS_WEIGHT: 1.0
|
| 52 |
+
REDUCTION: 'mean'
|
| 53 |
+
# LOSS_FP32: True
|
| 54 |
+
INFERENCE:
|
| 55 |
+
NAME: 'ImageNetEvaler'
|
| 56 |
+
ID_KEY: 'image_id'
|
| 57 |
+
VALUE: 'cls_logits'
|
| 58 |
+
VAL_ANNFILE: 'open_source_dataset/imagenet/meta/val.txt'
|
| 59 |
+
TEST_ANNFILE: ''
|
| 60 |
+
GENERATION_MODE: False
|
| 61 |
+
|
| 62 |
+
-
|
| 63 |
+
NAME: bookswiki_pretrain
|
| 64 |
+
DATASETS:
|
| 65 |
+
TRAIN: 'GeneralCorpusDataset'
|
| 66 |
+
TASK_TYPE: 'text_mlm'
|
| 67 |
+
DATASET_NAME: 'BooksWiki'
|
| 68 |
+
TARGET_SET: ['Vocab_Word']
|
| 69 |
+
VERSION: 'v2'
|
| 70 |
+
DATALOADER:
|
| 71 |
+
TRAIN_BATCH_SIZE: 512
|
| 72 |
+
TEST_BATCH_SIZE: 32
|
| 73 |
+
NUM_WORKERS: 2
|
| 74 |
+
ANNO_FOLDER: 'open_source_dataset/text_corpus' # 'open_source_dataset/bert_pretrain_data/bookswiki'
|
| 75 |
+
# ANNO_FOLDER: 'open_source_dataset/bert_pretrain_data/bookswiki'
|
| 76 |
+
SEQ_PER_SAMPLE: 1
|
| 77 |
+
SAMPLER: NodeDistributed
|
| 78 |
+
CACHE_MODE: True
|
| 79 |
+
SEQ_PER_SAMPLE: 128
|
| 80 |
+
MIN_SEQ_PER_SAMPLE: 128
|
| 81 |
+
APPEND_EOS: True
|
| 82 |
+
ONE_STREAM: False
|
| 83 |
+
SAMPLING_WEIGHT: 3.5
|
| 84 |
+
RANDOM_MASK: True
|
| 85 |
+
MODEL:
|
| 86 |
+
MAX_SEQ_LEN: 128
|
| 87 |
+
TEMP_NAME: logit_scale_text_mlm
|
| 88 |
+
LOSSES:
|
| 89 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 90 |
+
LOSS_WEIGHT: 0.33333
|
| 91 |
+
REDUCTION: 'mean'
|
| 92 |
+
INFERENCE:
|
| 93 |
+
VOCAB: 'CLIP'
|
| 94 |
+
GENERATION_MODE: False
|
| 95 |
+
|
| 96 |
+
########## Image Captioning ###########
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
-
|
| 100 |
+
NAME: cc12m_caption
|
| 101 |
+
DATASETS:
|
| 102 |
+
TRAIN: 'ImageTextPairDataset'
|
| 103 |
+
TASK_TYPE: 'image_caption'
|
| 104 |
+
DATASET_NAME: 'CC12M'
|
| 105 |
+
TARGET_SET: ['Vocab_Word']
|
| 106 |
+
DATALOADER:
|
| 107 |
+
TRAIN_BATCH_SIZE: 300
|
| 108 |
+
TEST_BATCH_SIZE: 32
|
| 109 |
+
NUM_WORKERS: 2
|
| 110 |
+
S3_ANNO_FOLDER: 's3://cc12m/'
|
| 111 |
+
ANNO_FOLDER: 'open_source_dataset/c12m/'
|
| 112 |
+
ANNO_FILENAME: 'train_available.json'
|
| 113 |
+
FEATS_FOLDER: 'open_source_dataset/c12m/'
|
| 114 |
+
S3_PATH: 's3://cc12m/'
|
| 115 |
+
SEQ_PER_SAMPLE: 1
|
| 116 |
+
SAMPLER: NodeDistributed
|
| 117 |
+
CACHE_MODE: True
|
| 118 |
+
CIRCULAR_CACHE_MODE: False
|
| 119 |
+
ZIP_MODE: False
|
| 120 |
+
CACHE_ORIGIN_IMAGE: False
|
| 121 |
+
RANDOM_CAPTION: False
|
| 122 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 123 |
+
SAMPLING_WEIGHT: 1.6889
|
| 124 |
+
TRANSFORM: 'clip_transforms'
|
| 125 |
+
MODEL:
|
| 126 |
+
MAX_SEQ_LEN: 50
|
| 127 |
+
TEMP_NAME: logit_scale_caption
|
| 128 |
+
LOSSES:
|
| 129 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 130 |
+
LOSS_WEIGHT: 0.33333
|
| 131 |
+
REDUCTION: 'mean'
|
| 132 |
+
INFERENCE:
|
| 133 |
+
VOCAB: 'CLIP'
|
| 134 |
+
GENERATION_MODE: False
|
| 135 |
+
|
| 136 |
+
-
|
| 137 |
+
NAME: cc3m_caption
|
| 138 |
+
DATASETS:
|
| 139 |
+
TRAIN: 'ImageTextPairDataset'
|
| 140 |
+
TASK_TYPE: 'image_caption'
|
| 141 |
+
DATASET_NAME: 'CC3M'
|
| 142 |
+
TARGET_SET: ['Vocab_Word']
|
| 143 |
+
DATALOADER:
|
| 144 |
+
TRAIN_BATCH_SIZE: 300
|
| 145 |
+
TEST_BATCH_SIZE: 32
|
| 146 |
+
NUM_WORKERS: 2
|
| 147 |
+
ANNO_FOLDER: 's3://cc3m/'
|
| 148 |
+
ANNO_FILENAME: 'train_spacy.json'
|
| 149 |
+
FEATS_FOLDER: 'open_source_dataset/cc3m/'
|
| 150 |
+
S3_PATH: 's3://cc3m/'
|
| 151 |
+
SEQ_PER_SAMPLE: 1
|
| 152 |
+
SAMPLER: NodeDistributed
|
| 153 |
+
CACHE_MODE: True
|
| 154 |
+
CIRCULAR_CACHE_MODE: False
|
| 155 |
+
ZIP_MODE: False
|
| 156 |
+
CACHE_ORIGIN_IMAGE: False
|
| 157 |
+
RANDOM_CAPTION: False
|
| 158 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 159 |
+
SAMPLING_WEIGHT: 0.8780
|
| 160 |
+
TRANSFORM: 'clip_transforms'
|
| 161 |
+
MODEL:
|
| 162 |
+
MAX_SEQ_LEN: 50
|
| 163 |
+
TEMP_NAME: logit_scale_caption
|
| 164 |
+
LOSSES:
|
| 165 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 166 |
+
LOSS_WEIGHT: 0.33333
|
| 167 |
+
REDUCTION: 'mean'
|
| 168 |
+
INFERENCE:
|
| 169 |
+
VOCAB: 'CLIP'
|
| 170 |
+
GENERATION_MODE: False
|
| 171 |
+
|
| 172 |
+
-
|
| 173 |
+
NAME: vg_caption
|
| 174 |
+
DATASETS:
|
| 175 |
+
TRAIN: 'ImageTextPairDataset'
|
| 176 |
+
TASK_TYPE: 'image_caption'
|
| 177 |
+
DATASET_NAME: 'VG'
|
| 178 |
+
TARGET_SET: ['Vocab_Word']
|
| 179 |
+
DATALOADER:
|
| 180 |
+
TRAIN_BATCH_SIZE: 300
|
| 181 |
+
TEST_BATCH_SIZE: 32
|
| 182 |
+
NUM_WORKERS: 2
|
| 183 |
+
FEATS_FOLDER: 'open_source_dataset/visual_genome/images'
|
| 184 |
+
ANNO_FOLDER: 'open_source_dataset/visual_genome/annotations'
|
| 185 |
+
S3_PATH: 's3://visual_genome/images'
|
| 186 |
+
ANNO_FILENAME: 'vg_captions_128filter.json'
|
| 187 |
+
SEQ_PER_SAMPLE: 1
|
| 188 |
+
CACHE_MODE: True
|
| 189 |
+
CIRCULAR_CACHE_MODE: False
|
| 190 |
+
ZIP_MODE: False
|
| 191 |
+
CACHE_ORIGIN_IMAGE: False
|
| 192 |
+
RANDOM_CAPTION: False
|
| 193 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 194 |
+
SAMPLING_WEIGHT: 0.5895
|
| 195 |
+
TRANSFORM: 'clip_transforms'
|
| 196 |
+
MODEL:
|
| 197 |
+
MAX_SEQ_LEN: 30
|
| 198 |
+
TEMP_NAME: logit_scale_caption
|
| 199 |
+
LOSSES:
|
| 200 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 201 |
+
LOSS_WEIGHT: 0.33333
|
| 202 |
+
REDUCTION: 'mean'
|
| 203 |
+
INFERENCE:
|
| 204 |
+
VOCAB: 'CLIP'
|
| 205 |
+
GENERATION_MODE: True
|
| 206 |
+
|
| 207 |
+
-
|
| 208 |
+
NAME: mscoco_caption
|
| 209 |
+
DATASETS:
|
| 210 |
+
TRAIN: 'ImageTextPairDataset'
|
| 211 |
+
# VAL: 'ImageTextPairDataset'
|
| 212 |
+
# TEST: 'ImageTextPairDataset'
|
| 213 |
+
TASK_TYPE: 'image_caption'
|
| 214 |
+
DATASET_NAME: 'MSCOCO'
|
| 215 |
+
TARGET_SET: ['Vocab_Word']
|
| 216 |
+
DATALOADER:
|
| 217 |
+
TRAIN_BATCH_SIZE: 300
|
| 218 |
+
TEST_BATCH_SIZE: 32
|
| 219 |
+
NUM_WORKERS: 4
|
| 220 |
+
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 221 |
+
ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 222 |
+
S3_PATH: 's3://coco/'
|
| 223 |
+
SEQ_PER_SAMPLE: 1
|
| 224 |
+
CACHE_MODE: True
|
| 225 |
+
CIRCULAR_CACHE_MODE: False
|
| 226 |
+
ZIP_MODE: False
|
| 227 |
+
CACHE_ORIGIN_IMAGE: False
|
| 228 |
+
RANDOM_CAPTION: False
|
| 229 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 230 |
+
SAMPLING_WEIGHT: 0.3817
|
| 231 |
+
TRANSFORM: 'clip_transforms'
|
| 232 |
+
RANDOM_MASK: True
|
| 233 |
+
MODEL:
|
| 234 |
+
MAX_SEQ_LEN: 50
|
| 235 |
+
EVAL_MAX_SEQ_LEN: 21
|
| 236 |
+
TEMP_NAME: logit_scale_caption
|
| 237 |
+
LOSSES:
|
| 238 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 239 |
+
LOSS_WEIGHT: 0.33333
|
| 240 |
+
REDUCTION: 'mean'
|
| 241 |
+
DECODE_STRATEGY:
|
| 242 |
+
NAME: 'CaptionBeamSearcherV3'
|
| 243 |
+
BEAM_SIZE: 2
|
| 244 |
+
# LEN_PENALTY: 1.0
|
| 245 |
+
INFERENCE:
|
| 246 |
+
NAME: 'COCOEvaler'
|
| 247 |
+
VOCAB: 'CLIP'
|
| 248 |
+
ID_KEY: 'image_id'
|
| 249 |
+
VALUE: 'caption'
|
| 250 |
+
VAL_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_val5k.json'
|
| 251 |
+
TEST_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_test5k.json'
|
| 252 |
+
GENERATION_MODE: True
|
| 253 |
+
|
| 254 |
+
-
|
| 255 |
+
NAME: sbu_caption
|
| 256 |
+
DATASETS:
|
| 257 |
+
TRAIN: 'ImageTextPairDataset'
|
| 258 |
+
TASK_TYPE: 'image_caption'
|
| 259 |
+
DATASET_NAME: 'SBU'
|
| 260 |
+
TARGET_SET: ['Vocab_Word']
|
| 261 |
+
DATALOADER:
|
| 262 |
+
TRAIN_BATCH_SIZE: 300
|
| 263 |
+
TEST_BATCH_SIZE: 32
|
| 264 |
+
NUM_WORKERS: 1
|
| 265 |
+
S3_ANNO_FOLDER: 's3://SBU/annotations'
|
| 266 |
+
ANNO_FOLDER: 'open_source_dataset/sbucaption/annotations'
|
| 267 |
+
ANNO_FILENAME: 'subcaption.json'
|
| 268 |
+
FEATS_FOLDER: 'open_source_dataset/sbucaption/'
|
| 269 |
+
S3_PATH: 's3://SBU/images'
|
| 270 |
+
SEQ_PER_SAMPLE: 1
|
| 271 |
+
SAMPLER: NodeDistributed
|
| 272 |
+
CACHE_MODE: True
|
| 273 |
+
CIRCULAR_CACHE_MODE: False
|
| 274 |
+
ZIP_MODE: False
|
| 275 |
+
CACHE_ORIGIN_IMAGE: False
|
| 276 |
+
RANDOM_CAPTION: False
|
| 277 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 278 |
+
SAMPLING_WEIGHT: 0.4618
|
| 279 |
+
TRANSFORM: 'clip_transforms'
|
| 280 |
+
MODEL:
|
| 281 |
+
MAX_SEQ_LEN: 50
|
| 282 |
+
TEMP_NAME: logit_scale_caption
|
| 283 |
+
LOSSES:
|
| 284 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 285 |
+
LOSS_WEIGHT: 0.33333
|
| 286 |
+
REDUCTION: 'mean'
|
| 287 |
+
INFERENCE:
|
| 288 |
+
VOCAB: 'CLIP'
|
| 289 |
+
GENERATION_MODE: False
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
ENGINE:
|
| 293 |
+
NAME: 'UnifiedTrainer'
|
| 294 |
+
|
| 295 |
+
MODEL:
|
| 296 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 297 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 298 |
+
|
| 299 |
+
IN_TUNING: True # use IN1k instead of 22k
|
| 300 |
+
SHARE_LAYERNORM: True
|
| 301 |
+
BERT:
|
| 302 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 303 |
+
DROP_PATH_PROB: 0.0
|
| 304 |
+
DROP_PATH_PROB_FIXED: True
|
| 305 |
+
SCALE_MULTI_BEFORE: True
|
| 306 |
+
|
| 307 |
+
MODEL_EMA: False
|
| 308 |
+
MODEL_EMA_DECAY: 0.9999
|
| 309 |
+
|
| 310 |
+
MAEParamsInit: True
|
| 311 |
+
POSEMBEDFIX: True
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
IMG_INPUT_SIZE: 224
|
| 315 |
+
PATCH_SIZE: 16
|
| 316 |
+
|
| 317 |
+
LAYER_SCALE: True
|
| 318 |
+
LAYER_SCALE_INIT: 1e-3
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
DATALOADER:
|
| 322 |
+
USE_WEIGHTED_SAMPLER: True
|
| 323 |
+
UNIFIED_DATASET: True
|
| 324 |
+
NUM_WORKERS: 32
|
| 325 |
+
|
| 326 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
####################################### Optimizer #######################################
|
| 331 |
+
SOLVER:
|
| 332 |
+
NAME: 'Adam'
|
| 333 |
+
TORCH_OPTIMIZER: True
|
| 334 |
+
PARAMS_SEPERATE: True
|
| 335 |
+
# PARAMS_GROUP: True
|
| 336 |
+
# EPOCH: 1
|
| 337 |
+
MAX_ITER: 150000
|
| 338 |
+
CHECKPOINT_PERIOD: 5000
|
| 339 |
+
EVAL_PERIOD: 500000
|
| 340 |
+
BASE_LR: 0.001
|
| 341 |
+
BIAS_LR_FACTOR: 1.0
|
| 342 |
+
WEIGHT_DECAY: 0.05
|
| 343 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 344 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 345 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 346 |
+
MOMENTUM: 0.9
|
| 347 |
+
DAMPENING: 0.0
|
| 348 |
+
NESTEROV: 0.0
|
| 349 |
+
BETAS: [0.9, 0.95]
|
| 350 |
+
EPS: 1e-6
|
| 351 |
+
GRAD_CLIP: 0.1
|
| 352 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 353 |
+
ACCUM_ITER: 0
|
| 354 |
+
AMP_FP16: True
|
| 355 |
+
APEX_FP16: False # dangerous
|
| 356 |
+
|
| 357 |
+
WRITE_PERIOD: 50
|
| 358 |
+
MIN_LOSS_SCLE: 2048.0
|
| 359 |
+
# BF16: False # True
|
| 360 |
+
# ZEROSTAGE: 2
|
| 361 |
+
|
| 362 |
+
LOSS_SCALE_WINDOW: 200
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
####################################### lr scheduler #######################################
|
| 370 |
+
LR_SCHEDULER:
|
| 371 |
+
NAME: 'WarmupCosine'
|
| 372 |
+
WARMUP: 5000
|
| 373 |
+
MIN_LR: 0.000001
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
####################################### evaluation #######################################
|
| 379 |
+
INFERENCE:
|
| 380 |
+
|
| 381 |
+
VOCAB: 'CLIP'
|
| 382 |
+
ITER_BASED: True
|
| 383 |
+
|
| 384 |
+
|
| 385 |
+
find_unused_parameters: true
|
| 386 |
+
|
| 387 |
+
# ENCODERS:
|
| 388 |
+
# -
|
| 389 |
+
# NAME: VisualEncoder
|
| 390 |
+
# TYPE: VisualEncoder
|
| 391 |
+
# DROP_PATH_PROB: 0.0
|
| 392 |
+
# HIDDEN_SIZE: 192
|
| 393 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 394 |
+
# HIDDEN_ACT: "gelu"
|
| 395 |
+
# NUM_ATTENTION_HEADS: 3
|
| 396 |
+
# INTERMEDIATE_SIZE: 768
|
| 397 |
+
# INTERMEDIATE_DROP: 0.
|
| 398 |
+
# FFN_DROPOUT_PROB: 0.
|
| 399 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 400 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 401 |
+
# NUM_GENERATION_LAYERS: 0
|
| 402 |
+
# DROP_PATH_PROB_FIXED: True
|
| 403 |
+
|
| 404 |
+
# -
|
| 405 |
+
# NAME: TextEncoder
|
| 406 |
+
# TYPE: TextEncoder
|
| 407 |
+
# DROP_PATH_PROB: 0.0
|
| 408 |
+
# HIDDEN_SIZE: 192
|
| 409 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 410 |
+
# HIDDEN_ACT: "gelu"
|
| 411 |
+
# NUM_ATTENTION_HEADS: 3
|
| 412 |
+
# INTERMEDIATE_SIZE: 768
|
| 413 |
+
# INTERMEDIATE_DROP: 0.
|
| 414 |
+
# FFN_DROPOUT_PROB: 0.
|
| 415 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 416 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 417 |
+
# NUM_GENERATION_LAYERS: 0
|
| 418 |
+
# DROP_PATH_PROB_FIXED: True
|
| 419 |
+
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
MOE:
|
| 423 |
+
MOE: True
|
| 424 |
+
MOE_TYPE: 'attribute'
|
| 425 |
+
TAG_Transform: True
|
| 426 |
+
ATTRIBUTE_LENGTH: 8
|
| 427 |
+
EP_WORLD_SIZE: 1 # tag moe only
|
| 428 |
+
NUM_EXPERTS: 8
|
| 429 |
+
TOP_K: 2
|
| 430 |
+
CAPACITY_FACTOR: 3.0
|
| 431 |
+
EVAL_MIN_CAPACITY: 4.0
|
| 432 |
+
MIN_CAPACITY: 4
|
| 433 |
+
NOISY_GATE_POLICY: 'vmoe'
|
| 434 |
+
MOE_PARAM_GROUP: True
|
| 435 |
+
MOE_EXPERT_TYPE: 'FFN,SA'
|
| 436 |
+
SA_LINEAR_OUT_MOE: True
|
| 437 |
+
MOE_EXPERT_LOCATION: 'all' # 'odd'
|
| 438 |
+
# MOE_LAYER_START_IDX: 3
|
| 439 |
+
# MOE_LAYER_END_IDX: 21
|
| 440 |
+
# MOE_LAYER_START_IDX: 18
|
| 441 |
+
# MOE_LAYER_END_IDX: 12
|
| 442 |
+
BATCH_PRIO: True
|
| 443 |
+
USE_TUTEL: True
|
| 444 |
+
FFN_SHARE_GATE_DECISION: True
|
configs/BERT_L12_H192_experiments/base_model_bert_l12_h192.yaml
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
######################################### MODEL #########################################
|
| 3 |
+
MODEL:
|
| 4 |
+
VOCAB_SIZE: 49411 # include <BOS>/<EOS>
|
| 5 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 6 |
+
ENCODER: 'UnifiedBertEncoder_v3'
|
| 7 |
+
ENCODER_DIM: 192
|
| 8 |
+
DECODER: ''
|
| 9 |
+
DECODER_DIM: 192
|
| 10 |
+
|
| 11 |
+
PREDICTOR: 'EmbedClsAsRetrievalPredictor'
|
| 12 |
+
FEATURE_GATHER: True
|
| 13 |
+
LEARN_TEMP: True
|
| 14 |
+
PRED_USE_NORM: True
|
| 15 |
+
PRED_TEMPERATURE: 0.07
|
| 16 |
+
|
| 17 |
+
BertParamsInit: True
|
| 18 |
+
|
| 19 |
+
CLS_TOKEN: False
|
| 20 |
+
|
| 21 |
+
QUEUE_LEN: 1024
|
| 22 |
+
MAX_LABEL_LEN: 12
|
| 23 |
+
|
| 24 |
+
OUTPUT_PROJ: True # output projection
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# #################################### Token embedding ####################################
|
| 28 |
+
TOKEN_EMBED:
|
| 29 |
+
NAME: 'TokenBaseEmbedding'
|
| 30 |
+
DIM: 192
|
| 31 |
+
ACTIVATION: 'none'
|
| 32 |
+
USE_NORM: True
|
| 33 |
+
DROPOUT: 0.0
|
| 34 |
+
POSITION: 'NNEmbeddingEncoding'
|
| 35 |
+
POSITION_MAX_LEN: 512
|
| 36 |
+
TYPE_VOCAB_SIZE: 2
|
| 37 |
+
|
| 38 |
+
# #################################### Visual embedding ####################################
|
| 39 |
+
VISUAL_EMBED:
|
| 40 |
+
NAME: 'none'
|
| 41 |
+
|
| 42 |
+
# #################################### video embedding ####################################
|
| 43 |
+
VIDEO_EMBED:
|
| 44 |
+
NAME: 'VideoBaseEmbedding'
|
| 45 |
+
IN_DIM: 768
|
| 46 |
+
OUT_DIM: 192
|
| 47 |
+
ACTIVATION: 'none'
|
| 48 |
+
USE_NORM: True
|
| 49 |
+
DROPOUT: 0.0
|
| 50 |
+
TYPE_SIZE: 1 # video to encoder
|
| 51 |
+
POSITION: 'NNEmbeddingEncoding'
|
| 52 |
+
MAX_LENGTH: 1600
|
| 53 |
+
PATCH_SIZE_S: 16
|
| 54 |
+
PATCH_SIZE_T: 1
|
| 55 |
+
DIVIDE_ST_POS: True
|
| 56 |
+
USE_VISUAL_TOKENIZER: True
|
| 57 |
+
USE_VISUAL_POS: True
|
| 58 |
+
MAX_FRAMES: 8
|
| 59 |
+
|
| 60 |
+
####################################### BERT ############################################
|
| 61 |
+
BERT:
|
| 62 |
+
DROP_PATH_PROB: 0.0
|
| 63 |
+
HIDDEN_SIZE: 192
|
| 64 |
+
HIDDEN_DROPOUT_PROB: 0.
|
| 65 |
+
HIDDEN_ACT: "gelu"
|
| 66 |
+
NUM_ATTENTION_HEADS: 3
|
| 67 |
+
INTERMEDIATE_SIZE: 768
|
| 68 |
+
INTERMEDIATE_DROP: 0.
|
| 69 |
+
FFN_DROPOUT_PROB: 0.
|
| 70 |
+
ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 71 |
+
NUM_HIDDEN_LAYERS: 12
|
| 72 |
+
NUM_GENERATION_LAYERS: 0
|
| 73 |
+
|
configs/BERT_L12_H192_experiments/in1k_training.yaml
ADDED
|
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base_model_bert_l12_h192.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
-
|
| 6 |
+
NAME: 'ImageNet1k'
|
| 7 |
+
SHARED_TARGETS_CFG:
|
| 8 |
+
FILE_PATH: 'open_source_dataset/imagenet_class_name_CLIP_with_endoftext.pkl'
|
| 9 |
+
DISTRIBUTED: True
|
| 10 |
+
|
| 11 |
+
# -
|
| 12 |
+
# NAME: 'Vocab_Word'
|
| 13 |
+
# SHARED_TARGETS_CFG:
|
| 14 |
+
# FILE_PATH: 'open_source_dataset/vocabulary_CLIP_with_endoftext.pkl'
|
| 15 |
+
# DISTRIBUTED: True
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
TASKS:
|
| 20 |
+
|
| 21 |
+
-
|
| 22 |
+
NAME: imagenet
|
| 23 |
+
DATASETS:
|
| 24 |
+
TRAIN: 'ImageNetDataset'
|
| 25 |
+
VAL: 'ImageNetDataset'
|
| 26 |
+
TASK_TYPE: 'image_classification'
|
| 27 |
+
DATASET_NAME: 'ImageNet1k'
|
| 28 |
+
TARGET_SET: ['ImageNet1k']
|
| 29 |
+
|
| 30 |
+
DATALOADER:
|
| 31 |
+
TRAIN_BATCH_SIZE: 4
|
| 32 |
+
TEST_BATCH_SIZE: 4
|
| 33 |
+
NUM_WORKERS: 4
|
| 34 |
+
FEATS_FOLDER: 'open_source_dataset/imagenet'
|
| 35 |
+
S3_PATH: 'cluster2:s3://imagenet'
|
| 36 |
+
ANNO_FOLDER: 'open_source_dataset/imagenet/meta'
|
| 37 |
+
SAMPLING_WEIGHT: 1.0
|
| 38 |
+
CLASS_NAME_FILE: 'open_source_dataset/imagenet_class_name.pkl'
|
| 39 |
+
MIXUP: 0.8
|
| 40 |
+
CUTMIX: 1.0
|
| 41 |
+
MIXUP_PROB: 1.0
|
| 42 |
+
MIXUP_SWITCH_PROB: 0.5
|
| 43 |
+
MIXUP_MODE: 'batch'
|
| 44 |
+
MIXUP_LABEL_SMOOTHING: 0.1
|
| 45 |
+
MODEL:
|
| 46 |
+
MAX_SEQ_LEN: -1
|
| 47 |
+
LABELS_NUM: 1000
|
| 48 |
+
TEMP_NAME: logit_scale_img_cls
|
| 49 |
+
LOSSES:
|
| 50 |
+
NAMES: ['SoftTargetCrossEntropy', 'Accuracy']
|
| 51 |
+
LOSS_WEIGHT: 1.0
|
| 52 |
+
REDUCTION: 'mean'
|
| 53 |
+
# LOSS_FP32: True
|
| 54 |
+
INFERENCE:
|
| 55 |
+
NAME: 'ImageNetEvaler'
|
| 56 |
+
ID_KEY: 'image_id'
|
| 57 |
+
VALUE: 'cls_logits'
|
| 58 |
+
VAL_ANNFILE: 'open_source_dataset/imagenet/meta/val.txt'
|
| 59 |
+
TEST_ANNFILE: ''
|
| 60 |
+
GENERATION_MODE: False
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
ENGINE:
|
| 64 |
+
NAME: 'UnifiedTrainer'
|
| 65 |
+
|
| 66 |
+
MODEL:
|
| 67 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 68 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 69 |
+
|
| 70 |
+
IN_TUNING: True # use IN1k instead of 22k
|
| 71 |
+
SHARE_LAYERNORM: True
|
| 72 |
+
BERT:
|
| 73 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 74 |
+
DROP_PATH_PROB: 0.1
|
| 75 |
+
NUM_HIDDEN_LAYERS: 1
|
| 76 |
+
DROP_PATH_PROB_FIXED: True
|
| 77 |
+
|
| 78 |
+
UNIFY_QKV: True
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
OLD_CHECKPONT: True
|
| 82 |
+
|
| 83 |
+
MODEL_EMA: False
|
| 84 |
+
MODEL_EMA_DECAY: 0.9999
|
| 85 |
+
|
| 86 |
+
MAEParamsInit: True
|
| 87 |
+
POSEMBEDFIX: True
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
IMG_INPUT_SIZE: 224
|
| 91 |
+
PATCH_SIZE: 16
|
| 92 |
+
# POSEMBED_SCALE: !!python/object/apply:eval ["160/224"]
|
| 93 |
+
# CHECKPOINT_FILETER: False
|
| 94 |
+
|
| 95 |
+
LAYER_SCALE: True
|
| 96 |
+
LAYER_SCALE_INIT: 1e-3
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
DATALOADER:
|
| 100 |
+
USE_WEIGHTED_SAMPLER: True
|
| 101 |
+
UNIFIED_DATASET: True
|
| 102 |
+
NUM_WORKERS: 16
|
| 103 |
+
|
| 104 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
####################################### Optimizer #######################################
|
| 109 |
+
SOLVER:
|
| 110 |
+
NAME: 'Adam'
|
| 111 |
+
TORCH_OPTIMIZER: True
|
| 112 |
+
PARAMS_SEPERATE: True
|
| 113 |
+
# PARAMS_GROUP: True
|
| 114 |
+
# EPOCH: 1
|
| 115 |
+
MAX_ITER: 150000
|
| 116 |
+
CHECKPOINT_PERIOD: 5000
|
| 117 |
+
EVAL_PERIOD: 500000
|
| 118 |
+
BASE_LR: 0.001
|
| 119 |
+
BIAS_LR_FACTOR: 1.0
|
| 120 |
+
WEIGHT_DECAY: 0.05
|
| 121 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 122 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 123 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 124 |
+
MOMENTUM: 0.9
|
| 125 |
+
DAMPENING: 0.0
|
| 126 |
+
NESTEROV: 0.0
|
| 127 |
+
BETAS: [0.9, 0.95]
|
| 128 |
+
EPS: 1e-6
|
| 129 |
+
GRAD_CLIP: 0.1
|
| 130 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 131 |
+
ACCUM_ITER: 0
|
| 132 |
+
AMP_FP16: True
|
| 133 |
+
APEX_FP16: False # dangerous
|
| 134 |
+
|
| 135 |
+
WRITE_PERIOD: 50
|
| 136 |
+
MIN_LOSS_SCLE: 2048.0
|
| 137 |
+
# BF16: False # True
|
| 138 |
+
# ZEROSTAGE: 2
|
| 139 |
+
|
| 140 |
+
LOSS_SCALE_WINDOW: 200
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
####################################### lr scheduler #######################################
|
| 148 |
+
LR_SCHEDULER:
|
| 149 |
+
NAME: 'WarmupCosine'
|
| 150 |
+
WARMUP: 5000
|
| 151 |
+
MIN_LR: 0.000001
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
####################################### evaluation #######################################
|
| 157 |
+
INFERENCE:
|
| 158 |
+
|
| 159 |
+
VOCAB: 'CLIP'
|
| 160 |
+
ITER_BASED: True
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
find_unused_parameters: true
|
| 164 |
+
|
| 165 |
+
# ENCODERS:
|
| 166 |
+
# -
|
| 167 |
+
# NAME: VisualEncoder
|
| 168 |
+
# TYPE: VisualEncoder
|
| 169 |
+
# DROP_PATH_PROB: 0.0
|
| 170 |
+
# HIDDEN_SIZE: 192
|
| 171 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 172 |
+
# HIDDEN_ACT: "gelu"
|
| 173 |
+
# NUM_ATTENTION_HEADS: 3
|
| 174 |
+
# INTERMEDIATE_SIZE: 768
|
| 175 |
+
# INTERMEDIATE_DROP: 0.
|
| 176 |
+
# FFN_DROPOUT_PROB: 0.
|
| 177 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 178 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 179 |
+
# NUM_GENERATION_LAYERS: 0
|
| 180 |
+
# DROP_PATH_PROB_FIXED: True
|
| 181 |
+
|
| 182 |
+
# -
|
| 183 |
+
# NAME: TextEncoder
|
| 184 |
+
# TYPE: TextEncoder
|
| 185 |
+
# DROP_PATH_PROB: 0.0
|
| 186 |
+
# HIDDEN_SIZE: 192
|
| 187 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 188 |
+
# HIDDEN_ACT: "gelu"
|
| 189 |
+
# NUM_ATTENTION_HEADS: 3
|
| 190 |
+
# INTERMEDIATE_SIZE: 768
|
| 191 |
+
# INTERMEDIATE_DROP: 0.
|
| 192 |
+
# FFN_DROPOUT_PROB: 0.
|
| 193 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 194 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 195 |
+
# NUM_GENERATION_LAYERS: 0
|
| 196 |
+
# DROP_PATH_PROB_FIXED: True
|
| 197 |
+
|
configs/BERT_L12_H192_experiments/in1k_training_moe.yaml
ADDED
|
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base_model_bert_l12_h192.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
-
|
| 6 |
+
NAME: 'ImageNet1k'
|
| 7 |
+
SHARED_TARGETS_CFG:
|
| 8 |
+
FILE_PATH: 'open_source_dataset/imagenet_class_name_CLIP_with_endoftext.pkl'
|
| 9 |
+
DISTRIBUTED: True
|
| 10 |
+
|
| 11 |
+
# -
|
| 12 |
+
# NAME: 'Vocab_Word'
|
| 13 |
+
# SHARED_TARGETS_CFG:
|
| 14 |
+
# FILE_PATH: 'open_source_dataset/vocabulary_CLIP_with_endoftext.pkl'
|
| 15 |
+
# DISTRIBUTED: True
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
TASKS:
|
| 20 |
+
|
| 21 |
+
-
|
| 22 |
+
NAME: imagenet
|
| 23 |
+
DATASETS:
|
| 24 |
+
TRAIN: 'ImageNetDataset'
|
| 25 |
+
VAL: 'ImageNetDataset'
|
| 26 |
+
TASK_TYPE: 'image_classification'
|
| 27 |
+
DATASET_NAME: 'ImageNet1k'
|
| 28 |
+
TARGET_SET: ['ImageNet1k']
|
| 29 |
+
|
| 30 |
+
DATALOADER:
|
| 31 |
+
TRAIN_BATCH_SIZE: 4
|
| 32 |
+
TEST_BATCH_SIZE: 4
|
| 33 |
+
NUM_WORKERS: 4
|
| 34 |
+
FEATS_FOLDER: 'open_source_dataset/imagenet'
|
| 35 |
+
S3_PATH: 'cluster2:s3://imagenet'
|
| 36 |
+
ANNO_FOLDER: 'open_source_dataset/imagenet/meta'
|
| 37 |
+
SAMPLING_WEIGHT: 1.0
|
| 38 |
+
CLASS_NAME_FILE: 'open_source_dataset/imagenet_class_name.pkl'
|
| 39 |
+
MIXUP: 0.8
|
| 40 |
+
CUTMIX: 1.0
|
| 41 |
+
MIXUP_PROB: 1.0
|
| 42 |
+
MIXUP_SWITCH_PROB: 0.5
|
| 43 |
+
MIXUP_MODE: 'batch'
|
| 44 |
+
MIXUP_LABEL_SMOOTHING: 0.1
|
| 45 |
+
MODEL:
|
| 46 |
+
MAX_SEQ_LEN: -1
|
| 47 |
+
LABELS_NUM: 1000
|
| 48 |
+
TEMP_NAME: logit_scale_img_cls
|
| 49 |
+
LOSSES:
|
| 50 |
+
NAMES: ['SoftTargetCrossEntropy', 'Accuracy']
|
| 51 |
+
LOSS_WEIGHT: 1.0
|
| 52 |
+
REDUCTION: 'mean'
|
| 53 |
+
# LOSS_FP32: True
|
| 54 |
+
INFERENCE:
|
| 55 |
+
NAME: 'ImageNetEvaler'
|
| 56 |
+
ID_KEY: 'image_id'
|
| 57 |
+
VALUE: 'cls_logits'
|
| 58 |
+
VAL_ANNFILE: 'open_source_dataset/imagenet/meta/val.txt'
|
| 59 |
+
TEST_ANNFILE: ''
|
| 60 |
+
GENERATION_MODE: False
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
ENGINE:
|
| 64 |
+
NAME: 'UnifiedTrainer'
|
| 65 |
+
|
| 66 |
+
MODEL:
|
| 67 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 68 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 69 |
+
|
| 70 |
+
IN_TUNING: True # use IN1k instead of 22k
|
| 71 |
+
SHARE_LAYERNORM: True
|
| 72 |
+
BERT:
|
| 73 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 74 |
+
DROP_PATH_PROB: 0.0
|
| 75 |
+
DROP_PATH_PROB_FIXED: True
|
| 76 |
+
|
| 77 |
+
UNIFY_QKV: True
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
OLD_CHECKPONT: True
|
| 81 |
+
|
| 82 |
+
MODEL_EMA: False
|
| 83 |
+
MODEL_EMA_DECAY: 0.9999
|
| 84 |
+
|
| 85 |
+
MAEParamsInit: True
|
| 86 |
+
POSEMBEDFIX: True
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
IMG_INPUT_SIZE: 224
|
| 90 |
+
PATCH_SIZE: 16
|
| 91 |
+
# POSEMBED_SCALE: !!python/object/apply:eval ["160/224"]
|
| 92 |
+
# CHECKPOINT_FILETER: False
|
| 93 |
+
|
| 94 |
+
LAYER_SCALE: True
|
| 95 |
+
LAYER_SCALE_INIT: 1e-3
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
DATALOADER:
|
| 99 |
+
USE_WEIGHTED_SAMPLER: True
|
| 100 |
+
UNIFIED_DATASET: True
|
| 101 |
+
NUM_WORKERS: 16
|
| 102 |
+
|
| 103 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
####################################### Optimizer #######################################
|
| 108 |
+
SOLVER:
|
| 109 |
+
NAME: 'Adam'
|
| 110 |
+
TORCH_OPTIMIZER: True
|
| 111 |
+
PARAMS_SEPERATE: True
|
| 112 |
+
# PARAMS_GROUP: True
|
| 113 |
+
# EPOCH: 1
|
| 114 |
+
MAX_ITER: 150000
|
| 115 |
+
CHECKPOINT_PERIOD: 5000
|
| 116 |
+
EVAL_PERIOD: 500000
|
| 117 |
+
BASE_LR: 0.001
|
| 118 |
+
BIAS_LR_FACTOR: 1.0
|
| 119 |
+
WEIGHT_DECAY: 0.05
|
| 120 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 121 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 122 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 123 |
+
MOMENTUM: 0.9
|
| 124 |
+
DAMPENING: 0.0
|
| 125 |
+
NESTEROV: 0.0
|
| 126 |
+
BETAS: [0.9, 0.95]
|
| 127 |
+
EPS: 1e-6
|
| 128 |
+
GRAD_CLIP: 0.1
|
| 129 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 130 |
+
ACCUM_ITER: 0
|
| 131 |
+
AMP_FP16: True
|
| 132 |
+
APEX_FP16: False # dangerous
|
| 133 |
+
|
| 134 |
+
WRITE_PERIOD: 50
|
| 135 |
+
MIN_LOSS_SCLE: 2048.0
|
| 136 |
+
# BF16: False # True
|
| 137 |
+
# ZEROSTAGE: 2
|
| 138 |
+
|
| 139 |
+
LOSS_SCALE_WINDOW: 200
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
####################################### lr scheduler #######################################
|
| 147 |
+
LR_SCHEDULER:
|
| 148 |
+
NAME: 'WarmupCosine'
|
| 149 |
+
WARMUP: 5000
|
| 150 |
+
MIN_LR: 0.000001
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
####################################### evaluation #######################################
|
| 156 |
+
INFERENCE:
|
| 157 |
+
|
| 158 |
+
VOCAB: 'CLIP'
|
| 159 |
+
ITER_BASED: True
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
find_unused_parameters: true
|
| 163 |
+
|
| 164 |
+
# ENCODERS:
|
| 165 |
+
# -
|
| 166 |
+
# NAME: VisualEncoder
|
| 167 |
+
# TYPE: VisualEncoder
|
| 168 |
+
# DROP_PATH_PROB: 0.0
|
| 169 |
+
# HIDDEN_SIZE: 192
|
| 170 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 171 |
+
# HIDDEN_ACT: "gelu"
|
| 172 |
+
# NUM_ATTENTION_HEADS: 3
|
| 173 |
+
# INTERMEDIATE_SIZE: 768
|
| 174 |
+
# INTERMEDIATE_DROP: 0.
|
| 175 |
+
# FFN_DROPOUT_PROB: 0.
|
| 176 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 177 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 178 |
+
# NUM_GENERATION_LAYERS: 0
|
| 179 |
+
# DROP_PATH_PROB_FIXED: True
|
| 180 |
+
|
| 181 |
+
# -
|
| 182 |
+
# NAME: TextEncoder
|
| 183 |
+
# TYPE: TextEncoder
|
| 184 |
+
# DROP_PATH_PROB: 0.0
|
| 185 |
+
# HIDDEN_SIZE: 192
|
| 186 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 187 |
+
# HIDDEN_ACT: "gelu"
|
| 188 |
+
# NUM_ATTENTION_HEADS: 3
|
| 189 |
+
# INTERMEDIATE_SIZE: 768
|
| 190 |
+
# INTERMEDIATE_DROP: 0.
|
| 191 |
+
# FFN_DROPOUT_PROB: 0.
|
| 192 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 193 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 194 |
+
# NUM_GENERATION_LAYERS: 0
|
| 195 |
+
# DROP_PATH_PROB_FIXED: True
|
| 196 |
+
|
| 197 |
+
MOE:
|
| 198 |
+
MOE: True
|
| 199 |
+
MOE_TYPE: 'attribute'
|
| 200 |
+
TAG_Transform: True
|
| 201 |
+
ATTRIBUTE_LENGTH: 8
|
| 202 |
+
EP_WORLD_SIZE: 1 # tag moe only
|
| 203 |
+
NUM_EXPERTS: 8
|
| 204 |
+
TOP_K: 2
|
| 205 |
+
CAPACITY_FACTOR: 3.0
|
| 206 |
+
EVAL_MIN_CAPACITY: 4.0
|
| 207 |
+
MIN_CAPACITY: 4
|
| 208 |
+
NOISY_GATE_POLICY: 'vmoe'
|
| 209 |
+
MOE_PARAM_GROUP: True
|
| 210 |
+
MOE_EXPERT_TYPE: 'FFN,SA'
|
| 211 |
+
SA_LINEAR_OUT_MOE: True
|
| 212 |
+
MOE_EXPERT_LOCATION: 'all' # 'odd'
|
| 213 |
+
# MOE_LAYER_START_IDX: 3
|
| 214 |
+
# MOE_LAYER_END_IDX: 21
|
| 215 |
+
# MOE_LAYER_START_IDX: 18
|
| 216 |
+
# MOE_LAYER_END_IDX: 12
|
| 217 |
+
BATCH_PRIO: True
|
| 218 |
+
USE_TUTEL: True
|
| 219 |
+
FFN_SHARE_GATE_DECISION: True
|
configs/BERT_L12_H192_experiments/moe_debug.yaml
ADDED
|
@@ -0,0 +1,536 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base_model_bert_l12_h192.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
# -
|
| 6 |
+
# NAME: 'ImageNet1k'
|
| 7 |
+
# SHARED_TARGETS_CFG:
|
| 8 |
+
# FILE_PATH: 'open_source_dataset/imagenet_class_name_CLIP_with_endoftext.pkl'
|
| 9 |
+
# DISTRIBUTED: False
|
| 10 |
+
|
| 11 |
+
-
|
| 12 |
+
NAME: 'Vocab_Word'
|
| 13 |
+
SHARED_TARGETS_CFG:
|
| 14 |
+
FILE_PATH: 'open_source_dataset/vocabulary_CLIP_with_endoftext.pkl'
|
| 15 |
+
DISTRIBUTED: True
|
| 16 |
+
|
| 17 |
+
# -
|
| 18 |
+
# NAME: 'Kinetics400'
|
| 19 |
+
# SHARED_TARGETS_CFG:
|
| 20 |
+
# FILE_PATH: 'open_source_dataset/k400_class_name_CLIP_with_endoftext.pkl'
|
| 21 |
+
# DISTRIBUTED: False
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
TASKS:
|
| 26 |
+
|
| 27 |
+
# -
|
| 28 |
+
# NAME: imagenet
|
| 29 |
+
# DATASETS:
|
| 30 |
+
# TRAIN: 'ImageNetDataset'
|
| 31 |
+
# VAL: 'ImageNetDataset'
|
| 32 |
+
# TASK_TYPE: 'image_classification'
|
| 33 |
+
# DATASET_NAME: 'ImageNet1k'
|
| 34 |
+
# TARGET_SET: ['ImageNet1k']
|
| 35 |
+
|
| 36 |
+
# DATALOADER:
|
| 37 |
+
# TRAIN_BATCH_SIZE: 720
|
| 38 |
+
# # TEST_BATCH_SIZE: 2
|
| 39 |
+
# NUM_WORKERS: 4
|
| 40 |
+
# FEATS_FOLDER: 'cluster2:s3://imagenet'
|
| 41 |
+
# ANNO_FOLDER: 'open_source_dataset/imagenet/meta'
|
| 42 |
+
# SAMPLING_WEIGHT: 2.5
|
| 43 |
+
# CLASS_NAME_FILE: 'open_source_dataset/imagenet_class_name.pkl'
|
| 44 |
+
# MIXUP: 0.8
|
| 45 |
+
# CUTMIX: 1.0
|
| 46 |
+
# MIXUP_PROB: 1.0
|
| 47 |
+
# MIXUP_SWITCH_PROB: 0.5
|
| 48 |
+
# MIXUP_MODE: 'batch'
|
| 49 |
+
# MIXUP_LABEL_SMOOTHING: 0.1
|
| 50 |
+
# MODEL:
|
| 51 |
+
# MAX_SEQ_LEN: -1
|
| 52 |
+
# LABELS_NUM: 1000
|
| 53 |
+
# TEMP_NAME: logit_scale_img_cls
|
| 54 |
+
# LOSSES:
|
| 55 |
+
# NAMES: ['SoftTargetCrossEntropy', 'Accuracy']
|
| 56 |
+
# LOSS_WEIGHT: 1.0
|
| 57 |
+
# REDUCTION: 'mean'
|
| 58 |
+
# # LOSS_FP32: True
|
| 59 |
+
# INFERENCE:
|
| 60 |
+
# NAME: 'ImageNetEvaler'
|
| 61 |
+
# ID_KEY: 'image_id'
|
| 62 |
+
# VALUE: 'cls_logits'
|
| 63 |
+
# VAL_ANNFILE: 'open_source_dataset/imagenet/meta/val.txt'
|
| 64 |
+
# TEST_ANNFILE: ''
|
| 65 |
+
# GENERATION_MODE: False
|
| 66 |
+
|
| 67 |
+
# -
|
| 68 |
+
# NAME: K400_retrieve
|
| 69 |
+
# DATASETS:
|
| 70 |
+
# TRAIN: 'VideoDataSet'
|
| 71 |
+
# VAL: 'VideoDataSet'
|
| 72 |
+
# TASK_TYPE: 'video_classification'
|
| 73 |
+
# DATASET_NAME: 'K400'
|
| 74 |
+
# TARGET_SET: ['Kinetics400']
|
| 75 |
+
# DATALOADER:
|
| 76 |
+
# TRAIN_BATCH_SIZE: 12 # 256
|
| 77 |
+
# TEST_BATCH_SIZE: 4 # debug
|
| 78 |
+
# NUM_WORKERS: 4 # debug 4
|
| 79 |
+
# FEATS_FOLDER: 'open_source_dataset/K400_official'
|
| 80 |
+
# ANNO_FOLDER: 'open_source_dataset/K400_official'
|
| 81 |
+
# S3_PATH: 's3://K400/'
|
| 82 |
+
# FRAMES_PER_CLIP: 8
|
| 83 |
+
# STRIDE: 32
|
| 84 |
+
# FILE_EXTENSION: ''
|
| 85 |
+
# ANNO_FILE: 'annotation.json'
|
| 86 |
+
# TIMESFORMER_AUG: True
|
| 87 |
+
# SAMPLING_WEIGHT: 1.0
|
| 88 |
+
# MODEL:
|
| 89 |
+
# MAX_SEQ_LEN: -1
|
| 90 |
+
# TEMP_NAME: logit_scale_video_cls
|
| 91 |
+
# LOSSES:
|
| 92 |
+
# NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 93 |
+
# LABELSMOOTHING: 0.1
|
| 94 |
+
# LOSS_WEIGHT: 1.0
|
| 95 |
+
# INFERENCE:
|
| 96 |
+
# NAME: 'MiTEvaler'
|
| 97 |
+
# ID_KEY: 'video_name'
|
| 98 |
+
# VALUE: 'label'
|
| 99 |
+
# VAL_ANNFILE: 'open_source_dataset/K400_official/annotation.json'
|
| 100 |
+
# TEST_ANNFILE: ''
|
| 101 |
+
# GENERATION_MODE: False
|
| 102 |
+
# NUM_VIEWS: 1
|
| 103 |
+
|
| 104 |
+
# -
|
| 105 |
+
# NAME: bookswiki_pretrain
|
| 106 |
+
# DATASETS:
|
| 107 |
+
# TRAIN: 'GeneralCorpusDataset'
|
| 108 |
+
# TASK_TYPE: 'text_mlm'
|
| 109 |
+
# DATASET_NAME: 'BooksWiki'
|
| 110 |
+
# TARGET_SET: ['Vocab_Word']
|
| 111 |
+
# VERSION: 'v2'
|
| 112 |
+
# DATALOADER:
|
| 113 |
+
# TRAIN_BATCH_SIZE: 512
|
| 114 |
+
# TEST_BATCH_SIZE: 32
|
| 115 |
+
# NUM_WORKERS: 2
|
| 116 |
+
# ANNO_FOLDER: 'open_source_dataset/text_corpus' # 'open_source_dataset/bert_pretrain_data/bookswiki'
|
| 117 |
+
# # ANNO_FOLDER: 'open_source_dataset/bert_pretrain_data/bookswiki'
|
| 118 |
+
# SEQ_PER_SAMPLE: 1
|
| 119 |
+
# SAMPLER: NodeDistributed
|
| 120 |
+
# CACHE_MODE: True
|
| 121 |
+
# SEQ_PER_SAMPLE: 128
|
| 122 |
+
# MIN_SEQ_PER_SAMPLE: 128
|
| 123 |
+
# APPEND_EOS: True
|
| 124 |
+
# ONE_STREAM: False
|
| 125 |
+
# SAMPLING_WEIGHT: 3.5
|
| 126 |
+
# RANDOM_MASK: True
|
| 127 |
+
# MODEL:
|
| 128 |
+
# MAX_SEQ_LEN: 128
|
| 129 |
+
# TEMP_NAME: logit_scale_text_mlm
|
| 130 |
+
# LOSSES:
|
| 131 |
+
# NAMES: ['CrossEntropy', 'Accuracy']
|
| 132 |
+
# LOSS_WEIGHT: 0.33333
|
| 133 |
+
# REDUCTION: 'mean'
|
| 134 |
+
# INFERENCE:
|
| 135 |
+
# VOCAB: 'CLIP'
|
| 136 |
+
# GENERATION_MODE: False
|
| 137 |
+
# -
|
| 138 |
+
# NAME: mscoco_retrieve
|
| 139 |
+
# DATASETS:
|
| 140 |
+
# TRAIN: 'ImageTextPairDataset'
|
| 141 |
+
# TEST: 'ImageTextPairDataset'
|
| 142 |
+
# TASK_TYPE: 'image_retrieval'
|
| 143 |
+
# DATASET_NAME: 'MSCOCO'
|
| 144 |
+
# DATALOADER:
|
| 145 |
+
# TRAIN_BATCH_SIZE: 100
|
| 146 |
+
# TEST_BATCH_SIZE: 32
|
| 147 |
+
# NUM_WORKERS: 1
|
| 148 |
+
# FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 149 |
+
# ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 150 |
+
# S3_PATH: 's3://coco/'
|
| 151 |
+
# SEQ_PER_SAMPLE: 1
|
| 152 |
+
# CACHE_MODE: True
|
| 153 |
+
# CIRCULAR_CACHE_MODE: False
|
| 154 |
+
# ZIP_MODE: False
|
| 155 |
+
# CACHE_ORIGIN_IMAGE: False
|
| 156 |
+
# RANDOM_CAPTION: False
|
| 157 |
+
# AS_NUMPY_AS_POSSIBLE: False
|
| 158 |
+
# SAMPLING_WEIGHT: 1.0
|
| 159 |
+
# TRANSFORM: 'clip_transforms'
|
| 160 |
+
# MODEL:
|
| 161 |
+
# MAX_SEQ_LEN: 50
|
| 162 |
+
# TEMP_NAME: logit_scale_retrieve
|
| 163 |
+
# LOSSES:
|
| 164 |
+
# NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 165 |
+
# LABELSMOOTHING: 0.1
|
| 166 |
+
# LOSS_WEIGHT: 1.0
|
| 167 |
+
# REDUCTION: 'mean'
|
| 168 |
+
# INFERENCE:
|
| 169 |
+
# VOCAB: 'CLIP'
|
| 170 |
+
# ID_KEY: 'image_id'
|
| 171 |
+
# VALUE: 'caption'
|
| 172 |
+
# NAME: 'RetrievalEvaler'
|
| 173 |
+
# VAL_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_val_set0_2014.jsonline'
|
| 174 |
+
# TEST_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_test_set0_2014.jsonline'
|
| 175 |
+
# GENERATION_MODE: False
|
| 176 |
+
|
| 177 |
+
########## Image Captioning ###########
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
# -
|
| 181 |
+
# NAME: cc12m_caption
|
| 182 |
+
# DATASETS:
|
| 183 |
+
# TRAIN: 'ImageTextPairDataset'
|
| 184 |
+
# TASK_TYPE: 'image_caption'
|
| 185 |
+
# DATASET_NAME: 'CC12M'
|
| 186 |
+
# TARGET_SET: ['Vocab_Word']
|
| 187 |
+
# DATALOADER:
|
| 188 |
+
# TRAIN_BATCH_SIZE: 300
|
| 189 |
+
# TEST_BATCH_SIZE: 32
|
| 190 |
+
# NUM_WORKERS: 2
|
| 191 |
+
# S3_ANNO_FOLDER: 's3://cc12m/'
|
| 192 |
+
# ANNO_FOLDER: 'open_source_dataset/c12m/'
|
| 193 |
+
# ANNO_FILENAME: 'train_available.json'
|
| 194 |
+
# FEATS_FOLDER: 'open_source_dataset/c12m/'
|
| 195 |
+
# S3_PATH: 's3://cc12m/'
|
| 196 |
+
# SEQ_PER_SAMPLE: 1
|
| 197 |
+
# SAMPLER: NodeDistributed
|
| 198 |
+
# CACHE_MODE: True
|
| 199 |
+
# CIRCULAR_CACHE_MODE: False
|
| 200 |
+
# ZIP_MODE: False
|
| 201 |
+
# CACHE_ORIGIN_IMAGE: False
|
| 202 |
+
# RANDOM_CAPTION: False
|
| 203 |
+
# AS_NUMPY_AS_POSSIBLE: False
|
| 204 |
+
# SAMPLING_WEIGHT: 1.6889
|
| 205 |
+
# TRANSFORM: 'clip_transforms'
|
| 206 |
+
# MODEL:
|
| 207 |
+
# MAX_SEQ_LEN: 50
|
| 208 |
+
# TEMP_NAME: logit_scale_caption
|
| 209 |
+
# LOSSES:
|
| 210 |
+
# NAMES: ['CrossEntropy', 'Accuracy']
|
| 211 |
+
# LOSS_WEIGHT: 0.33333
|
| 212 |
+
# REDUCTION: 'mean'
|
| 213 |
+
# INFERENCE:
|
| 214 |
+
# VOCAB: 'CLIP'
|
| 215 |
+
# GENERATION_MODE: False
|
| 216 |
+
|
| 217 |
+
# -
|
| 218 |
+
# NAME: cc3m_caption
|
| 219 |
+
# DATASETS:
|
| 220 |
+
# TRAIN: 'ImageTextPairDataset'
|
| 221 |
+
# TASK_TYPE: 'image_caption'
|
| 222 |
+
# DATASET_NAME: 'CC3M'
|
| 223 |
+
# TARGET_SET: ['Vocab_Word']
|
| 224 |
+
# DATALOADER:
|
| 225 |
+
# TRAIN_BATCH_SIZE: 300
|
| 226 |
+
# TEST_BATCH_SIZE: 32
|
| 227 |
+
# NUM_WORKERS: 2
|
| 228 |
+
# ANNO_FOLDER: 's3://cc3m/'
|
| 229 |
+
# ANNO_FILENAME: 'train_spacy.json'
|
| 230 |
+
# FEATS_FOLDER: 'open_source_dataset/cc3m/'
|
| 231 |
+
# S3_PATH: 's3://cc3m/'
|
| 232 |
+
# SEQ_PER_SAMPLE: 1
|
| 233 |
+
# SAMPLER: NodeDistributed
|
| 234 |
+
# CACHE_MODE: True
|
| 235 |
+
# CIRCULAR_CACHE_MODE: False
|
| 236 |
+
# ZIP_MODE: False
|
| 237 |
+
# CACHE_ORIGIN_IMAGE: False
|
| 238 |
+
# RANDOM_CAPTION: False
|
| 239 |
+
# AS_NUMPY_AS_POSSIBLE: False
|
| 240 |
+
# SAMPLING_WEIGHT: 0.8780
|
| 241 |
+
# TRANSFORM: 'clip_transforms'
|
| 242 |
+
# MODEL:
|
| 243 |
+
# MAX_SEQ_LEN: 50
|
| 244 |
+
# TEMP_NAME: logit_scale_caption
|
| 245 |
+
# LOSSES:
|
| 246 |
+
# NAMES: ['CrossEntropy', 'Accuracy']
|
| 247 |
+
# LOSS_WEIGHT: 0.33333
|
| 248 |
+
# REDUCTION: 'mean'
|
| 249 |
+
# INFERENCE:
|
| 250 |
+
# VOCAB: 'CLIP'
|
| 251 |
+
# GENERATION_MODE: False
|
| 252 |
+
|
| 253 |
+
# -
|
| 254 |
+
# NAME: vg_caption
|
| 255 |
+
# DATASETS:
|
| 256 |
+
# TRAIN: 'ImageTextPairDataset'
|
| 257 |
+
# TASK_TYPE: 'image_caption'
|
| 258 |
+
# DATASET_NAME: 'VG'
|
| 259 |
+
# TARGET_SET: ['Vocab_Word']
|
| 260 |
+
# DATALOADER:
|
| 261 |
+
# TRAIN_BATCH_SIZE: 300
|
| 262 |
+
# TEST_BATCH_SIZE: 32
|
| 263 |
+
# NUM_WORKERS: 2
|
| 264 |
+
# FEATS_FOLDER: 'open_source_dataset/visual_genome/images'
|
| 265 |
+
# ANNO_FOLDER: 'open_source_dataset/visual_genome/annotations'
|
| 266 |
+
# S3_PATH: 's3://visual_genome/images'
|
| 267 |
+
# ANNO_FILENAME: 'vg_captions_128filter.json'
|
| 268 |
+
# SEQ_PER_SAMPLE: 1
|
| 269 |
+
# CACHE_MODE: True
|
| 270 |
+
# CIRCULAR_CACHE_MODE: False
|
| 271 |
+
# ZIP_MODE: False
|
| 272 |
+
# CACHE_ORIGIN_IMAGE: False
|
| 273 |
+
# RANDOM_CAPTION: False
|
| 274 |
+
# AS_NUMPY_AS_POSSIBLE: False
|
| 275 |
+
# SAMPLING_WEIGHT: 0.5895
|
| 276 |
+
# TRANSFORM: 'clip_transforms'
|
| 277 |
+
# MODEL:
|
| 278 |
+
# MAX_SEQ_LEN: 30
|
| 279 |
+
# TEMP_NAME: logit_scale_caption
|
| 280 |
+
# LOSSES:
|
| 281 |
+
# NAMES: ['CrossEntropy', 'Accuracy']
|
| 282 |
+
# LOSS_WEIGHT: 0.33333
|
| 283 |
+
# REDUCTION: 'mean'
|
| 284 |
+
# INFERENCE:
|
| 285 |
+
# VOCAB: 'CLIP'
|
| 286 |
+
# GENERATION_MODE: True
|
| 287 |
+
|
| 288 |
+
-
|
| 289 |
+
NAME: mscoco_caption
|
| 290 |
+
DATASETS:
|
| 291 |
+
TRAIN: 'ImageTextPairDataset'
|
| 292 |
+
# VAL: 'ImageTextPairDataset'
|
| 293 |
+
TEST: 'ImageTextPairDataset'
|
| 294 |
+
TASK_TYPE: 'image_caption'
|
| 295 |
+
DATASET_NAME: 'MSCOCO'
|
| 296 |
+
TARGET_SET: ['Vocab_Word']
|
| 297 |
+
DATALOADER:
|
| 298 |
+
TRAIN_BATCH_SIZE: 32
|
| 299 |
+
TEST_BATCH_SIZE: 2
|
| 300 |
+
NUM_WORKERS: 4
|
| 301 |
+
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 302 |
+
ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 303 |
+
S3_PATH: 's3://coco/'
|
| 304 |
+
SEQ_PER_SAMPLE: 1
|
| 305 |
+
CACHE_MODE: True
|
| 306 |
+
CIRCULAR_CACHE_MODE: False
|
| 307 |
+
ZIP_MODE: False
|
| 308 |
+
CACHE_ORIGIN_IMAGE: False
|
| 309 |
+
RANDOM_CAPTION: False
|
| 310 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 311 |
+
SAMPLING_WEIGHT: 0.3817
|
| 312 |
+
TRANSFORM: 'clip_transforms'
|
| 313 |
+
RANDOM_MASK: True
|
| 314 |
+
MODEL:
|
| 315 |
+
MAX_SEQ_LEN: 50
|
| 316 |
+
EVAL_MAX_SEQ_LEN: 21
|
| 317 |
+
TEMP_NAME: logit_scale_caption
|
| 318 |
+
LOSSES:
|
| 319 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 320 |
+
LOSS_WEIGHT: 0.33333
|
| 321 |
+
REDUCTION: 'mean'
|
| 322 |
+
DECODE_STRATEGY:
|
| 323 |
+
NAME: 'CaptionBeamSearcherV3'
|
| 324 |
+
BEAM_SIZE: 2
|
| 325 |
+
# LEN_PENALTY: 2.0
|
| 326 |
+
INFERENCE:
|
| 327 |
+
NAME: 'COCOEvaler'
|
| 328 |
+
VOCAB: 'CLIP'
|
| 329 |
+
ID_KEY: 'image_id'
|
| 330 |
+
VALUE: 'caption'
|
| 331 |
+
VAL_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_val5k.json'
|
| 332 |
+
TEST_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_test5k.json'
|
| 333 |
+
GENERATION_MODE: True
|
| 334 |
+
|
| 335 |
+
# -
|
| 336 |
+
# NAME: sbu_caption
|
| 337 |
+
# DATASETS:
|
| 338 |
+
# TRAIN: 'ImageTextPairDataset'
|
| 339 |
+
# TASK_TYPE: 'image_caption'
|
| 340 |
+
# DATASET_NAME: 'SBU'
|
| 341 |
+
# TARGET_SET: ['Vocab_Word']
|
| 342 |
+
# DATALOADER:
|
| 343 |
+
# TRAIN_BATCH_SIZE: 300
|
| 344 |
+
# TEST_BATCH_SIZE: 32
|
| 345 |
+
# NUM_WORKERS: 1
|
| 346 |
+
# S3_ANNO_FOLDER: 's3://SBU/annotations'
|
| 347 |
+
# ANNO_FOLDER: 'open_source_dataset/sbucaption/annotations'
|
| 348 |
+
# ANNO_FILENAME: 'subcaption.json'
|
| 349 |
+
# FEATS_FOLDER: 'open_source_dataset/sbucaption/'
|
| 350 |
+
# S3_PATH: 's3://SBU/images'
|
| 351 |
+
# SEQ_PER_SAMPLE: 1
|
| 352 |
+
# SAMPLER: NodeDistributed
|
| 353 |
+
# CACHE_MODE: True
|
| 354 |
+
# CIRCULAR_CACHE_MODE: False
|
| 355 |
+
# ZIP_MODE: False
|
| 356 |
+
# CACHE_ORIGIN_IMAGE: False
|
| 357 |
+
# RANDOM_CAPTION: False
|
| 358 |
+
# AS_NUMPY_AS_POSSIBLE: False
|
| 359 |
+
# SAMPLING_WEIGHT: 0.4618
|
| 360 |
+
# TRANSFORM: 'clip_transforms'
|
| 361 |
+
# MODEL:
|
| 362 |
+
# MAX_SEQ_LEN: 50
|
| 363 |
+
# TEMP_NAME: logit_scale_caption
|
| 364 |
+
# LOSSES:
|
| 365 |
+
# NAMES: ['CrossEntropy', 'Accuracy']
|
| 366 |
+
# LOSS_WEIGHT: 0.33333
|
| 367 |
+
# REDUCTION: 'mean'
|
| 368 |
+
# INFERENCE:
|
| 369 |
+
# VOCAB: 'CLIP'
|
| 370 |
+
# GENERATION_MODE: False
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
ENGINE:
|
| 374 |
+
NAME: 'UnifiedTrainer'
|
| 375 |
+
|
| 376 |
+
MODEL:
|
| 377 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 378 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 379 |
+
|
| 380 |
+
IN_TUNING: True # use IN1k instead of 22k
|
| 381 |
+
SHARE_LAYERNORM: True
|
| 382 |
+
BERT:
|
| 383 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 384 |
+
DROP_PATH_PROB: 0.0
|
| 385 |
+
DROP_PATH_PROB_FIXED: True
|
| 386 |
+
|
| 387 |
+
MODEL_EMA: False
|
| 388 |
+
MODEL_EMA_DECAY: 0.9999
|
| 389 |
+
|
| 390 |
+
MAEParamsInit: True
|
| 391 |
+
POSEMBEDFIX: True
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
IMG_INPUT_SIZE: 224
|
| 395 |
+
PATCH_SIZE: 16
|
| 396 |
+
|
| 397 |
+
LAYER_SCALE: True
|
| 398 |
+
LAYER_SCALE_INIT: 1e-3
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
LAYER_SCALE_FP32: True
|
| 402 |
+
GATE_FP32: False
|
| 403 |
+
TAG_TRANSFORM_FP32: False
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
DATALOADER:
|
| 407 |
+
USE_WEIGHTED_SAMPLER: True
|
| 408 |
+
UNIFIED_DATASET: True
|
| 409 |
+
NUM_WORKERS: 32
|
| 410 |
+
STRATEGY: 'turn'
|
| 411 |
+
|
| 412 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
####################################### Optimizer #######################################
|
| 417 |
+
SOLVER:
|
| 418 |
+
NAME: 'Adam'
|
| 419 |
+
TORCH_OPTIMIZER: True
|
| 420 |
+
PARAMS_SEPERATE: True
|
| 421 |
+
# PARAMS_GROUP: True
|
| 422 |
+
# EPOCH: 1
|
| 423 |
+
MAX_ITER: 150000
|
| 424 |
+
CHECKPOINT_PERIOD: 5000
|
| 425 |
+
EVAL_PERIOD: 500000
|
| 426 |
+
BASE_LR: 0.001
|
| 427 |
+
BIAS_LR_FACTOR: 1.0
|
| 428 |
+
WEIGHT_DECAY: 0.05
|
| 429 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 430 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 431 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 432 |
+
MOMENTUM: 0.9
|
| 433 |
+
DAMPENING: 0.0
|
| 434 |
+
NESTEROV: 0.0
|
| 435 |
+
BETAS: [0.9, 0.95]
|
| 436 |
+
EPS: 1e-6
|
| 437 |
+
GRAD_CLIP: 0.1
|
| 438 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 439 |
+
ACCUM_ITER: 0
|
| 440 |
+
AMP_FP16: True
|
| 441 |
+
APEX_FP16: False # dangerous
|
| 442 |
+
|
| 443 |
+
WRITE_PERIOD: 50
|
| 444 |
+
MIN_LOSS_SCLE: 2048.0
|
| 445 |
+
# BF16: False # True
|
| 446 |
+
# ZEROSTAGE: 2
|
| 447 |
+
|
| 448 |
+
LOSS_SCALE_WINDOW: 200
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
|
| 452 |
+
FORCE_SOFTMAX_FP16: True
|
| 453 |
+
FORCE_LN_FP16: True
|
| 454 |
+
FORCE_NORM_FP16: True
|
| 455 |
+
# FORCE_TEMP_FP16: True
|
| 456 |
+
FORCE_EMBED_FP16: True
|
| 457 |
+
|
| 458 |
+
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
|
| 462 |
+
|
| 463 |
+
####################################### lr scheduler #######################################
|
| 464 |
+
LR_SCHEDULER:
|
| 465 |
+
NAME: 'WarmupCosine'
|
| 466 |
+
WARMUP: 5000
|
| 467 |
+
MIN_LR: 0.000001
|
| 468 |
+
|
| 469 |
+
|
| 470 |
+
|
| 471 |
+
|
| 472 |
+
####################################### evaluation #######################################
|
| 473 |
+
INFERENCE:
|
| 474 |
+
|
| 475 |
+
VOCAB: 'CLIP'
|
| 476 |
+
ITER_BASED: True
|
| 477 |
+
|
| 478 |
+
|
| 479 |
+
find_unused_parameters: true
|
| 480 |
+
|
| 481 |
+
# ENCODERS:
|
| 482 |
+
# -
|
| 483 |
+
# NAME: VisualEncoder
|
| 484 |
+
# TYPE: VisualEncoder
|
| 485 |
+
# DROP_PATH_PROB: 0.0
|
| 486 |
+
# HIDDEN_SIZE: 192
|
| 487 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 488 |
+
# HIDDEN_ACT: "gelu"
|
| 489 |
+
# NUM_ATTENTION_HEADS: 3
|
| 490 |
+
# INTERMEDIATE_SIZE: 768
|
| 491 |
+
# INTERMEDIATE_DROP: 0.
|
| 492 |
+
# FFN_DROPOUT_PROB: 0.
|
| 493 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 494 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 495 |
+
# NUM_GENERATION_LAYERS: 0
|
| 496 |
+
# DROP_PATH_PROB_FIXED: True
|
| 497 |
+
|
| 498 |
+
# -
|
| 499 |
+
# NAME: TextEncoder
|
| 500 |
+
# TYPE: TextEncoder
|
| 501 |
+
# DROP_PATH_PROB: 0.0
|
| 502 |
+
# HIDDEN_SIZE: 192
|
| 503 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 504 |
+
# HIDDEN_ACT: "gelu"
|
| 505 |
+
# NUM_ATTENTION_HEADS: 3
|
| 506 |
+
# INTERMEDIATE_SIZE: 768
|
| 507 |
+
# INTERMEDIATE_DROP: 0.
|
| 508 |
+
# FFN_DROPOUT_PROB: 0.
|
| 509 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 510 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 511 |
+
# NUM_GENERATION_LAYERS: 0
|
| 512 |
+
# DROP_PATH_PROB_FIXED: True
|
| 513 |
+
|
| 514 |
+
MOE:
|
| 515 |
+
MOE: True
|
| 516 |
+
MOE_TYPE: 'attribute'
|
| 517 |
+
TAG_Transform: True
|
| 518 |
+
ATTRIBUTE_LENGTH: 8
|
| 519 |
+
EP_WORLD_SIZE: 1 # tag moe only
|
| 520 |
+
NUM_EXPERTS: 8
|
| 521 |
+
TOP_K: 2
|
| 522 |
+
CAPACITY_FACTOR: 3.0
|
| 523 |
+
EVAL_MIN_CAPACITY: 4.0
|
| 524 |
+
MIN_CAPACITY: 4
|
| 525 |
+
NOISY_GATE_POLICY: 'vmoe'
|
| 526 |
+
MOE_PARAM_GROUP: True
|
| 527 |
+
MOE_EXPERT_TYPE: 'FFN,SA'
|
| 528 |
+
SA_LINEAR_OUT_MOE: True
|
| 529 |
+
MOE_EXPERT_LOCATION: 'all' # 'odd'
|
| 530 |
+
# MOE_LAYER_START_IDX: 3
|
| 531 |
+
# MOE_LAYER_END_IDX: 21
|
| 532 |
+
# MOE_LAYER_START_IDX: 18
|
| 533 |
+
# MOE_LAYER_END_IDX: 12
|
| 534 |
+
BATCH_PRIO: True
|
| 535 |
+
USE_TUTEL: True
|
| 536 |
+
FFN_SHARE_GATE_DECISION: True
|
configs/BERT_L12_H192_experiments/moe_debug_load_ds_checkpoint.yaml
ADDED
|
@@ -0,0 +1,541 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base_model_bert_l12_h192.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
# -
|
| 6 |
+
# NAME: 'ImageNet1k'
|
| 7 |
+
# SHARED_TARGETS_CFG:
|
| 8 |
+
# FILE_PATH: 'open_source_dataset/imagenet_class_name_CLIP_with_endoftext.pkl'
|
| 9 |
+
# DISTRIBUTED: False
|
| 10 |
+
|
| 11 |
+
-
|
| 12 |
+
NAME: 'Vocab_Word'
|
| 13 |
+
SHARED_TARGETS_CFG:
|
| 14 |
+
FILE_PATH: 'open_source_dataset/vocabulary_CLIP_with_endoftext.pkl'
|
| 15 |
+
DISTRIBUTED: True
|
| 16 |
+
|
| 17 |
+
# -
|
| 18 |
+
# NAME: 'Kinetics400'
|
| 19 |
+
# SHARED_TARGETS_CFG:
|
| 20 |
+
# FILE_PATH: 'open_source_dataset/k400_class_name_CLIP_with_endoftext.pkl'
|
| 21 |
+
# DISTRIBUTED: False
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
TASKS:
|
| 26 |
+
|
| 27 |
+
# -
|
| 28 |
+
# NAME: imagenet
|
| 29 |
+
# DATASETS:
|
| 30 |
+
# TRAIN: 'ImageNetDataset'
|
| 31 |
+
# VAL: 'ImageNetDataset'
|
| 32 |
+
# TASK_TYPE: 'image_classification'
|
| 33 |
+
# DATASET_NAME: 'ImageNet1k'
|
| 34 |
+
# TARGET_SET: ['ImageNet1k']
|
| 35 |
+
|
| 36 |
+
# DATALOADER:
|
| 37 |
+
# TRAIN_BATCH_SIZE: 720
|
| 38 |
+
# # TEST_BATCH_SIZE: 2
|
| 39 |
+
# NUM_WORKERS: 4
|
| 40 |
+
# FEATS_FOLDER: 'cluster2:s3://imagenet'
|
| 41 |
+
# ANNO_FOLDER: 'open_source_dataset/imagenet/meta'
|
| 42 |
+
# SAMPLING_WEIGHT: 2.5
|
| 43 |
+
# CLASS_NAME_FILE: 'open_source_dataset/imagenet_class_name.pkl'
|
| 44 |
+
# MIXUP: 0.8
|
| 45 |
+
# CUTMIX: 1.0
|
| 46 |
+
# MIXUP_PROB: 1.0
|
| 47 |
+
# MIXUP_SWITCH_PROB: 0.5
|
| 48 |
+
# MIXUP_MODE: 'batch'
|
| 49 |
+
# MIXUP_LABEL_SMOOTHING: 0.1
|
| 50 |
+
# MODEL:
|
| 51 |
+
# MAX_SEQ_LEN: -1
|
| 52 |
+
# LABELS_NUM: 1000
|
| 53 |
+
# TEMP_NAME: logit_scale_img_cls
|
| 54 |
+
# LOSSES:
|
| 55 |
+
# NAMES: ['SoftTargetCrossEntropy', 'Accuracy']
|
| 56 |
+
# LOSS_WEIGHT: 1.0
|
| 57 |
+
# REDUCTION: 'mean'
|
| 58 |
+
# # LOSS_FP32: True
|
| 59 |
+
# INFERENCE:
|
| 60 |
+
# NAME: 'ImageNetEvaler'
|
| 61 |
+
# ID_KEY: 'image_id'
|
| 62 |
+
# VALUE: 'cls_logits'
|
| 63 |
+
# VAL_ANNFILE: 'open_source_dataset/imagenet/meta/val.txt'
|
| 64 |
+
# TEST_ANNFILE: ''
|
| 65 |
+
# GENERATION_MODE: False
|
| 66 |
+
|
| 67 |
+
# -
|
| 68 |
+
# NAME: K400_retrieve
|
| 69 |
+
# DATASETS:
|
| 70 |
+
# TRAIN: 'VideoDataSet'
|
| 71 |
+
# VAL: 'VideoDataSet'
|
| 72 |
+
# TASK_TYPE: 'video_classification'
|
| 73 |
+
# DATASET_NAME: 'K400'
|
| 74 |
+
# TARGET_SET: ['Kinetics400']
|
| 75 |
+
# DATALOADER:
|
| 76 |
+
# TRAIN_BATCH_SIZE: 12 # 256
|
| 77 |
+
# TEST_BATCH_SIZE: 4 # debug
|
| 78 |
+
# NUM_WORKERS: 4 # debug 4
|
| 79 |
+
# FEATS_FOLDER: 'open_source_dataset/K400_official'
|
| 80 |
+
# ANNO_FOLDER: 'open_source_dataset/K400_official'
|
| 81 |
+
# S3_PATH: 's3://K400/'
|
| 82 |
+
# FRAMES_PER_CLIP: 8
|
| 83 |
+
# STRIDE: 32
|
| 84 |
+
# FILE_EXTENSION: ''
|
| 85 |
+
# ANNO_FILE: 'annotation.json'
|
| 86 |
+
# TIMESFORMER_AUG: True
|
| 87 |
+
# SAMPLING_WEIGHT: 1.0
|
| 88 |
+
# MODEL:
|
| 89 |
+
# MAX_SEQ_LEN: -1
|
| 90 |
+
# TEMP_NAME: logit_scale_video_cls
|
| 91 |
+
# LOSSES:
|
| 92 |
+
# NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 93 |
+
# LABELSMOOTHING: 0.1
|
| 94 |
+
# LOSS_WEIGHT: 1.0
|
| 95 |
+
# INFERENCE:
|
| 96 |
+
# NAME: 'MiTEvaler'
|
| 97 |
+
# ID_KEY: 'video_name'
|
| 98 |
+
# VALUE: 'label'
|
| 99 |
+
# VAL_ANNFILE: 'open_source_dataset/K400_official/annotation.json'
|
| 100 |
+
# TEST_ANNFILE: ''
|
| 101 |
+
# GENERATION_MODE: False
|
| 102 |
+
# NUM_VIEWS: 1
|
| 103 |
+
|
| 104 |
+
# -
|
| 105 |
+
# NAME: bookswiki_pretrain
|
| 106 |
+
# DATASETS:
|
| 107 |
+
# TRAIN: 'GeneralCorpusDataset'
|
| 108 |
+
# TASK_TYPE: 'text_mlm'
|
| 109 |
+
# DATASET_NAME: 'BooksWiki'
|
| 110 |
+
# TARGET_SET: ['Vocab_Word']
|
| 111 |
+
# VERSION: 'v2'
|
| 112 |
+
# DATALOADER:
|
| 113 |
+
# TRAIN_BATCH_SIZE: 512
|
| 114 |
+
# TEST_BATCH_SIZE: 32
|
| 115 |
+
# NUM_WORKERS: 2
|
| 116 |
+
# ANNO_FOLDER: 'open_source_dataset/text_corpus' # 'open_source_dataset/bert_pretrain_data/bookswiki'
|
| 117 |
+
# # ANNO_FOLDER: 'open_source_dataset/bert_pretrain_data/bookswiki'
|
| 118 |
+
# SEQ_PER_SAMPLE: 1
|
| 119 |
+
# SAMPLER: NodeDistributed
|
| 120 |
+
# CACHE_MODE: True
|
| 121 |
+
# SEQ_PER_SAMPLE: 128
|
| 122 |
+
# MIN_SEQ_PER_SAMPLE: 128
|
| 123 |
+
# APPEND_EOS: True
|
| 124 |
+
# ONE_STREAM: False
|
| 125 |
+
# SAMPLING_WEIGHT: 3.5
|
| 126 |
+
# RANDOM_MASK: True
|
| 127 |
+
# MODEL:
|
| 128 |
+
# MAX_SEQ_LEN: 128
|
| 129 |
+
# TEMP_NAME: logit_scale_text_mlm
|
| 130 |
+
# LOSSES:
|
| 131 |
+
# NAMES: ['CrossEntropy', 'Accuracy']
|
| 132 |
+
# LOSS_WEIGHT: 0.33333
|
| 133 |
+
# REDUCTION: 'mean'
|
| 134 |
+
# INFERENCE:
|
| 135 |
+
# VOCAB: 'CLIP'
|
| 136 |
+
# GENERATION_MODE: False
|
| 137 |
+
# -
|
| 138 |
+
# NAME: mscoco_retrieve
|
| 139 |
+
# DATASETS:
|
| 140 |
+
# TRAIN: 'ImageTextPairDataset'
|
| 141 |
+
# TEST: 'ImageTextPairDataset'
|
| 142 |
+
# TASK_TYPE: 'image_retrieval'
|
| 143 |
+
# DATASET_NAME: 'MSCOCO'
|
| 144 |
+
# DATALOADER:
|
| 145 |
+
# TRAIN_BATCH_SIZE: 100
|
| 146 |
+
# TEST_BATCH_SIZE: 32
|
| 147 |
+
# NUM_WORKERS: 1
|
| 148 |
+
# FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 149 |
+
# ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 150 |
+
# S3_PATH: 's3://coco/'
|
| 151 |
+
# SEQ_PER_SAMPLE: 1
|
| 152 |
+
# CACHE_MODE: True
|
| 153 |
+
# CIRCULAR_CACHE_MODE: False
|
| 154 |
+
# ZIP_MODE: False
|
| 155 |
+
# CACHE_ORIGIN_IMAGE: False
|
| 156 |
+
# RANDOM_CAPTION: False
|
| 157 |
+
# AS_NUMPY_AS_POSSIBLE: False
|
| 158 |
+
# SAMPLING_WEIGHT: 1.0
|
| 159 |
+
# TRANSFORM: 'clip_transforms'
|
| 160 |
+
# MODEL:
|
| 161 |
+
# MAX_SEQ_LEN: 50
|
| 162 |
+
# TEMP_NAME: logit_scale_retrieve
|
| 163 |
+
# LOSSES:
|
| 164 |
+
# NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 165 |
+
# LABELSMOOTHING: 0.1
|
| 166 |
+
# LOSS_WEIGHT: 1.0
|
| 167 |
+
# REDUCTION: 'mean'
|
| 168 |
+
# INFERENCE:
|
| 169 |
+
# VOCAB: 'CLIP'
|
| 170 |
+
# ID_KEY: 'image_id'
|
| 171 |
+
# VALUE: 'caption'
|
| 172 |
+
# NAME: 'RetrievalEvaler'
|
| 173 |
+
# VAL_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_val_set0_2014.jsonline'
|
| 174 |
+
# TEST_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_test_set0_2014.jsonline'
|
| 175 |
+
# GENERATION_MODE: False
|
| 176 |
+
|
| 177 |
+
########## Image Captioning ###########
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
# -
|
| 181 |
+
# NAME: cc12m_caption
|
| 182 |
+
# DATASETS:
|
| 183 |
+
# TRAIN: 'ImageTextPairDataset'
|
| 184 |
+
# TASK_TYPE: 'image_caption'
|
| 185 |
+
# DATASET_NAME: 'CC12M'
|
| 186 |
+
# TARGET_SET: ['Vocab_Word']
|
| 187 |
+
# DATALOADER:
|
| 188 |
+
# TRAIN_BATCH_SIZE: 300
|
| 189 |
+
# TEST_BATCH_SIZE: 32
|
| 190 |
+
# NUM_WORKERS: 2
|
| 191 |
+
# S3_ANNO_FOLDER: 's3://cc12m/'
|
| 192 |
+
# ANNO_FOLDER: 'open_source_dataset/c12m/'
|
| 193 |
+
# ANNO_FILENAME: 'train_available.json'
|
| 194 |
+
# FEATS_FOLDER: 'open_source_dataset/c12m/'
|
| 195 |
+
# S3_PATH: 's3://cc12m/'
|
| 196 |
+
# SEQ_PER_SAMPLE: 1
|
| 197 |
+
# SAMPLER: NodeDistributed
|
| 198 |
+
# CACHE_MODE: True
|
| 199 |
+
# CIRCULAR_CACHE_MODE: False
|
| 200 |
+
# ZIP_MODE: False
|
| 201 |
+
# CACHE_ORIGIN_IMAGE: False
|
| 202 |
+
# RANDOM_CAPTION: False
|
| 203 |
+
# AS_NUMPY_AS_POSSIBLE: False
|
| 204 |
+
# SAMPLING_WEIGHT: 1.6889
|
| 205 |
+
# TRANSFORM: 'clip_transforms'
|
| 206 |
+
# MODEL:
|
| 207 |
+
# MAX_SEQ_LEN: 50
|
| 208 |
+
# TEMP_NAME: logit_scale_caption
|
| 209 |
+
# LOSSES:
|
| 210 |
+
# NAMES: ['CrossEntropy', 'Accuracy']
|
| 211 |
+
# LOSS_WEIGHT: 0.33333
|
| 212 |
+
# REDUCTION: 'mean'
|
| 213 |
+
# INFERENCE:
|
| 214 |
+
# VOCAB: 'CLIP'
|
| 215 |
+
# GENERATION_MODE: False
|
| 216 |
+
|
| 217 |
+
# -
|
| 218 |
+
# NAME: cc3m_caption
|
| 219 |
+
# DATASETS:
|
| 220 |
+
# TRAIN: 'ImageTextPairDataset'
|
| 221 |
+
# TASK_TYPE: 'image_caption'
|
| 222 |
+
# DATASET_NAME: 'CC3M'
|
| 223 |
+
# TARGET_SET: ['Vocab_Word']
|
| 224 |
+
# DATALOADER:
|
| 225 |
+
# TRAIN_BATCH_SIZE: 300
|
| 226 |
+
# TEST_BATCH_SIZE: 32
|
| 227 |
+
# NUM_WORKERS: 2
|
| 228 |
+
# S3_ANNO_FOLDER: 's3://cc3m/'
|
| 229 |
+
# ANNO_FOLDER: 'open_source_dataset/cc3m/'
|
| 230 |
+
# ANNO_FILENAME: 'train_spacy.json'
|
| 231 |
+
# FEATS_FOLDER: 'open_source_dataset/cc3m/'
|
| 232 |
+
# S3_PATH: 's3://cc3m/'
|
| 233 |
+
# SEQ_PER_SAMPLE: 1
|
| 234 |
+
# SAMPLER: NodeDistributed
|
| 235 |
+
# CACHE_MODE: True
|
| 236 |
+
# CIRCULAR_CACHE_MODE: False
|
| 237 |
+
# ZIP_MODE: False
|
| 238 |
+
# CACHE_ORIGIN_IMAGE: False
|
| 239 |
+
# RANDOM_CAPTION: False
|
| 240 |
+
# AS_NUMPY_AS_POSSIBLE: False
|
| 241 |
+
# SAMPLING_WEIGHT: 0.8780
|
| 242 |
+
# TRANSFORM: 'clip_transforms'
|
| 243 |
+
# MODEL:
|
| 244 |
+
# MAX_SEQ_LEN: 50
|
| 245 |
+
# TEMP_NAME: logit_scale_caption
|
| 246 |
+
# LOSSES:
|
| 247 |
+
# NAMES: ['CrossEntropy', 'Accuracy']
|
| 248 |
+
# LOSS_WEIGHT: 0.33333
|
| 249 |
+
# REDUCTION: 'mean'
|
| 250 |
+
# INFERENCE:
|
| 251 |
+
# VOCAB: 'CLIP'
|
| 252 |
+
# GENERATION_MODE: False
|
| 253 |
+
|
| 254 |
+
# -
|
| 255 |
+
# NAME: vg_caption
|
| 256 |
+
# DATASETS:
|
| 257 |
+
# TRAIN: 'ImageTextPairDataset'
|
| 258 |
+
# TASK_TYPE: 'image_caption'
|
| 259 |
+
# DATASET_NAME: 'VG'
|
| 260 |
+
# TARGET_SET: ['Vocab_Word']
|
| 261 |
+
# DATALOADER:
|
| 262 |
+
# TRAIN_BATCH_SIZE: 300
|
| 263 |
+
# TEST_BATCH_SIZE: 32
|
| 264 |
+
# NUM_WORKERS: 2
|
| 265 |
+
# FEATS_FOLDER: 'open_source_dataset/visual_genome/images'
|
| 266 |
+
# ANNO_FOLDER: 'open_source_dataset/visual_genome/annotations'
|
| 267 |
+
# S3_PATH: 's3://visual_genome/images'
|
| 268 |
+
# ANNO_FILENAME: 'vg_captions_128filter.json'
|
| 269 |
+
# SEQ_PER_SAMPLE: 1
|
| 270 |
+
# CACHE_MODE: True
|
| 271 |
+
# CIRCULAR_CACHE_MODE: False
|
| 272 |
+
# ZIP_MODE: False
|
| 273 |
+
# CACHE_ORIGIN_IMAGE: False
|
| 274 |
+
# RANDOM_CAPTION: False
|
| 275 |
+
# AS_NUMPY_AS_POSSIBLE: False
|
| 276 |
+
# SAMPLING_WEIGHT: 0.5895
|
| 277 |
+
# TRANSFORM: 'clip_transforms'
|
| 278 |
+
# MODEL:
|
| 279 |
+
# MAX_SEQ_LEN: 30
|
| 280 |
+
# TEMP_NAME: logit_scale_caption
|
| 281 |
+
# LOSSES:
|
| 282 |
+
# NAMES: ['CrossEntropy', 'Accuracy']
|
| 283 |
+
# LOSS_WEIGHT: 0.33333
|
| 284 |
+
# REDUCTION: 'mean'
|
| 285 |
+
# INFERENCE:
|
| 286 |
+
# VOCAB: 'CLIP'
|
| 287 |
+
# GENERATION_MODE: True
|
| 288 |
+
|
| 289 |
+
-
|
| 290 |
+
NAME: mscoco_caption
|
| 291 |
+
DATASETS:
|
| 292 |
+
TRAIN: 'ImageTextPairDataset'
|
| 293 |
+
# VAL: 'ImageTextPairDataset'
|
| 294 |
+
TEST: 'ImageTextPairDataset'
|
| 295 |
+
TASK_TYPE: 'image_caption'
|
| 296 |
+
DATASET_NAME: 'MSCOCO'
|
| 297 |
+
TARGET_SET: ['Vocab_Word']
|
| 298 |
+
DATALOADER:
|
| 299 |
+
TRAIN_BATCH_SIZE: 32
|
| 300 |
+
TEST_BATCH_SIZE: 2
|
| 301 |
+
NUM_WORKERS: 4
|
| 302 |
+
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 303 |
+
ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 304 |
+
S3_PATH: 's3://coco/'
|
| 305 |
+
SEQ_PER_SAMPLE: 1
|
| 306 |
+
CACHE_MODE: True
|
| 307 |
+
CIRCULAR_CACHE_MODE: False
|
| 308 |
+
ZIP_MODE: False
|
| 309 |
+
CACHE_ORIGIN_IMAGE: False
|
| 310 |
+
RANDOM_CAPTION: False
|
| 311 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 312 |
+
SAMPLING_WEIGHT: 0.3817
|
| 313 |
+
TRANSFORM: 'clip_transforms'
|
| 314 |
+
RANDOM_MASK: True
|
| 315 |
+
MODEL:
|
| 316 |
+
MAX_SEQ_LEN: 50
|
| 317 |
+
EVAL_MAX_SEQ_LEN: 21
|
| 318 |
+
TEMP_NAME: logit_scale_caption
|
| 319 |
+
LOSSES:
|
| 320 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 321 |
+
LOSS_WEIGHT: 0.33333
|
| 322 |
+
REDUCTION: 'mean'
|
| 323 |
+
DECODE_STRATEGY:
|
| 324 |
+
NAME: 'CaptionBeamSearcherV3'
|
| 325 |
+
BEAM_SIZE: 2
|
| 326 |
+
# LEN_PENALTY: 2.0
|
| 327 |
+
INFERENCE:
|
| 328 |
+
NAME: 'COCOEvaler'
|
| 329 |
+
VOCAB: 'CLIP'
|
| 330 |
+
ID_KEY: 'image_id'
|
| 331 |
+
VALUE: 'caption'
|
| 332 |
+
VAL_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_val5k.json'
|
| 333 |
+
TEST_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_test5k.json'
|
| 334 |
+
GENERATION_MODE: True
|
| 335 |
+
|
| 336 |
+
# -
|
| 337 |
+
# NAME: sbu_caption
|
| 338 |
+
# DATASETS:
|
| 339 |
+
# TRAIN: 'ImageTextPairDataset'
|
| 340 |
+
# TASK_TYPE: 'image_caption'
|
| 341 |
+
# DATASET_NAME: 'SBU'
|
| 342 |
+
# TARGET_SET: ['Vocab_Word']
|
| 343 |
+
# DATALOADER:
|
| 344 |
+
# TRAIN_BATCH_SIZE: 300
|
| 345 |
+
# TEST_BATCH_SIZE: 32
|
| 346 |
+
# NUM_WORKERS: 1
|
| 347 |
+
# S3_ANNO_FOLDER: 's3://SBU/annotations'
|
| 348 |
+
# ANNO_FOLDER: 'open_source_dataset/sbucaption/annotations'
|
| 349 |
+
# ANNO_FILENAME: 'subcaption.json'
|
| 350 |
+
# FEATS_FOLDER: 'open_source_dataset/sbucaption/'
|
| 351 |
+
# S3_PATH: 's3://SBU/images'
|
| 352 |
+
# SEQ_PER_SAMPLE: 1
|
| 353 |
+
# SAMPLER: NodeDistributed
|
| 354 |
+
# CACHE_MODE: True
|
| 355 |
+
# CIRCULAR_CACHE_MODE: False
|
| 356 |
+
# ZIP_MODE: False
|
| 357 |
+
# CACHE_ORIGIN_IMAGE: False
|
| 358 |
+
# RANDOM_CAPTION: False
|
| 359 |
+
# AS_NUMPY_AS_POSSIBLE: False
|
| 360 |
+
# SAMPLING_WEIGHT: 0.4618
|
| 361 |
+
# TRANSFORM: 'clip_transforms'
|
| 362 |
+
# MODEL:
|
| 363 |
+
# MAX_SEQ_LEN: 50
|
| 364 |
+
# TEMP_NAME: logit_scale_caption
|
| 365 |
+
# LOSSES:
|
| 366 |
+
# NAMES: ['CrossEntropy', 'Accuracy']
|
| 367 |
+
# LOSS_WEIGHT: 0.33333
|
| 368 |
+
# REDUCTION: 'mean'
|
| 369 |
+
# INFERENCE:
|
| 370 |
+
# VOCAB: 'CLIP'
|
| 371 |
+
# GENERATION_MODE: False
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
ENGINE:
|
| 375 |
+
NAME: 'UnifiedTrainer'
|
| 376 |
+
|
| 377 |
+
MODEL:
|
| 378 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 379 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 380 |
+
|
| 381 |
+
IN_TUNING: True # use IN1k instead of 22k
|
| 382 |
+
SHARE_LAYERNORM: True
|
| 383 |
+
BERT:
|
| 384 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 385 |
+
DROP_PATH_PROB: 0.0
|
| 386 |
+
DROP_PATH_PROB_FIXED: True
|
| 387 |
+
|
| 388 |
+
MODEL_EMA: False
|
| 389 |
+
MODEL_EMA_DECAY: 0.9999
|
| 390 |
+
|
| 391 |
+
MAEParamsInit: True
|
| 392 |
+
POSEMBEDFIX: True
|
| 393 |
+
|
| 394 |
+
|
| 395 |
+
IMG_INPUT_SIZE: 224
|
| 396 |
+
PATCH_SIZE: 16
|
| 397 |
+
|
| 398 |
+
LAYER_SCALE: True
|
| 399 |
+
LAYER_SCALE_INIT: 1e-3
|
| 400 |
+
|
| 401 |
+
VIDEO_EMBED:
|
| 402 |
+
ADD_TYPE_EMBED: True
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
DATALOADER:
|
| 406 |
+
USE_WEIGHTED_SAMPLER: True
|
| 407 |
+
UNIFIED_DATASET: True
|
| 408 |
+
NUM_WORKERS: 32
|
| 409 |
+
STRATEGY: 'turn'
|
| 410 |
+
|
| 411 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 412 |
+
|
| 413 |
+
|
| 414 |
+
|
| 415 |
+
####################################### Optimizer #######################################
|
| 416 |
+
SOLVER:
|
| 417 |
+
NAME: 'Adam'
|
| 418 |
+
TORCH_OPTIMIZER: True
|
| 419 |
+
PARAMS_SEPERATE: True
|
| 420 |
+
# PARAMS_GROUP: True
|
| 421 |
+
# EPOCH: 1
|
| 422 |
+
MAX_ITER: 150000
|
| 423 |
+
CHECKPOINT_PERIOD: 5000
|
| 424 |
+
EVAL_PERIOD: 500000
|
| 425 |
+
BASE_LR: 0.001
|
| 426 |
+
BIAS_LR_FACTOR: 1.0
|
| 427 |
+
WEIGHT_DECAY: 0.05
|
| 428 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 429 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 430 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 431 |
+
MOMENTUM: 0.9
|
| 432 |
+
DAMPENING: 0.0
|
| 433 |
+
NESTEROV: 0.0
|
| 434 |
+
BETAS: [0.9, 0.95]
|
| 435 |
+
EPS: 1e-6
|
| 436 |
+
GRAD_CLIP: 0.1
|
| 437 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 438 |
+
ACCUM_ITER: 0
|
| 439 |
+
AMP_FP16: True
|
| 440 |
+
APEX_FP16: False # dangerous
|
| 441 |
+
|
| 442 |
+
WRITE_PERIOD: 50
|
| 443 |
+
MIN_LOSS_SCLE: 2048.0
|
| 444 |
+
# BF16: False # True
|
| 445 |
+
# ZEROSTAGE: 2
|
| 446 |
+
|
| 447 |
+
LOSS_SCALE_WINDOW: 200
|
| 448 |
+
|
| 449 |
+
FORCE_SOFTMAX_FP16: True
|
| 450 |
+
FORCE_LN_FP16: True
|
| 451 |
+
FORCE_NORM_FP16: True
|
| 452 |
+
# FORCE_TEMP_FP16: True
|
| 453 |
+
FORCE_EMBED_FP16: True
|
| 454 |
+
|
| 455 |
+
# # used for debug only
|
| 456 |
+
FORCE_WG_RECAST: True
|
| 457 |
+
FORCE_EXPERT_ADDING_FP16: True
|
| 458 |
+
|
| 459 |
+
# !!! note that the VIDEO_EMBED.ADD_TYPE_EMBED=True is current config
|
| 460 |
+
|
| 461 |
+
|
| 462 |
+
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
|
| 466 |
+
####################################### lr scheduler #######################################
|
| 467 |
+
LR_SCHEDULER:
|
| 468 |
+
NAME: 'WarmupCosine'
|
| 469 |
+
WARMUP: 5000
|
| 470 |
+
MIN_LR: 0.000001
|
| 471 |
+
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
|
| 475 |
+
####################################### evaluation #######################################
|
| 476 |
+
INFERENCE:
|
| 477 |
+
|
| 478 |
+
VOCAB: 'CLIP'
|
| 479 |
+
ITER_BASED: True
|
| 480 |
+
|
| 481 |
+
|
| 482 |
+
find_unused_parameters: true
|
| 483 |
+
|
| 484 |
+
# ENCODERS:
|
| 485 |
+
# -
|
| 486 |
+
# NAME: VisualEncoder
|
| 487 |
+
# TYPE: VisualEncoder
|
| 488 |
+
# DROP_PATH_PROB: 0.0
|
| 489 |
+
# HIDDEN_SIZE: 192
|
| 490 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 491 |
+
# HIDDEN_ACT: "gelu"
|
| 492 |
+
# NUM_ATTENTION_HEADS: 3
|
| 493 |
+
# INTERMEDIATE_SIZE: 768
|
| 494 |
+
# INTERMEDIATE_DROP: 0.
|
| 495 |
+
# FFN_DROPOUT_PROB: 0.
|
| 496 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 497 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 498 |
+
# NUM_GENERATION_LAYERS: 0
|
| 499 |
+
# DROP_PATH_PROB_FIXED: True
|
| 500 |
+
|
| 501 |
+
# -
|
| 502 |
+
# NAME: TextEncoder
|
| 503 |
+
# TYPE: TextEncoder
|
| 504 |
+
# DROP_PATH_PROB: 0.0
|
| 505 |
+
# HIDDEN_SIZE: 192
|
| 506 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 507 |
+
# HIDDEN_ACT: "gelu"
|
| 508 |
+
# NUM_ATTENTION_HEADS: 3
|
| 509 |
+
# INTERMEDIATE_SIZE: 768
|
| 510 |
+
# INTERMEDIATE_DROP: 0.
|
| 511 |
+
# FFN_DROPOUT_PROB: 0.
|
| 512 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 513 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 514 |
+
# NUM_GENERATION_LAYERS: 0
|
| 515 |
+
# DROP_PATH_PROB_FIXED: True
|
| 516 |
+
|
| 517 |
+
|
| 518 |
+
|
| 519 |
+
MOE:
|
| 520 |
+
MOE: True
|
| 521 |
+
MOE_TYPE: 'attribute'
|
| 522 |
+
TAG_Transform: True
|
| 523 |
+
ATTRIBUTE_LENGTH: 8
|
| 524 |
+
EP_WORLD_SIZE: 1 # tag moe only
|
| 525 |
+
NUM_EXPERTS: 8
|
| 526 |
+
TOP_K: 2
|
| 527 |
+
CAPACITY_FACTOR: 3.0
|
| 528 |
+
EVAL_MIN_CAPACITY: 4.0
|
| 529 |
+
MIN_CAPACITY: 4
|
| 530 |
+
NOISY_GATE_POLICY: 'vmoe'
|
| 531 |
+
MOE_PARAM_GROUP: True
|
| 532 |
+
MOE_EXPERT_TYPE: 'FFN,SA'
|
| 533 |
+
SA_LINEAR_OUT_MOE: True
|
| 534 |
+
MOE_EXPERT_LOCATION: 'all' # 'odd'
|
| 535 |
+
# MOE_LAYER_START_IDX: 3
|
| 536 |
+
# MOE_LAYER_END_IDX: 21
|
| 537 |
+
# MOE_LAYER_START_IDX: 18
|
| 538 |
+
# MOE_LAYER_END_IDX: 12
|
| 539 |
+
BATCH_PRIO: True
|
| 540 |
+
USE_TUTEL: True
|
| 541 |
+
FFN_SHARE_GATE_DECISION: True
|
configs/BERT_L12_H192_experiments/mscoco_caption_debug.yaml
ADDED
|
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base_model_bert_l12_h192.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
-
|
| 7 |
+
NAME: 'Vocab_Word'
|
| 8 |
+
SHARED_TARGETS_CFG:
|
| 9 |
+
FILE_PATH: 'open_source_dataset/vocabulary_CLIP_with_endoftext.pkl'
|
| 10 |
+
DISTRIBUTED: True
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
TASKS:
|
| 15 |
+
|
| 16 |
+
-
|
| 17 |
+
NAME: mscoco_retrieve
|
| 18 |
+
DATASETS:
|
| 19 |
+
TRAIN: 'ImageTextPairDataset'
|
| 20 |
+
TEST: 'ImageTextPairDataset'
|
| 21 |
+
TASK_TYPE: 'image_retrieval'
|
| 22 |
+
DATASET_NAME: 'MSCOCO'
|
| 23 |
+
DATALOADER:
|
| 24 |
+
TRAIN_BATCH_SIZE: 100
|
| 25 |
+
TEST_BATCH_SIZE: 32
|
| 26 |
+
NUM_WORKERS: 1
|
| 27 |
+
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 28 |
+
ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 29 |
+
S3_PATH: 's3://coco/'
|
| 30 |
+
SEQ_PER_SAMPLE: 1
|
| 31 |
+
CACHE_MODE: True
|
| 32 |
+
CIRCULAR_CACHE_MODE: False
|
| 33 |
+
ZIP_MODE: False
|
| 34 |
+
CACHE_ORIGIN_IMAGE: False
|
| 35 |
+
RANDOM_CAPTION: False
|
| 36 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 37 |
+
SAMPLING_WEIGHT: 1.0
|
| 38 |
+
TRANSFORM: 'clip_transforms'
|
| 39 |
+
MODEL:
|
| 40 |
+
MAX_SEQ_LEN: 50
|
| 41 |
+
TEMP_NAME: logit_scale_retrieve
|
| 42 |
+
LOSSES:
|
| 43 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 44 |
+
LABELSMOOTHING: 0.1
|
| 45 |
+
LOSS_WEIGHT: 1.0
|
| 46 |
+
REDUCTION: 'mean'
|
| 47 |
+
INFERENCE:
|
| 48 |
+
VOCAB: 'CLIP'
|
| 49 |
+
ID_KEY: 'image_id'
|
| 50 |
+
VALUE: 'caption'
|
| 51 |
+
NAME: 'RetrievalEvaler'
|
| 52 |
+
VAL_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_val_set0_2014.jsonline'
|
| 53 |
+
TEST_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_test_set0_2014.jsonline'
|
| 54 |
+
GENERATION_MODE: False
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
-
|
| 58 |
+
NAME: mscoco_caption
|
| 59 |
+
DATASETS:
|
| 60 |
+
TRAIN: 'ImageTextPairDataset'
|
| 61 |
+
# VAL: 'ImageTextPairDataset'
|
| 62 |
+
TEST: 'ImageTextPairDataset'
|
| 63 |
+
TASK_TYPE: 'image_caption'
|
| 64 |
+
DATASET_NAME: 'MSCOCO'
|
| 65 |
+
TARGET_SET: ['Vocab_Word']
|
| 66 |
+
DATALOADER:
|
| 67 |
+
TRAIN_BATCH_SIZE: 300
|
| 68 |
+
TEST_BATCH_SIZE: 32
|
| 69 |
+
NUM_WORKERS: 4
|
| 70 |
+
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 71 |
+
ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 72 |
+
S3_PATH: 's3://coco/'
|
| 73 |
+
SEQ_PER_SAMPLE: 1
|
| 74 |
+
CACHE_MODE: True
|
| 75 |
+
CIRCULAR_CACHE_MODE: False
|
| 76 |
+
ZIP_MODE: False
|
| 77 |
+
CACHE_ORIGIN_IMAGE: False
|
| 78 |
+
RANDOM_CAPTION: False
|
| 79 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 80 |
+
SAMPLING_WEIGHT: 0.3817
|
| 81 |
+
TRANSFORM: 'clip_transforms'
|
| 82 |
+
RANDOM_MASK: True
|
| 83 |
+
MODEL:
|
| 84 |
+
MAX_SEQ_LEN: 50
|
| 85 |
+
EVAL_MAX_SEQ_LEN: 21
|
| 86 |
+
TEMP_NAME: logit_scale_caption
|
| 87 |
+
LOSSES:
|
| 88 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 89 |
+
LOSS_WEIGHT: 0.33333
|
| 90 |
+
REDUCTION: 'mean'
|
| 91 |
+
DECODE_STRATEGY:
|
| 92 |
+
NAME: 'CaptionBeamSearcherV3'
|
| 93 |
+
BEAM_SIZE: 2
|
| 94 |
+
# LEN_PENALTY: 1.0
|
| 95 |
+
INFERENCE:
|
| 96 |
+
NAME: 'COCOEvaler'
|
| 97 |
+
VOCAB: 'CLIP'
|
| 98 |
+
ID_KEY: 'image_id'
|
| 99 |
+
VALUE: 'caption'
|
| 100 |
+
VAL_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_val5k.json'
|
| 101 |
+
TEST_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_test5k.json'
|
| 102 |
+
GENERATION_MODE: True
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
ENGINE:
|
| 109 |
+
NAME: 'UnifiedTrainer'
|
| 110 |
+
|
| 111 |
+
MODEL:
|
| 112 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 113 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 114 |
+
|
| 115 |
+
IN_TUNING: True # use IN1k instead of 22k
|
| 116 |
+
SHARE_LAYERNORM: True
|
| 117 |
+
BERT:
|
| 118 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 119 |
+
DROP_PATH_PROB: 0.0
|
| 120 |
+
DROP_PATH_PROB_FIXED: True
|
| 121 |
+
|
| 122 |
+
MODEL_EMA: False
|
| 123 |
+
MODEL_EMA_DECAY: 0.9999
|
| 124 |
+
|
| 125 |
+
MAEParamsInit: True
|
| 126 |
+
POSEMBEDFIX: True
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
IMG_INPUT_SIZE: 224
|
| 130 |
+
PATCH_SIZE: 16
|
| 131 |
+
|
| 132 |
+
LAYER_SCALE: True
|
| 133 |
+
LAYER_SCALE_INIT: 1e-3
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
DATALOADER:
|
| 137 |
+
USE_WEIGHTED_SAMPLER: True
|
| 138 |
+
UNIFIED_DATASET: True
|
| 139 |
+
NUM_WORKERS: 32
|
| 140 |
+
|
| 141 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
####################################### Optimizer #######################################
|
| 146 |
+
SOLVER:
|
| 147 |
+
NAME: 'Adam'
|
| 148 |
+
TORCH_OPTIMIZER: True
|
| 149 |
+
PARAMS_SEPERATE: True
|
| 150 |
+
# PARAMS_GROUP: True
|
| 151 |
+
# EPOCH: 1
|
| 152 |
+
MAX_ITER: 150000
|
| 153 |
+
CHECKPOINT_PERIOD: 5000
|
| 154 |
+
EVAL_PERIOD: 500000
|
| 155 |
+
BASE_LR: 0.001
|
| 156 |
+
BIAS_LR_FACTOR: 1.0
|
| 157 |
+
WEIGHT_DECAY: 0.05
|
| 158 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 159 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 160 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 161 |
+
MOMENTUM: 0.9
|
| 162 |
+
DAMPENING: 0.0
|
| 163 |
+
NESTEROV: 0.0
|
| 164 |
+
BETAS: [0.9, 0.95]
|
| 165 |
+
EPS: 1e-6
|
| 166 |
+
GRAD_CLIP: 0.1
|
| 167 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 168 |
+
ACCUM_ITER: 0
|
| 169 |
+
AMP_FP16: True
|
| 170 |
+
APEX_FP16: False # dangerous
|
| 171 |
+
|
| 172 |
+
WRITE_PERIOD: 50
|
| 173 |
+
MIN_LOSS_SCLE: 2048.0
|
| 174 |
+
# BF16: False # True
|
| 175 |
+
# ZEROSTAGE: 2
|
| 176 |
+
|
| 177 |
+
LOSS_SCALE_WINDOW: 200
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
####################################### lr scheduler #######################################
|
| 185 |
+
LR_SCHEDULER:
|
| 186 |
+
NAME: 'WarmupCosine'
|
| 187 |
+
WARMUP: 5000
|
| 188 |
+
MIN_LR: 0.000001
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
####################################### evaluation #######################################
|
| 194 |
+
INFERENCE:
|
| 195 |
+
|
| 196 |
+
VOCAB: 'CLIP'
|
| 197 |
+
ITER_BASED: True
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
find_unused_parameters: true
|
| 201 |
+
|
| 202 |
+
# ENCODERS:
|
| 203 |
+
# -
|
| 204 |
+
# NAME: VisualEncoder
|
| 205 |
+
# TYPE: VisualEncoder
|
| 206 |
+
# DROP_PATH_PROB: 0.0
|
| 207 |
+
# HIDDEN_SIZE: 192
|
| 208 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 209 |
+
# HIDDEN_ACT: "gelu"
|
| 210 |
+
# NUM_ATTENTION_HEADS: 3
|
| 211 |
+
# INTERMEDIATE_SIZE: 768
|
| 212 |
+
# INTERMEDIATE_DROP: 0.
|
| 213 |
+
# FFN_DROPOUT_PROB: 0.
|
| 214 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 215 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 216 |
+
# NUM_GENERATION_LAYERS: 0
|
| 217 |
+
# DROP_PATH_PROB_FIXED: True
|
| 218 |
+
|
| 219 |
+
# -
|
| 220 |
+
# NAME: TextEncoder
|
| 221 |
+
# TYPE: TextEncoder
|
| 222 |
+
# DROP_PATH_PROB: 0.0
|
| 223 |
+
# HIDDEN_SIZE: 192
|
| 224 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 225 |
+
# HIDDEN_ACT: "gelu"
|
| 226 |
+
# NUM_ATTENTION_HEADS: 3
|
| 227 |
+
# INTERMEDIATE_SIZE: 768
|
| 228 |
+
# INTERMEDIATE_DROP: 0.
|
| 229 |
+
# FFN_DROPOUT_PROB: 0.
|
| 230 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 231 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 232 |
+
# NUM_GENERATION_LAYERS: 0
|
| 233 |
+
# DROP_PATH_PROB_FIXED: True
|
| 234 |
+
|
configs/BERT_L12_H192_experiments/vqa_debug.yaml
ADDED
|
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base_model_bert_l12_h192.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
-
|
| 7 |
+
NAME: 'VQA_Answer'
|
| 8 |
+
SHARED_TARGETS_CFG:
|
| 9 |
+
FILE_PATH: 'open_source_dataset/VQA_Answers_CLIP_with_endoftext.pkl'
|
| 10 |
+
DISTRIBUTED: True
|
| 11 |
+
|
| 12 |
+
TASKS:
|
| 13 |
+
-
|
| 14 |
+
NAME: vqa
|
| 15 |
+
DATASETS:
|
| 16 |
+
TRAIN: 'VQADataset'
|
| 17 |
+
VAL: 'VQADataset'
|
| 18 |
+
DATASET_NAME: 'VQA'
|
| 19 |
+
TASK_TYPE: 'vqa'
|
| 20 |
+
TARGET_SET: ['VQA_Answer']
|
| 21 |
+
DATALOADER:
|
| 22 |
+
TRAIN_BATCH_SIZE: 256
|
| 23 |
+
TEST_BATCH_SIZE: 128
|
| 24 |
+
NUM_WORKERS: 4
|
| 25 |
+
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 26 |
+
ANNO_FOLDER: 'open_source_dataset/VQA'
|
| 27 |
+
SEQ_PER_SAMPLE: 1
|
| 28 |
+
MAX_FEAT_NUM: 51
|
| 29 |
+
SAMPLING_WEIGHT: 1.0
|
| 30 |
+
TRANSFORM: 'clip_transforms'
|
| 31 |
+
DO_AS_GEN: True
|
| 32 |
+
SINGLE_CLASS: True
|
| 33 |
+
MODEL:
|
| 34 |
+
# VOCAB_SIZE: 49409 # include <BOS>/<EOS>
|
| 35 |
+
PREDICTOR: 'MLPClassifer'
|
| 36 |
+
# MM_PREDICTOR:
|
| 37 |
+
# LABELS_NUM: 3129
|
| 38 |
+
# PREDICT: 'first_one'
|
| 39 |
+
# PRED_DROPOUT: 0.5
|
| 40 |
+
MAX_SEQ_LEN: 23
|
| 41 |
+
# QUERY_EMBED:
|
| 42 |
+
# NAME: QueryBaseEmbedding
|
| 43 |
+
# DIM: 512
|
| 44 |
+
# QUERY_SIZE: 10 # more than 1 is ok
|
| 45 |
+
# ACTIVATION: 'none'
|
| 46 |
+
# USE_NORM: True
|
| 47 |
+
# DROPOUT: 0.1
|
| 48 |
+
# POSITION: 'none' # must be none now
|
| 49 |
+
# TYPE_VOCAB_SIZE: -1 # must < 0
|
| 50 |
+
LOSSES:
|
| 51 |
+
# not single class
|
| 52 |
+
# NAMES: ['BCEWithLogits']
|
| 53 |
+
# LOSS_WEIGHT: 0.05
|
| 54 |
+
# for single class
|
| 55 |
+
NAMES: ['CrossEntropy']
|
| 56 |
+
LOSS_WEIGHT: 0.1
|
| 57 |
+
INFERENCE:
|
| 58 |
+
VOCAB: 'CLIP'
|
| 59 |
+
NAME: 'VQAEvaler'
|
| 60 |
+
ID_KEY: 'question_id'
|
| 61 |
+
VALUE: 'answer'
|
| 62 |
+
VAL_ANNFILE: 'open_source_dataset/VQA/val_target.pkl'
|
| 63 |
+
TEST_ANNFILE: ''
|
| 64 |
+
GENERATION_MODE: False
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
######################################### Engine #########################################
|
| 68 |
+
ENGINE:
|
| 69 |
+
NAME: 'UnifiedTrainer'
|
| 70 |
+
|
| 71 |
+
######################################### Scheduled sampling #########################################
|
| 72 |
+
SCHEDULED_SAMPLING:
|
| 73 |
+
START_EPOCH: 0
|
| 74 |
+
INC_EVERY_EPOCH: 5
|
| 75 |
+
INC_PROB: 0.05
|
| 76 |
+
MAX_PROB: 0.25
|
| 77 |
+
|
| 78 |
+
DATALOADER:
|
| 79 |
+
USE_WEIGHTED_SAMPLER: True
|
| 80 |
+
UNIFIED_DATASET: True
|
| 81 |
+
|
| 82 |
+
######################################### MODEL #########################################
|
| 83 |
+
MODEL:
|
| 84 |
+
TEMP_NAME: logit_scale_downstream
|
| 85 |
+
# VOCAB_SIZE: 49409 # include <BOS>/<EOS>
|
| 86 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 87 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 88 |
+
# ENCODER_DIM: 512
|
| 89 |
+
# DECODER: 'UnifiedTransformerDecoder'
|
| 90 |
+
# DECODER_DIM: 512
|
| 91 |
+
|
| 92 |
+
BertParamsInit: True
|
| 93 |
+
# WEIGHTS: open_source_dataset/our_model/cc3m_encoder_decoder_warm1w_150k_retrivetask_gatherfeature_caption_mlm/model_Epoch_90000_Iter_0089999.pth
|
| 94 |
+
|
| 95 |
+
CLS_TOKEN: True
|
| 96 |
+
# PREDICTOR: 'BasePredictor'
|
| 97 |
+
# PRED_DROPOUT: 0.5
|
| 98 |
+
# MAX_SEQ_LEN: 20
|
| 99 |
+
|
| 100 |
+
# #################################### Token embedding ####################################
|
| 101 |
+
# TOKEN_EMBED:
|
| 102 |
+
# NAME: 'TokenBaseEmbedding'
|
| 103 |
+
# DIM: 512
|
| 104 |
+
# ACTIVATION: 'none'
|
| 105 |
+
# USE_NORM: True
|
| 106 |
+
# DROPOUT: 0.1
|
| 107 |
+
# POSITION: 'NNEmbeddingEncoding'
|
| 108 |
+
# POSITION_MAX_LEN: 512
|
| 109 |
+
# TYPE_VOCAB_SIZE: 2
|
| 110 |
+
|
| 111 |
+
# #################################### Visual embedding ####################################
|
| 112 |
+
# VISUAL_EMBED:
|
| 113 |
+
# NAME: 'VisualPatchEmbedding'
|
| 114 |
+
# IN_DIM: 3
|
| 115 |
+
# OUT_DIM: 512
|
| 116 |
+
# ACTIVATION: 'none'
|
| 117 |
+
# USE_NORM: True
|
| 118 |
+
# DROPOUT: 0.0
|
| 119 |
+
# PATCH_SIZE: 16
|
| 120 |
+
|
| 121 |
+
####################################### BERT ############################################
|
| 122 |
+
BERT:
|
| 123 |
+
DROP_PATH_PROB: 0.05
|
| 124 |
+
# HIDDEN_SIZE: 512
|
| 125 |
+
HIDDEN_SIZE: 192
|
| 126 |
+
HIDDEN_DROPOUT_PROB: 0.
|
| 127 |
+
HIDDEN_ACT: "gelu"
|
| 128 |
+
NUM_ATTENTION_HEADS: 8
|
| 129 |
+
INTERMEDIATE_SIZE: 2048
|
| 130 |
+
INTERMEDIATE_DROP: 0.
|
| 131 |
+
FFN_DROPOUT_PROB: 0.
|
| 132 |
+
ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 133 |
+
NUM_HIDDEN_LAYERS: 6
|
| 134 |
+
NUM_GENERATION_LAYERS: 6
|
| 135 |
+
|
| 136 |
+
####################################### Optimizer #######################################
|
| 137 |
+
SOLVER:
|
| 138 |
+
NAME: 'AdamW'
|
| 139 |
+
# EPOCH: 1
|
| 140 |
+
MAX_ITER: 30000
|
| 141 |
+
CHECKPOINT_PERIOD: 5000
|
| 142 |
+
CHECKPOINT_MAX_SAVE: 5
|
| 143 |
+
EVAL_PERIOD: 1000
|
| 144 |
+
BASE_LR: 0.00005
|
| 145 |
+
BIAS_LR_FACTOR: 1.0
|
| 146 |
+
WEIGHT_DECAY: 0.01
|
| 147 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 148 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 149 |
+
MOMENTUM: 0.9
|
| 150 |
+
DAMPENING: 0.0
|
| 151 |
+
NESTEROV: 0.0
|
| 152 |
+
BETAS: [0.9, 0.999]
|
| 153 |
+
EPS: 1e-8
|
| 154 |
+
GRAD_CLIP: 5.0
|
| 155 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 156 |
+
ACCUM_ITER: 0
|
| 157 |
+
AMP_FP16: True
|
| 158 |
+
APEX_FP16: False # dangerous
|
| 159 |
+
|
| 160 |
+
CHECKPOINT_MAPPING:
|
| 161 |
+
# -
|
| 162 |
+
# ORIGIN: cc3m_caption
|
| 163 |
+
# DEST: mscoco
|
| 164 |
+
-
|
| 165 |
+
ORIGIN: cc3m_retrieve
|
| 166 |
+
DEST: flickr30k
|
| 167 |
+
|
| 168 |
+
CHECKPOINT_MAP: True
|
| 169 |
+
####################################### lr scheduler #######################################
|
| 170 |
+
LR_SCHEDULER:
|
| 171 |
+
NAME: 'WarmupCosine'
|
| 172 |
+
WARMUP: 1000
|
| 173 |
+
MIN_LR: 0.00000001
|
| 174 |
+
|
| 175 |
+
# ####################################### losses #######################################
|
| 176 |
+
# LOSSES:
|
| 177 |
+
# NAMES: ['LabelSmoothing']
|
| 178 |
+
# LABELSMOOTHING: 0.1
|
| 179 |
+
|
| 180 |
+
####################################### decode strategy #######################################
|
| 181 |
+
# DECODE_STRATEGY:
|
| 182 |
+
# NAME: 'BeamSearcher'
|
| 183 |
+
# BEAM_SIZE: 2
|
| 184 |
+
|
| 185 |
+
####################################### evaluation #######################################
|
| 186 |
+
INFERENCE:
|
| 187 |
+
VOCAB: 'CLIP'
|
| 188 |
+
ITER_BASED: True
|
| 189 |
+
find_unused_parameters: true
|
configs/BERT_L12_H384_experiments/base_model_bert_l12_h384.yaml
ADDED
|
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
######################################### MODEL #########################################
|
| 3 |
+
MODEL:
|
| 4 |
+
VOCAB_SIZE: 49411 # include <BOS>/<EOS>
|
| 5 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 6 |
+
ENCODER: ''
|
| 7 |
+
ENCODER_DIM: 384
|
| 8 |
+
DECODER: ''
|
| 9 |
+
DECODER_DIM: 384
|
| 10 |
+
|
| 11 |
+
PREDICTOR: 'EmbedClsAsRetrievalPredictor'
|
| 12 |
+
FEATURE_GATHER: True
|
| 13 |
+
LEARN_TEMP: True
|
| 14 |
+
PRED_USE_NORM: True
|
| 15 |
+
PRED_TEMPERATURE: 0.07
|
| 16 |
+
|
| 17 |
+
BertParamsInit: True
|
| 18 |
+
|
| 19 |
+
CLS_TOKEN: False
|
| 20 |
+
|
| 21 |
+
QUEUE_LEN: 1024
|
| 22 |
+
MAX_LABEL_LEN: 12
|
| 23 |
+
|
| 24 |
+
OUTPUT_PROJ: True # output projection
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# #################################### Token embedding ####################################
|
| 28 |
+
TOKEN_EMBED:
|
| 29 |
+
NAME: 'TokenBaseEmbedding'
|
| 30 |
+
DIM: 384
|
| 31 |
+
ACTIVATION: 'none'
|
| 32 |
+
USE_NORM: True
|
| 33 |
+
DROPOUT: 0.0
|
| 34 |
+
POSITION: 'NNEmbeddingEncoding'
|
| 35 |
+
POSITION_MAX_LEN: 512
|
| 36 |
+
TYPE_VOCAB_SIZE: 2
|
| 37 |
+
|
| 38 |
+
# #################################### Visual embedding ####################################
|
| 39 |
+
VISUAL_EMBED:
|
| 40 |
+
NAME: 'VisualPatchEmbedding'
|
| 41 |
+
IN_DIM: 3
|
| 42 |
+
OUT_DIM: 384
|
| 43 |
+
ACTIVATION: 'none'
|
| 44 |
+
USE_NORM: True
|
| 45 |
+
DROPOUT: 0.0
|
| 46 |
+
PATCH_SIZE: 16
|
| 47 |
+
TYPE_SIZE: 1 # image to encoder
|
| 48 |
+
|
| 49 |
+
# #################################### video embedding ####################################
|
| 50 |
+
VIDEO_EMBED:
|
| 51 |
+
NAME: 'VideoBaseEmbedding'
|
| 52 |
+
IN_DIM: 768
|
| 53 |
+
OUT_DIM: 384
|
| 54 |
+
ACTIVATION: 'none'
|
| 55 |
+
USE_NORM: True
|
| 56 |
+
DROPOUT: 0.0
|
| 57 |
+
TYPE_SIZE: 1 # video to encoder
|
| 58 |
+
POSITION: 'NNEmbeddingEncoding'
|
| 59 |
+
MAX_LENGTH: 1600
|
| 60 |
+
PATCH_SIZE_S: 16
|
| 61 |
+
PATCH_SIZE_T: 1
|
| 62 |
+
DIVIDE_ST_POS: True
|
| 63 |
+
USE_VISUAL_TOKENIZER: True
|
| 64 |
+
USE_VISUAL_POS: True
|
| 65 |
+
MAX_FRAMES: 8
|
| 66 |
+
|
| 67 |
+
####################################### BERT ############################################
|
| 68 |
+
BERT:
|
| 69 |
+
DROP_PATH_PROB: 0.1
|
| 70 |
+
HIDDEN_SIZE: 384
|
| 71 |
+
HIDDEN_DROPOUT_PROB: 0.
|
| 72 |
+
HIDDEN_ACT: "gelu"
|
| 73 |
+
NUM_ATTENTION_HEADS: 6
|
| 74 |
+
INTERMEDIATE_SIZE: 1536
|
| 75 |
+
INTERMEDIATE_DROP: 0.
|
| 76 |
+
FFN_DROPOUT_PROB: 0.
|
| 77 |
+
ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 78 |
+
NUM_HIDDEN_LAYERS: 12
|
| 79 |
+
NUM_GENERATION_LAYERS: 0
|
| 80 |
+
|
configs/BERT_L12_H384_experiments/in1k_training.yaml
ADDED
|
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base_model_bert_l12_h384.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
-
|
| 6 |
+
NAME: 'ImageNet1k'
|
| 7 |
+
SHARED_TARGETS_CFG:
|
| 8 |
+
FILE_PATH: 'open_source_dataset/imagenet_class_name_CLIP_with_endoftext.pkl'
|
| 9 |
+
DISTRIBUTED: False
|
| 10 |
+
|
| 11 |
+
# -
|
| 12 |
+
# NAME: 'Vocab_Word'
|
| 13 |
+
# SHARED_TARGETS_CFG:
|
| 14 |
+
# FILE_PATH: 'open_source_dataset/vocabulary_CLIP_with_endoftext.pkl'
|
| 15 |
+
# DISTRIBUTED: True
|
| 16 |
+
|
| 17 |
+
TASKS:
|
| 18 |
+
|
| 19 |
+
-
|
| 20 |
+
NAME: imagenet
|
| 21 |
+
DATASETS:
|
| 22 |
+
TRAIN: 'ImageNetDataset'
|
| 23 |
+
VAL: 'ImageNetDataset'
|
| 24 |
+
TASK_TYPE: 'image_classification'
|
| 25 |
+
DATASET_NAME: 'ImageNet1k'
|
| 26 |
+
TARGET_SET: ['ImageNet1k']
|
| 27 |
+
|
| 28 |
+
DATALOADER:
|
| 29 |
+
TRAIN_BATCH_SIZE: 32
|
| 30 |
+
TEST_BATCH_SIZE: 32
|
| 31 |
+
NUM_WORKERS: 4 # will be used as numworker for testing loader
|
| 32 |
+
FEATS_FOLDER: 'open_source_dataset/imagenet'
|
| 33 |
+
S3_PATH: 'cluster2:s3://imagenet'
|
| 34 |
+
ANNO_FOLDER: 'open_source_dataset/imagenet/meta'
|
| 35 |
+
SAMPLING_WEIGHT: 1.0
|
| 36 |
+
CLASS_NAME_FILE: 'open_source_dataset/imagenet_class_name.pkl'
|
| 37 |
+
MIXUP: 0.8
|
| 38 |
+
CUTMIX: 1.0
|
| 39 |
+
MIXUP_PROB: 1.0
|
| 40 |
+
MIXUP_SWITCH_PROB: 0.5
|
| 41 |
+
MIXUP_MODE: 'batch'
|
| 42 |
+
MIXUP_LABEL_SMOOTHING: 0.1
|
| 43 |
+
MODEL:
|
| 44 |
+
MAX_SEQ_LEN: -1
|
| 45 |
+
LABELS_NUM: 1000
|
| 46 |
+
TEMP_NAME: logit_scale_img_cls
|
| 47 |
+
LOSSES:
|
| 48 |
+
NAMES: ['SoftTargetCrossEntropy', 'Accuracy']
|
| 49 |
+
LOSS_WEIGHT: 1.0
|
| 50 |
+
REDUCTION: 'mean'
|
| 51 |
+
# LOSS_FP32: True
|
| 52 |
+
INFERENCE:
|
| 53 |
+
NAME: 'ImageNetEvaler'
|
| 54 |
+
ID_KEY: 'image_id'
|
| 55 |
+
VALUE: 'cls_logits'
|
| 56 |
+
VAL_ANNFILE: 'open_source_dataset/imagenet/meta/val.txt'
|
| 57 |
+
TEST_ANNFILE: ''
|
| 58 |
+
GENERATION_MODE: False
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
ENGINE:
|
| 62 |
+
NAME: 'UnifiedTrainer'
|
| 63 |
+
|
| 64 |
+
MODEL:
|
| 65 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 66 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 67 |
+
|
| 68 |
+
IN_TUNING: True # use IN1k instead of 22k
|
| 69 |
+
SHARE_LAYERNORM: True
|
| 70 |
+
BERT:
|
| 71 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 72 |
+
DROP_PATH_PROB: 0.1
|
| 73 |
+
DROP_PATH_PROB_FIXED: True
|
| 74 |
+
|
| 75 |
+
UNIFY_QKV: True
|
| 76 |
+
|
| 77 |
+
MODEL_EMA: False
|
| 78 |
+
MODEL_EMA_DECAY: 0.9999
|
| 79 |
+
|
| 80 |
+
MAEParamsInit: True
|
| 81 |
+
POSEMBEDFIX: True
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
IMG_INPUT_SIZE: 224
|
| 85 |
+
PATCH_SIZE: 16
|
| 86 |
+
|
| 87 |
+
LAYER_SCALE: True
|
| 88 |
+
LAYER_SCALE_INIT: 1e-3
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
DATALOADER:
|
| 92 |
+
USE_WEIGHTED_SAMPLER: True
|
| 93 |
+
UNIFIED_DATASET: True
|
| 94 |
+
NUM_WORKERS: 16
|
| 95 |
+
|
| 96 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
####################################### Optimizer #######################################
|
| 101 |
+
SOLVER:
|
| 102 |
+
NAME: 'Adam'
|
| 103 |
+
TORCH_OPTIMIZER: True
|
| 104 |
+
PARAMS_SEPERATE: True
|
| 105 |
+
# PARAMS_GROUP: True
|
| 106 |
+
# EPOCH: 1
|
| 107 |
+
MAX_ITER: 200000
|
| 108 |
+
CHECKPOINT_PERIOD: 10
|
| 109 |
+
EVAL_PERIOD: 500000
|
| 110 |
+
BASE_LR: 0.001
|
| 111 |
+
BIAS_LR_FACTOR: 1.0
|
| 112 |
+
WEIGHT_DECAY: 0.3
|
| 113 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 114 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 115 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 116 |
+
MOMENTUM: 0.9
|
| 117 |
+
DAMPENING: 0.0
|
| 118 |
+
NESTEROV: 0.0
|
| 119 |
+
BETAS: [0.9, 0.95]
|
| 120 |
+
EPS: 1e-6
|
| 121 |
+
GRAD_CLIP: 0.1
|
| 122 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 123 |
+
ACCUM_ITER: 0
|
| 124 |
+
AMP_FP16: True
|
| 125 |
+
APEX_FP16: False # dangerous
|
| 126 |
+
|
| 127 |
+
WRITE_PERIOD: 50
|
| 128 |
+
MIN_LOSS_SCLE: 2048.0
|
| 129 |
+
# BF16: False # True
|
| 130 |
+
# ZEROSTAGE: 2
|
| 131 |
+
|
| 132 |
+
LOSS_SCALE_WINDOW: 200
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
####################################### lr scheduler #######################################
|
| 140 |
+
LR_SCHEDULER:
|
| 141 |
+
NAME: 'WarmupCosine'
|
| 142 |
+
WARMUP: 20000
|
| 143 |
+
MIN_LR: 0.000001
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
####################################### evaluation #######################################
|
| 149 |
+
INFERENCE:
|
| 150 |
+
|
| 151 |
+
VOCAB: 'CLIP'
|
| 152 |
+
ITER_BASED: True
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
find_unused_parameters: true
|
| 156 |
+
|
| 157 |
+
# ENCODERS:
|
| 158 |
+
# -
|
| 159 |
+
# NAME: VisualEncoder
|
| 160 |
+
# TYPE: VisualEncoder
|
| 161 |
+
# DROP_PATH_PROB: 0.0
|
| 162 |
+
# HIDDEN_SIZE: 192
|
| 163 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 164 |
+
# HIDDEN_ACT: "gelu"
|
| 165 |
+
# NUM_ATTENTION_HEADS: 3
|
| 166 |
+
# INTERMEDIATE_SIZE: 768
|
| 167 |
+
# INTERMEDIATE_DROP: 0.
|
| 168 |
+
# FFN_DROPOUT_PROB: 0.
|
| 169 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 170 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 171 |
+
# NUM_GENERATION_LAYERS: 0
|
| 172 |
+
# DROP_PATH_PROB_FIXED: True
|
| 173 |
+
|
| 174 |
+
# -
|
| 175 |
+
# NAME: TextEncoder
|
| 176 |
+
# TYPE: TextEncoder
|
| 177 |
+
# DROP_PATH_PROB: 0.0
|
| 178 |
+
# HIDDEN_SIZE: 192
|
| 179 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 180 |
+
# HIDDEN_ACT: "gelu"
|
| 181 |
+
# NUM_ATTENTION_HEADS: 3
|
| 182 |
+
# INTERMEDIATE_SIZE: 768
|
| 183 |
+
# INTERMEDIATE_DROP: 0.
|
| 184 |
+
# FFN_DROPOUT_PROB: 0.
|
| 185 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 186 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 187 |
+
# NUM_GENERATION_LAYERS: 0
|
| 188 |
+
# DROP_PATH_PROB_FIXED: True
|
| 189 |
+
|
configs/BERT_L12_H768_experiments/16tasks_training.yaml
ADDED
|
@@ -0,0 +1,738 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base_model_bert_l12_h768.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
-
|
| 6 |
+
NAME: 'ImageNet22k'
|
| 7 |
+
SHARED_TARGETS_CFG:
|
| 8 |
+
FILE_PATH: 'open_source_dataset/imagenet_22k_class_name_CLIP_with_endoftext.pkl'
|
| 9 |
+
DISTRIBUTED: True
|
| 10 |
+
|
| 11 |
+
-
|
| 12 |
+
NAME: 'Vocab_Word'
|
| 13 |
+
SHARED_TARGETS_CFG:
|
| 14 |
+
FILE_PATH: 'open_source_dataset/vocabulary_CLIP_with_endoftext.pkl'
|
| 15 |
+
DISTRIBUTED: True
|
| 16 |
+
|
| 17 |
+
-
|
| 18 |
+
NAME: 'MomentsInTime'
|
| 19 |
+
SHARED_TARGETS_CFG:
|
| 20 |
+
FILE_PATH: 'open_source_dataset/MiT_class_name_CLIP_with_endoftext.pkl'
|
| 21 |
+
DISTRIBUTED: False
|
| 22 |
+
|
| 23 |
+
-
|
| 24 |
+
NAME: 'Kinetics700'
|
| 25 |
+
SHARED_TARGETS_CFG:
|
| 26 |
+
FILE_PATH: 'open_source_dataset/k700_class_name_CLIP_with_endoftext.pkl'
|
| 27 |
+
DISTRIBUTED: False
|
| 28 |
+
|
| 29 |
+
TASKS:
|
| 30 |
+
|
| 31 |
+
-
|
| 32 |
+
NAME: imagenet22k
|
| 33 |
+
DATASETS:
|
| 34 |
+
TRAIN: 'ImageNet22KDataset'
|
| 35 |
+
TASK_TYPE: 'image_classification'
|
| 36 |
+
DATASET_NAME: 'ImageNet22k'
|
| 37 |
+
TARGET_SET: ['ImageNet22k']
|
| 38 |
+
|
| 39 |
+
DATALOADER:
|
| 40 |
+
TRAIN_BATCH_SIZE: 720
|
| 41 |
+
# TEST_BATCH_SIZE: 2
|
| 42 |
+
NUM_WORKERS: 2
|
| 43 |
+
FEATS_FOLDER: 'open_source_dataset/imagenet22k'
|
| 44 |
+
S3_PATH: 'cluster2:s3://imagenet22k'
|
| 45 |
+
ANNO_FOLDER: 'open_source_dataset/'
|
| 46 |
+
SAMPLING_WEIGHT: 2.486
|
| 47 |
+
MIXUP: 0.8
|
| 48 |
+
CUTMIX: 1.0
|
| 49 |
+
MIXUP_PROB: 1.0
|
| 50 |
+
MIXUP_SWITCH_PROB: 0.5
|
| 51 |
+
MIXUP_MODE: 'batch'
|
| 52 |
+
MIXUP_LABEL_SMOOTHING: 0.1
|
| 53 |
+
MODEL:
|
| 54 |
+
MAX_SEQ_LEN: -1
|
| 55 |
+
LABELS_NUM: 21842
|
| 56 |
+
TEMP_NAME: logit_scale_img_cls
|
| 57 |
+
LOSSES:
|
| 58 |
+
NAMES: ['SoftTargetCrossEntropy', 'Accuracy']
|
| 59 |
+
LOSS_WEIGHT: 1.0
|
| 60 |
+
REDUCTION: 'mean'
|
| 61 |
+
|
| 62 |
+
-
|
| 63 |
+
NAME: K700_retrieve
|
| 64 |
+
DATASETS:
|
| 65 |
+
TRAIN: 'VideoDataSet'
|
| 66 |
+
TASK_TYPE: 'video_classification'
|
| 67 |
+
DATASET_NAME: 'K700'
|
| 68 |
+
TARGET_SET: ['Kinetics700']
|
| 69 |
+
DATALOADER:
|
| 70 |
+
TRAIN_BATCH_SIZE: 64
|
| 71 |
+
TEST_BATCH_SIZE: 24
|
| 72 |
+
NUM_WORKERS: 2
|
| 73 |
+
FEATS_FOLDER: 'open_source_dataset/K700'
|
| 74 |
+
ANNO_FOLDER: 'open_source_dataset/K700'
|
| 75 |
+
S3_PATH: 's3://K700/'
|
| 76 |
+
FRAMES_PER_CLIP: 4
|
| 77 |
+
STRIDE: 32
|
| 78 |
+
FILE_EXTENSION: ''
|
| 79 |
+
ANNO_FILE: 'annotation.json'
|
| 80 |
+
TIMESFORMER_AUG: True
|
| 81 |
+
SAMPLING_WEIGHT: 0.76
|
| 82 |
+
|
| 83 |
+
MODEL:
|
| 84 |
+
MAX_SEQ_LEN: -1
|
| 85 |
+
TEMP_NAME: logit_scale_video_cls
|
| 86 |
+
LOSSES:
|
| 87 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 88 |
+
LABELSMOOTHING: 0.1
|
| 89 |
+
LOSS_WEIGHT: 0.1
|
| 90 |
+
INFERENCE:
|
| 91 |
+
VOCAB: 'CLIP'
|
| 92 |
+
GENERATION_MODE: False
|
| 93 |
+
|
| 94 |
+
-
|
| 95 |
+
NAME: MomentsInTime
|
| 96 |
+
DATASETS:
|
| 97 |
+
TRAIN: 'VideoDataSet'
|
| 98 |
+
TASK_TYPE: 'video_classification'
|
| 99 |
+
DATASET_NAME: 'MiT'
|
| 100 |
+
TARGET_SET: ['MomentsInTime']
|
| 101 |
+
DATALOADER:
|
| 102 |
+
TRAIN_BATCH_SIZE: 112
|
| 103 |
+
TEST_BATCH_SIZE: 8
|
| 104 |
+
NUM_WORKERS: 2
|
| 105 |
+
FEATS_FOLDER: 'open_source_dataset/MomentsInTime'
|
| 106 |
+
ANNO_FOLDER: 'open_source_dataset/MomentsInTime'
|
| 107 |
+
S3_PATH: 's3://MomentsInTime/'
|
| 108 |
+
FRAMES_PER_CLIP: 3
|
| 109 |
+
STRIDE: 32
|
| 110 |
+
FILE_EXTENSION: ''
|
| 111 |
+
ANNO_FILE: 'annotation.json'
|
| 112 |
+
TIMESFORMER_AUG: True
|
| 113 |
+
SAMPLING_WEIGHT: 0.44
|
| 114 |
+
|
| 115 |
+
MODEL:
|
| 116 |
+
MAX_SEQ_LEN: -1
|
| 117 |
+
TEMP_NAME: logit_scale_video_cls
|
| 118 |
+
LOSSES:
|
| 119 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 120 |
+
LABELSMOOTHING: 0.1
|
| 121 |
+
LOSS_WEIGHT: 0.1
|
| 122 |
+
INFERENCE:
|
| 123 |
+
NAME: 'MiTEvaler'
|
| 124 |
+
ID_KEY: 'video_name'
|
| 125 |
+
VALUE: 'label'
|
| 126 |
+
VAL_ANNFILE: 'open_source_dataset/MomentsInTime/annotation.json'
|
| 127 |
+
TEST_ANNFILE: ''
|
| 128 |
+
GENERATION_MODE: False
|
| 129 |
+
NUM_VIEWS: 1
|
| 130 |
+
|
| 131 |
+
-
|
| 132 |
+
NAME: bookswiki_pretrain
|
| 133 |
+
DATASETS:
|
| 134 |
+
TRAIN: 'GeneralCorpusDataset'
|
| 135 |
+
TASK_TYPE: 'text_mlm'
|
| 136 |
+
DATASET_NAME: 'BooksWiki'
|
| 137 |
+
TARGET_SET: ['Vocab_Word']
|
| 138 |
+
VERSION: 'v2'
|
| 139 |
+
DATALOADER:
|
| 140 |
+
TRAIN_BATCH_SIZE: 512
|
| 141 |
+
TEST_BATCH_SIZE: 32
|
| 142 |
+
NUM_WORKERS: 2
|
| 143 |
+
ANNO_FOLDER: 'open_source_dataset/text_corpus' # 'open_source_dataset/bert_pretrain_data/bookswiki'
|
| 144 |
+
# ANNO_FOLDER: 'open_source_dataset/bert_pretrain_data/bookswiki'
|
| 145 |
+
SEQ_PER_SAMPLE: 1
|
| 146 |
+
SAMPLER: NodeDistributed
|
| 147 |
+
CACHE_MODE: True
|
| 148 |
+
SEQ_PER_SAMPLE: 128
|
| 149 |
+
MIN_SEQ_PER_SAMPLE: 128
|
| 150 |
+
APPEND_EOS: True
|
| 151 |
+
ONE_STREAM: False
|
| 152 |
+
SAMPLING_WEIGHT: 2.75
|
| 153 |
+
RANDOM_MASK: True
|
| 154 |
+
MODEL:
|
| 155 |
+
MAX_SEQ_LEN: 128
|
| 156 |
+
TEMP_NAME: logit_scale_text_mlm
|
| 157 |
+
LOSSES:
|
| 158 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 159 |
+
LOSS_WEIGHT: 0.5
|
| 160 |
+
REDUCTION: 'mean'
|
| 161 |
+
INFERENCE:
|
| 162 |
+
VOCAB: 'CLIP'
|
| 163 |
+
GENERATION_MODE: False
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
-
|
| 167 |
+
NAME: yfcc_caption
|
| 168 |
+
DATASETS:
|
| 169 |
+
TRAIN: 'ImageTextPairDataset'
|
| 170 |
+
TASK_TYPE: 'image_caption'
|
| 171 |
+
DATASET_NAME: 'YFCC'
|
| 172 |
+
TARGET_SET: ['Vocab_Word']
|
| 173 |
+
DATALOADER:
|
| 174 |
+
TRAIN_BATCH_SIZE: 300
|
| 175 |
+
TEST_BATCH_SIZE: 32
|
| 176 |
+
NUM_WORKERS: 2
|
| 177 |
+
S3_ANNO_FOLDER: 'cluster2:s3://yfcc'
|
| 178 |
+
ANNO_FOLDER: 'open_source_dataset/yfcc'
|
| 179 |
+
ANNO_FILENAME: 'yfcc100m_subset_available_untokenized.json'
|
| 180 |
+
FEATS_FOLDER: 'open_source_dataset/yfcc/'
|
| 181 |
+
S3_PATH: 'cluster2:s3://yfcc/'
|
| 182 |
+
SEQ_PER_SAMPLE: 1
|
| 183 |
+
SAMPLER: NodeDistributed
|
| 184 |
+
CACHE_MODE: True
|
| 185 |
+
CIRCULAR_CACHE_MODE: False
|
| 186 |
+
ZIP_MODE: False
|
| 187 |
+
CACHE_ORIGIN_IMAGE: False
|
| 188 |
+
RANDOM_CAPTION: True
|
| 189 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 190 |
+
SAMPLING_WEIGHT: 0.5840
|
| 191 |
+
TRANSFORM: 'clip_transforms'
|
| 192 |
+
MODEL:
|
| 193 |
+
MAX_SEQ_LEN: 50
|
| 194 |
+
TEMP_NAME: logit_scale_caption
|
| 195 |
+
LOSSES:
|
| 196 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 197 |
+
LOSS_WEIGHT: 1.0
|
| 198 |
+
REDUCTION: 'mean'
|
| 199 |
+
INFERENCE:
|
| 200 |
+
VOCAB: 'CLIP'
|
| 201 |
+
GENERATION_MODE: False
|
| 202 |
+
|
| 203 |
+
-
|
| 204 |
+
NAME: cc12m_caption
|
| 205 |
+
DATASETS:
|
| 206 |
+
TRAIN: 'ImageTextPairDataset'
|
| 207 |
+
TASK_TYPE: 'image_caption'
|
| 208 |
+
DATASET_NAME: 'CC12M'
|
| 209 |
+
TARGET_SET: ['Vocab_Word']
|
| 210 |
+
DATALOADER:
|
| 211 |
+
TRAIN_BATCH_SIZE: 300
|
| 212 |
+
TEST_BATCH_SIZE: 32
|
| 213 |
+
NUM_WORKERS: 2
|
| 214 |
+
S3_ANNO_FOLDER: 's3://cc12m/'
|
| 215 |
+
ANNO_FOLDER: 'open_source_dataset/c12m/'
|
| 216 |
+
ANNO_FILENAME: 'train_available.json'
|
| 217 |
+
FEATS_FOLDER: 'open_source_dataset/c12m/'
|
| 218 |
+
S3_PATH: 's3://cc12m/'
|
| 219 |
+
SEQ_PER_SAMPLE: 1
|
| 220 |
+
SAMPLER: NodeDistributed
|
| 221 |
+
CACHE_MODE: True
|
| 222 |
+
CIRCULAR_CACHE_MODE: False
|
| 223 |
+
ZIP_MODE: False
|
| 224 |
+
CACHE_ORIGIN_IMAGE: False
|
| 225 |
+
RANDOM_CAPTION: False
|
| 226 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 227 |
+
SAMPLING_WEIGHT: 0.5057
|
| 228 |
+
TRANSFORM: 'clip_transforms'
|
| 229 |
+
MODEL:
|
| 230 |
+
MAX_SEQ_LEN: 50
|
| 231 |
+
TEMP_NAME: logit_scale_caption
|
| 232 |
+
LOSSES:
|
| 233 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 234 |
+
LOSS_WEIGHT: 1.0
|
| 235 |
+
REDUCTION: 'mean'
|
| 236 |
+
INFERENCE:
|
| 237 |
+
VOCAB: 'CLIP'
|
| 238 |
+
GENERATION_MODE: False
|
| 239 |
+
|
| 240 |
+
-
|
| 241 |
+
NAME: cc3m_caption
|
| 242 |
+
DATASETS:
|
| 243 |
+
TRAIN: 'ImageTextPairDataset'
|
| 244 |
+
TASK_TYPE: 'image_caption'
|
| 245 |
+
DATASET_NAME: 'CC3M'
|
| 246 |
+
TARGET_SET: ['Vocab_Word']
|
| 247 |
+
DATALOADER:
|
| 248 |
+
TRAIN_BATCH_SIZE: 300
|
| 249 |
+
TEST_BATCH_SIZE: 32
|
| 250 |
+
NUM_WORKERS: 2
|
| 251 |
+
S3_ANNO_FOLDER: 's3://cc3m/'
|
| 252 |
+
ANNO_FOLDER: 'open_source_dataset/cc3m/'
|
| 253 |
+
ANNO_FILENAME: 'train_spacy.json'
|
| 254 |
+
FEATS_FOLDER: 'open_source_dataset/cc3m/'
|
| 255 |
+
S3_PATH: 's3://cc3m/'
|
| 256 |
+
SEQ_PER_SAMPLE: 1
|
| 257 |
+
SAMPLER: NodeDistributed
|
| 258 |
+
CACHE_MODE: True
|
| 259 |
+
CIRCULAR_CACHE_MODE: False
|
| 260 |
+
ZIP_MODE: False
|
| 261 |
+
CACHE_ORIGIN_IMAGE: False
|
| 262 |
+
RANDOM_CAPTION: False
|
| 263 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 264 |
+
SAMPLING_WEIGHT: 0.26295
|
| 265 |
+
TRANSFORM: 'clip_transforms'
|
| 266 |
+
MODEL:
|
| 267 |
+
MAX_SEQ_LEN: 50
|
| 268 |
+
TEMP_NAME: logit_scale_caption
|
| 269 |
+
LOSSES:
|
| 270 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 271 |
+
LOSS_WEIGHT: 1.0
|
| 272 |
+
REDUCTION: 'mean'
|
| 273 |
+
INFERENCE:
|
| 274 |
+
VOCAB: 'CLIP'
|
| 275 |
+
GENERATION_MODE: False
|
| 276 |
+
|
| 277 |
+
-
|
| 278 |
+
NAME: vg_caption
|
| 279 |
+
DATASETS:
|
| 280 |
+
TRAIN: 'ImageTextPairDataset'
|
| 281 |
+
TASK_TYPE: 'image_caption'
|
| 282 |
+
DATASET_NAME: 'VG'
|
| 283 |
+
TARGET_SET: ['Vocab_Word']
|
| 284 |
+
DATALOADER:
|
| 285 |
+
TRAIN_BATCH_SIZE: 300
|
| 286 |
+
TEST_BATCH_SIZE: 32
|
| 287 |
+
NUM_WORKERS: 2
|
| 288 |
+
FEATS_FOLDER: 'open_source_dataset/visual_genome/images'
|
| 289 |
+
ANNO_FOLDER: 'open_source_dataset/visual_genome/annotations'
|
| 290 |
+
S3_PATH: 's3://visual_genome/images'
|
| 291 |
+
ANNO_FILENAME: 'vg_captions_128filter.json'
|
| 292 |
+
SEQ_PER_SAMPLE: 1
|
| 293 |
+
CACHE_MODE: True
|
| 294 |
+
CIRCULAR_CACHE_MODE: False
|
| 295 |
+
ZIP_MODE: False
|
| 296 |
+
CACHE_ORIGIN_IMAGE: False
|
| 297 |
+
RANDOM_CAPTION: False
|
| 298 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 299 |
+
SAMPLING_WEIGHT: 0.1766
|
| 300 |
+
TRANSFORM: 'clip_transforms'
|
| 301 |
+
MODEL:
|
| 302 |
+
MAX_SEQ_LEN: 30
|
| 303 |
+
TEMP_NAME: logit_scale_caption
|
| 304 |
+
LOSSES:
|
| 305 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 306 |
+
LOSS_WEIGHT: 1.0
|
| 307 |
+
REDUCTION: 'mean'
|
| 308 |
+
INFERENCE:
|
| 309 |
+
VOCAB: 'CLIP'
|
| 310 |
+
GENERATION_MODE: True
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
-
|
| 314 |
+
NAME: mscoco_caption
|
| 315 |
+
DATASETS:
|
| 316 |
+
TRAIN: 'ImageTextPairDataset'
|
| 317 |
+
# VAL: 'ImageTextPairDataset'
|
| 318 |
+
# TEST: 'ImageTextPairDataset'
|
| 319 |
+
TASK_TYPE: 'image_caption'
|
| 320 |
+
DATASET_NAME: 'MSCOCO'
|
| 321 |
+
TARGET_SET: ['Vocab_Word']
|
| 322 |
+
DATALOADER:
|
| 323 |
+
TRAIN_BATCH_SIZE: 300
|
| 324 |
+
TEST_BATCH_SIZE: 32
|
| 325 |
+
NUM_WORKERS: 1
|
| 326 |
+
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 327 |
+
ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 328 |
+
S3_PATH: 's3://coco/'
|
| 329 |
+
SEQ_PER_SAMPLE: 1
|
| 330 |
+
CACHE_MODE: True
|
| 331 |
+
CIRCULAR_CACHE_MODE: False
|
| 332 |
+
ZIP_MODE: False
|
| 333 |
+
CACHE_ORIGIN_IMAGE: False
|
| 334 |
+
RANDOM_CAPTION: False
|
| 335 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 336 |
+
SAMPLING_WEIGHT: 0.1144
|
| 337 |
+
TRANSFORM: 'clip_transforms'
|
| 338 |
+
RANDOM_MASK: True
|
| 339 |
+
MODEL:
|
| 340 |
+
MAX_SEQ_LEN: 50
|
| 341 |
+
EVAL_MAX_SEQ_LEN: 21
|
| 342 |
+
TEMP_NAME: logit_scale_caption
|
| 343 |
+
LOSSES:
|
| 344 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 345 |
+
LOSS_WEIGHT: 1.0
|
| 346 |
+
REDUCTION: 'mean'
|
| 347 |
+
DECODE_STRATEGY:
|
| 348 |
+
NAME: 'CaptionBeamSearcherV3'
|
| 349 |
+
BEAM_SIZE: 2
|
| 350 |
+
# LEN_PENALTY: 1.0
|
| 351 |
+
INFERENCE:
|
| 352 |
+
NAME: 'COCOEvaler'
|
| 353 |
+
VOCAB: 'CLIP'
|
| 354 |
+
ID_KEY: 'image_id'
|
| 355 |
+
VALUE: 'caption'
|
| 356 |
+
VAL_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_val5k.json'
|
| 357 |
+
TEST_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_test5k.json'
|
| 358 |
+
GENERATION_MODE: True
|
| 359 |
+
|
| 360 |
+
-
|
| 361 |
+
NAME: sbu_caption
|
| 362 |
+
DATASETS:
|
| 363 |
+
TRAIN: 'ImageTextPairDataset'
|
| 364 |
+
TASK_TYPE: 'image_caption'
|
| 365 |
+
DATASET_NAME: 'SBU'
|
| 366 |
+
TARGET_SET: ['Vocab_Word']
|
| 367 |
+
DATALOADER:
|
| 368 |
+
TRAIN_BATCH_SIZE: 300
|
| 369 |
+
TEST_BATCH_SIZE: 32
|
| 370 |
+
NUM_WORKERS: 1
|
| 371 |
+
S3_ANNO_FOLDER: 's3://SBU/annotations'
|
| 372 |
+
ANNO_FOLDER: 'open_source_dataset/sbucaption/annotations'
|
| 373 |
+
ANNO_FILENAME: 'subcaption.json'
|
| 374 |
+
FEATS_FOLDER: 'open_source_dataset/sbucaption/'
|
| 375 |
+
S3_PATH: 's3://SBU/images'
|
| 376 |
+
SEQ_PER_SAMPLE: 1
|
| 377 |
+
SAMPLER: NodeDistributed
|
| 378 |
+
CACHE_MODE: True
|
| 379 |
+
CIRCULAR_CACHE_MODE: False
|
| 380 |
+
ZIP_MODE: False
|
| 381 |
+
CACHE_ORIGIN_IMAGE: False
|
| 382 |
+
RANDOM_CAPTION: False
|
| 383 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 384 |
+
SAMPLING_WEIGHT: 0.1383
|
| 385 |
+
TRANSFORM: 'clip_transforms'
|
| 386 |
+
MODEL:
|
| 387 |
+
MAX_SEQ_LEN: 50
|
| 388 |
+
TEMP_NAME: logit_scale_caption
|
| 389 |
+
LOSSES:
|
| 390 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 391 |
+
LOSS_WEIGHT: 1.0
|
| 392 |
+
REDUCTION: 'mean'
|
| 393 |
+
INFERENCE:
|
| 394 |
+
VOCAB: 'CLIP'
|
| 395 |
+
GENERATION_MODE: False
|
| 396 |
+
|
| 397 |
+
-
|
| 398 |
+
NAME: yfcc_retrieve
|
| 399 |
+
DATASETS:
|
| 400 |
+
TRAIN: 'ImageTextPairDataset'
|
| 401 |
+
TASK_TYPE: 'image_retrieval'
|
| 402 |
+
DATASET_NAME: 'YFCC'
|
| 403 |
+
DATALOADER:
|
| 404 |
+
TRAIN_BATCH_SIZE: 512
|
| 405 |
+
TEST_BATCH_SIZE: 32
|
| 406 |
+
NUM_WORKERS: 2
|
| 407 |
+
S3_ANNO_FOLDER: 'cluster2:s3://yfcc'
|
| 408 |
+
ANNO_FOLDER: 'open_source_dataset/yfcc'
|
| 409 |
+
ANNO_FILENAME: 'yfcc100m_subset_available_untokenized.json'
|
| 410 |
+
FEATS_FOLDER: 'open_source_dataset/yfcc/'
|
| 411 |
+
S3_PATH: 'cluster2:s3://yfcc/'
|
| 412 |
+
SAMPLER: NodeDistributed
|
| 413 |
+
CACHE_MODE: True
|
| 414 |
+
CIRCULAR_CACHE_MODE: False
|
| 415 |
+
ZIP_MODE: False
|
| 416 |
+
CACHE_ORIGIN_IMAGE: False
|
| 417 |
+
RANDOM_CAPTION: True
|
| 418 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 419 |
+
SAMPLING_WEIGHT: 0.5840
|
| 420 |
+
TRANSFORM: 'clip_transforms'
|
| 421 |
+
MODEL:
|
| 422 |
+
MAX_SEQ_LEN: 50
|
| 423 |
+
TEMP_NAME: logit_scale_retrieve
|
| 424 |
+
LOSSES:
|
| 425 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 426 |
+
LABELSMOOTHING: 0.1
|
| 427 |
+
LOSS_WEIGHT: 0.5
|
| 428 |
+
REDUCTION: 'mean'
|
| 429 |
+
INFERENCE:
|
| 430 |
+
VOCAB: 'CLIP'
|
| 431 |
+
GENERATION_MODE: False
|
| 432 |
+
|
| 433 |
+
-
|
| 434 |
+
NAME: cc12m_retrieve
|
| 435 |
+
DATASETS:
|
| 436 |
+
TRAIN: 'ImageTextPairDataset'
|
| 437 |
+
TASK_TYPE: 'image_retrieval'
|
| 438 |
+
DATASET_NAME: 'CC12M'
|
| 439 |
+
DATALOADER:
|
| 440 |
+
TRAIN_BATCH_SIZE: 512
|
| 441 |
+
TEST_BATCH_SIZE: 32
|
| 442 |
+
NUM_WORKERS: 2
|
| 443 |
+
S3_ANNO_FOLDER: 's3://cc12m/'
|
| 444 |
+
ANNO_FOLDER: 'open_source_dataset/c12m/'
|
| 445 |
+
ANNO_FILENAME: 'train_available.json'
|
| 446 |
+
FEATS_FOLDER: 'open_source_dataset/c12m/'
|
| 447 |
+
S3_PATH: 's3://cc12m/'
|
| 448 |
+
SAMPLER: NodeDistributed
|
| 449 |
+
CACHE_MODE: True
|
| 450 |
+
CIRCULAR_CACHE_MODE: False
|
| 451 |
+
ZIP_MODE: False
|
| 452 |
+
CACHE_ORIGIN_IMAGE: False
|
| 453 |
+
RANDOM_CAPTION: False
|
| 454 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 455 |
+
SAMPLING_WEIGHT: 0.5057
|
| 456 |
+
TRANSFORM: 'clip_transforms'
|
| 457 |
+
MODEL:
|
| 458 |
+
MAX_SEQ_LEN: 50
|
| 459 |
+
TEMP_NAME: logit_scale_retrieve
|
| 460 |
+
LOSSES:
|
| 461 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 462 |
+
LABELSMOOTHING: 0.1
|
| 463 |
+
LOSS_WEIGHT: 0.5
|
| 464 |
+
REDUCTION: 'mean'
|
| 465 |
+
INFERENCE:
|
| 466 |
+
VOCAB: 'CLIP'
|
| 467 |
+
GENERATION_MODE: False
|
| 468 |
+
|
| 469 |
+
-
|
| 470 |
+
NAME: cc3m_retrieve
|
| 471 |
+
DATASETS:
|
| 472 |
+
TRAIN: 'ImageTextPairDataset'
|
| 473 |
+
TASK_TYPE: 'image_retrieval'
|
| 474 |
+
DATASET_NAME: 'CC3M'
|
| 475 |
+
DATALOADER:
|
| 476 |
+
TRAIN_BATCH_SIZE: 512
|
| 477 |
+
TEST_BATCH_SIZE: 32
|
| 478 |
+
NUM_WORKERS: 2
|
| 479 |
+
S3_ANNO_FOLDER: 's3://cc3m/'
|
| 480 |
+
ANNO_FOLDER: 'open_source_dataset/cc3m/'
|
| 481 |
+
ANNO_FILENAME: 'train_spacy.json'
|
| 482 |
+
FEATS_FOLDER: 'open_source_dataset/cc3m/'
|
| 483 |
+
S3_PATH: 's3://cc3m/'
|
| 484 |
+
SAMPLER: NodeDistributed
|
| 485 |
+
CACHE_MODE: True
|
| 486 |
+
CIRCULAR_CACHE_MODE: False
|
| 487 |
+
ZIP_MODE: False
|
| 488 |
+
CACHE_ORIGIN_IMAGE: False
|
| 489 |
+
RANDOM_CAPTION: False
|
| 490 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 491 |
+
SAMPLING_WEIGHT: 0.26295
|
| 492 |
+
TRANSFORM: 'clip_transforms'
|
| 493 |
+
MODEL:
|
| 494 |
+
MAX_SEQ_LEN: 50
|
| 495 |
+
TEMP_NAME: logit_scale_retrieve
|
| 496 |
+
LOSSES:
|
| 497 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 498 |
+
LABELSMOOTHING: 0.1
|
| 499 |
+
LOSS_WEIGHT: 0.5
|
| 500 |
+
REDUCTION: 'mean'
|
| 501 |
+
INFERENCE:
|
| 502 |
+
VOCAB: 'CLIP'
|
| 503 |
+
GENERATION_MODE: False
|
| 504 |
+
|
| 505 |
+
-
|
| 506 |
+
NAME: vg_retrieve
|
| 507 |
+
DATASETS:
|
| 508 |
+
TRAIN: 'ImageTextPairDataset'
|
| 509 |
+
TASK_TYPE: 'image_retrieval'
|
| 510 |
+
DATASET_NAME: 'VG'
|
| 511 |
+
DATALOADER:
|
| 512 |
+
TRAIN_BATCH_SIZE: 512
|
| 513 |
+
TEST_BATCH_SIZE: 32
|
| 514 |
+
NUM_WORKERS: 2
|
| 515 |
+
FEATS_FOLDER: 'open_source_dataset/visual_genome/images'
|
| 516 |
+
ANNO_FOLDER: 'open_source_dataset/visual_genome/annotations'
|
| 517 |
+
S3_PATH: 's3://visual_genome/images'
|
| 518 |
+
ANNO_FILENAME: 'vg_captions_128filter.json'
|
| 519 |
+
SEQ_PER_SAMPLE: 1
|
| 520 |
+
CACHE_MODE: True
|
| 521 |
+
CIRCULAR_CACHE_MODE: False
|
| 522 |
+
ZIP_MODE: False
|
| 523 |
+
CACHE_ORIGIN_IMAGE: False
|
| 524 |
+
RANDOM_CAPTION: False
|
| 525 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 526 |
+
SAMPLING_WEIGHT: 0.1766
|
| 527 |
+
TRANSFORM: 'clip_transforms'
|
| 528 |
+
MODEL:
|
| 529 |
+
MAX_SEQ_LEN: 30
|
| 530 |
+
TEMP_NAME: logit_scale_retrieve
|
| 531 |
+
LOSSES:
|
| 532 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 533 |
+
LABELSMOOTHING: 0.1
|
| 534 |
+
LOSS_WEIGHT: 0.5
|
| 535 |
+
REDUCTION: 'mean'
|
| 536 |
+
INFERENCE:
|
| 537 |
+
VOCAB: 'CLIP'
|
| 538 |
+
GENERATION_MODE: False
|
| 539 |
+
|
| 540 |
+
-
|
| 541 |
+
NAME: mscoco_retrieve
|
| 542 |
+
DATASETS:
|
| 543 |
+
TRAIN: 'ImageTextPairDataset'
|
| 544 |
+
# TEST: 'ImageTextPairDataset'
|
| 545 |
+
TASK_TYPE: 'image_retrieval'
|
| 546 |
+
DATASET_NAME: 'MSCOCO'
|
| 547 |
+
DATALOADER:
|
| 548 |
+
TRAIN_BATCH_SIZE: 512
|
| 549 |
+
TEST_BATCH_SIZE: 32
|
| 550 |
+
NUM_WORKERS: 1
|
| 551 |
+
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 552 |
+
ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 553 |
+
S3_PATH: 's3://coco/'
|
| 554 |
+
SEQ_PER_SAMPLE: 1
|
| 555 |
+
CACHE_MODE: True
|
| 556 |
+
CIRCULAR_CACHE_MODE: False
|
| 557 |
+
ZIP_MODE: False
|
| 558 |
+
CACHE_ORIGIN_IMAGE: False
|
| 559 |
+
RANDOM_CAPTION: False
|
| 560 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 561 |
+
SAMPLING_WEIGHT: 0.1144
|
| 562 |
+
TRANSFORM: 'clip_transforms'
|
| 563 |
+
MODEL:
|
| 564 |
+
MAX_SEQ_LEN: 50
|
| 565 |
+
TEMP_NAME: logit_scale_retrieve
|
| 566 |
+
LOSSES:
|
| 567 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 568 |
+
LABELSMOOTHING: 0.1
|
| 569 |
+
LOSS_WEIGHT: 0.5
|
| 570 |
+
REDUCTION: 'mean'
|
| 571 |
+
INFERENCE:
|
| 572 |
+
VOCAB: 'CLIP'
|
| 573 |
+
ID_KEY: 'image_id'
|
| 574 |
+
VALUE: 'caption'
|
| 575 |
+
NAME: 'RetrievalEvaler'
|
| 576 |
+
VAL_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_val_set0_2014.jsonline'
|
| 577 |
+
TEST_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_test_set0_2014.jsonline'
|
| 578 |
+
GENERATION_MODE: False
|
| 579 |
+
|
| 580 |
+
-
|
| 581 |
+
NAME: sbu_retrieve
|
| 582 |
+
DATASETS:
|
| 583 |
+
TRAIN: 'ImageTextPairDataset'
|
| 584 |
+
TASK_TYPE: 'image_retrieval'
|
| 585 |
+
DATASET_NAME: 'SBU'
|
| 586 |
+
DATALOADER:
|
| 587 |
+
TRAIN_BATCH_SIZE: 512
|
| 588 |
+
TEST_BATCH_SIZE: 32
|
| 589 |
+
NUM_WORKERS: 1
|
| 590 |
+
S3_ANNO_FOLDER: 's3://SBU/annotations'
|
| 591 |
+
ANNO_FOLDER: 'open_source_dataset/sbucaption/annotations'
|
| 592 |
+
ANNO_FILENAME: 'subcaption.json'
|
| 593 |
+
FEATS_FOLDER: 'open_source_dataset/sbucaption/'
|
| 594 |
+
S3_PATH: 's3://SBU/images'
|
| 595 |
+
SAMPLER: NodeDistributed
|
| 596 |
+
CACHE_MODE: True
|
| 597 |
+
CIRCULAR_CACHE_MODE: False
|
| 598 |
+
ZIP_MODE: False
|
| 599 |
+
CACHE_ORIGIN_IMAGE: False
|
| 600 |
+
RANDOM_CAPTION: False
|
| 601 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 602 |
+
SAMPLING_WEIGHT: 0.1383
|
| 603 |
+
TRANSFORM: 'clip_transforms'
|
| 604 |
+
MODEL:
|
| 605 |
+
MAX_SEQ_LEN: 50
|
| 606 |
+
TEMP_NAME: logit_scale_retrieve
|
| 607 |
+
LOSSES:
|
| 608 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 609 |
+
LABELSMOOTHING: 0.1
|
| 610 |
+
LOSS_WEIGHT: 0.5
|
| 611 |
+
REDUCTION: 'mean'
|
| 612 |
+
INFERENCE:
|
| 613 |
+
VOCAB: 'CLIP'
|
| 614 |
+
GENERATION_MODE: False
|
| 615 |
+
|
| 616 |
+
|
| 617 |
+
ENGINE:
|
| 618 |
+
NAME: 'UnifiedTrainer'
|
| 619 |
+
|
| 620 |
+
MODEL:
|
| 621 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 622 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 623 |
+
|
| 624 |
+
|
| 625 |
+
SHARE_LAYERNORM: True
|
| 626 |
+
BERT:
|
| 627 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 628 |
+
DROP_PATH_PROB: 0.1
|
| 629 |
+
DROP_PATH_PROB_FIXED: True
|
| 630 |
+
|
| 631 |
+
UNIFY_QKV: True
|
| 632 |
+
|
| 633 |
+
MODEL_EMA: False
|
| 634 |
+
MODEL_EMA_DECAY: 0.9999
|
| 635 |
+
|
| 636 |
+
MAEParamsInit: True
|
| 637 |
+
POSEMBEDFIX: True
|
| 638 |
+
|
| 639 |
+
|
| 640 |
+
IMG_INPUT_SIZE: 160
|
| 641 |
+
PATCH_SIZE: 16
|
| 642 |
+
|
| 643 |
+
LAYER_SCALE: True
|
| 644 |
+
LAYER_SCALE_INIT: 1e-3
|
| 645 |
+
|
| 646 |
+
|
| 647 |
+
DATALOADER:
|
| 648 |
+
USE_WEIGHTED_SAMPLER: True
|
| 649 |
+
UNIFIED_DATASET: True
|
| 650 |
+
NUM_WORKERS: 32
|
| 651 |
+
|
| 652 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 653 |
+
|
| 654 |
+
|
| 655 |
+
|
| 656 |
+
####################################### Optimizer #######################################
|
| 657 |
+
SOLVER:
|
| 658 |
+
NAME: 'Adam'
|
| 659 |
+
TORCH_OPTIMIZER: True
|
| 660 |
+
PARAMS_SEPERATE: True
|
| 661 |
+
# PARAMS_GROUP: True
|
| 662 |
+
# EPOCH: 1
|
| 663 |
+
MAX_ITER: 400000
|
| 664 |
+
CHECKPOINT_PERIOD: 5000
|
| 665 |
+
EVAL_PERIOD: 10000000
|
| 666 |
+
BASE_LR: 0.001
|
| 667 |
+
BIAS_LR_FACTOR: 1.0
|
| 668 |
+
WEIGHT_DECAY: 0.2
|
| 669 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 670 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 671 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 672 |
+
MOMENTUM: 0.9
|
| 673 |
+
DAMPENING: 0.0
|
| 674 |
+
NESTEROV: 0.0
|
| 675 |
+
BETAS: [0.9, 0.95]
|
| 676 |
+
EPS: 1e-6
|
| 677 |
+
GRAD_CLIP: 0.1
|
| 678 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 679 |
+
ACCUM_ITER: 0
|
| 680 |
+
AMP_FP16: True
|
| 681 |
+
APEX_FP16: False # dangerous
|
| 682 |
+
|
| 683 |
+
WRITE_PERIOD: 50
|
| 684 |
+
MIN_LOSS_SCLE: 2048.0
|
| 685 |
+
# BF16: False # True
|
| 686 |
+
# ZEROSTAGE: 2
|
| 687 |
+
|
| 688 |
+
LOSS_SCALE_WINDOW: 200
|
| 689 |
+
|
| 690 |
+
|
| 691 |
+
####################################### lr scheduler #######################################
|
| 692 |
+
LR_SCHEDULER:
|
| 693 |
+
NAME: 'WarmupCosine'
|
| 694 |
+
WARMUP: 10000
|
| 695 |
+
MIN_LR: 0.000001
|
| 696 |
+
|
| 697 |
+
####################################### evaluation #######################################
|
| 698 |
+
INFERENCE:
|
| 699 |
+
|
| 700 |
+
VOCAB: 'CLIP'
|
| 701 |
+
ITER_BASED: True
|
| 702 |
+
|
| 703 |
+
|
| 704 |
+
find_unused_parameters: true
|
| 705 |
+
|
| 706 |
+
# ENCODERS:
|
| 707 |
+
# -
|
| 708 |
+
# NAME: VisualEncoder
|
| 709 |
+
# TYPE: VisualEncoder
|
| 710 |
+
# DROP_PATH_PROB: 0.0
|
| 711 |
+
# HIDDEN_SIZE: 192
|
| 712 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 713 |
+
# HIDDEN_ACT: "gelu"
|
| 714 |
+
# NUM_ATTENTION_HEADS: 3
|
| 715 |
+
# INTERMEDIATE_SIZE: 768
|
| 716 |
+
# INTERMEDIATE_DROP: 0.
|
| 717 |
+
# FFN_DROPOUT_PROB: 0.
|
| 718 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 719 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 720 |
+
# NUM_GENERATION_LAYERS: 0
|
| 721 |
+
# DROP_PATH_PROB_FIXED: True
|
| 722 |
+
|
| 723 |
+
# -
|
| 724 |
+
# NAME: TextEncoder
|
| 725 |
+
# TYPE: TextEncoder
|
| 726 |
+
# DROP_PATH_PROB: 0.0
|
| 727 |
+
# HIDDEN_SIZE: 192
|
| 728 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 729 |
+
# HIDDEN_ACT: "gelu"
|
| 730 |
+
# NUM_ATTENTION_HEADS: 3
|
| 731 |
+
# INTERMEDIATE_SIZE: 768
|
| 732 |
+
# INTERMEDIATE_DROP: 0.
|
| 733 |
+
# FFN_DROPOUT_PROB: 0.
|
| 734 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 735 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 736 |
+
# NUM_GENERATION_LAYERS: 0
|
| 737 |
+
# DROP_PATH_PROB_FIXED: True
|
| 738 |
+
|
configs/BERT_L12_H768_experiments/16tasks_training_apex_o2.yaml
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "16tasks_training.yaml"
|
| 2 |
+
|
| 3 |
+
####################################### Optimizer #######################################
|
| 4 |
+
SOLVER:
|
| 5 |
+
|
| 6 |
+
AMP_FP16: False
|
| 7 |
+
APEX_FP16: True # dangerous
|
| 8 |
+
APEX_OPT_LEVEL: 'O2'
|
| 9 |
+
MIN_LOSS_SCLE: 128.0
|
| 10 |
+
CHECKPOINT_PERIOD: 10000
|
| 11 |
+
|
configs/BERT_L12_H768_experiments/16tasks_training_basedense_stage1_64gpu.yaml
ADDED
|
@@ -0,0 +1,739 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base_model_bert_l12_h768.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
-
|
| 6 |
+
NAME: 'ImageNet22k'
|
| 7 |
+
SHARED_TARGETS_CFG:
|
| 8 |
+
FILE_PATH: 'open_source_dataset/imagenet_22k_class_name_CLIP_with_endoftext.pkl'
|
| 9 |
+
DISTRIBUTED: True
|
| 10 |
+
|
| 11 |
+
-
|
| 12 |
+
NAME: 'Vocab_Word'
|
| 13 |
+
SHARED_TARGETS_CFG:
|
| 14 |
+
FILE_PATH: 'open_source_dataset/vocabulary_CLIP_with_endoftext.pkl'
|
| 15 |
+
DISTRIBUTED: True
|
| 16 |
+
|
| 17 |
+
-
|
| 18 |
+
NAME: 'MomentsInTime'
|
| 19 |
+
SHARED_TARGETS_CFG:
|
| 20 |
+
FILE_PATH: 'open_source_dataset/MiT_class_name_CLIP_with_endoftext.pkl'
|
| 21 |
+
DISTRIBUTED: False
|
| 22 |
+
|
| 23 |
+
-
|
| 24 |
+
NAME: 'Kinetics700'
|
| 25 |
+
SHARED_TARGETS_CFG:
|
| 26 |
+
FILE_PATH: 'open_source_dataset/k700_class_name_CLIP_with_endoftext.pkl'
|
| 27 |
+
DISTRIBUTED: False
|
| 28 |
+
|
| 29 |
+
TASKS:
|
| 30 |
+
|
| 31 |
+
-
|
| 32 |
+
NAME: imagenet22k
|
| 33 |
+
DATASETS:
|
| 34 |
+
TRAIN: 'ImageNet22KDataset'
|
| 35 |
+
TASK_TYPE: 'image_classification'
|
| 36 |
+
DATASET_NAME: 'ImageNet22k'
|
| 37 |
+
TARGET_SET: ['ImageNet22k']
|
| 38 |
+
|
| 39 |
+
DATALOADER:
|
| 40 |
+
TRAIN_BATCH_SIZE: 720
|
| 41 |
+
# TEST_BATCH_SIZE: 2
|
| 42 |
+
NUM_WORKERS: 2
|
| 43 |
+
FEATS_FOLDER: 'open_source_dataset/imagenet22k'
|
| 44 |
+
S3_PATH: 'cluster2:s3://imagenet22k'
|
| 45 |
+
ANNO_FOLDER: 'open_source_dataset/'
|
| 46 |
+
SAMPLING_WEIGHT: 2.486
|
| 47 |
+
MIXUP: 0.8
|
| 48 |
+
CUTMIX: 1.0
|
| 49 |
+
MIXUP_PROB: 1.0
|
| 50 |
+
MIXUP_SWITCH_PROB: 0.5
|
| 51 |
+
MIXUP_MODE: 'batch'
|
| 52 |
+
MIXUP_LABEL_SMOOTHING: 0.1
|
| 53 |
+
MODEL:
|
| 54 |
+
MAX_SEQ_LEN: -1
|
| 55 |
+
LABELS_NUM: 21842
|
| 56 |
+
TEMP_NAME: logit_scale_img_cls
|
| 57 |
+
LOSSES:
|
| 58 |
+
NAMES: ['SoftTargetCrossEntropy', 'Accuracy']
|
| 59 |
+
LOSS_WEIGHT: 1.0
|
| 60 |
+
REDUCTION: 'mean'
|
| 61 |
+
|
| 62 |
+
-
|
| 63 |
+
NAME: K700_retrieve
|
| 64 |
+
DATASETS:
|
| 65 |
+
TRAIN: 'VideoDataSet'
|
| 66 |
+
TASK_TYPE: 'video_classification'
|
| 67 |
+
DATASET_NAME: 'K700'
|
| 68 |
+
TARGET_SET: ['Kinetics700']
|
| 69 |
+
DATALOADER:
|
| 70 |
+
TRAIN_BATCH_SIZE: 64
|
| 71 |
+
TEST_BATCH_SIZE: 24
|
| 72 |
+
NUM_WORKERS: 2
|
| 73 |
+
FEATS_FOLDER: 'open_source_dataset/K700'
|
| 74 |
+
ANNO_FOLDER: 'open_source_dataset/K700'
|
| 75 |
+
S3_PATH: 's3://K700/'
|
| 76 |
+
FRAMES_PER_CLIP: 4
|
| 77 |
+
STRIDE: 32
|
| 78 |
+
FILE_EXTENSION: ''
|
| 79 |
+
ANNO_FILE: 'annotation.json'
|
| 80 |
+
TIMESFORMER_AUG: True
|
| 81 |
+
SAMPLING_WEIGHT: 0.76
|
| 82 |
+
|
| 83 |
+
MODEL:
|
| 84 |
+
MAX_SEQ_LEN: -1
|
| 85 |
+
TEMP_NAME: logit_scale_video_cls
|
| 86 |
+
LOSSES:
|
| 87 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 88 |
+
LABELSMOOTHING: 0.1
|
| 89 |
+
LOSS_WEIGHT: 0.1
|
| 90 |
+
INFERENCE:
|
| 91 |
+
VOCAB: 'CLIP'
|
| 92 |
+
GENERATION_MODE: False
|
| 93 |
+
|
| 94 |
+
-
|
| 95 |
+
NAME: MomentsInTime
|
| 96 |
+
DATASETS:
|
| 97 |
+
TRAIN: 'VideoDataSet'
|
| 98 |
+
TASK_TYPE: 'video_classification'
|
| 99 |
+
DATASET_NAME: 'MiT'
|
| 100 |
+
TARGET_SET: ['MomentsInTime']
|
| 101 |
+
DATALOADER:
|
| 102 |
+
TRAIN_BATCH_SIZE: 112
|
| 103 |
+
TEST_BATCH_SIZE: 8
|
| 104 |
+
NUM_WORKERS: 2
|
| 105 |
+
FEATS_FOLDER: 'open_source_dataset/MomentsInTime'
|
| 106 |
+
ANNO_FOLDER: 'open_source_dataset/MomentsInTime'
|
| 107 |
+
S3_PATH: 's3://MomentsInTime/'
|
| 108 |
+
FRAMES_PER_CLIP: 3
|
| 109 |
+
STRIDE: 32
|
| 110 |
+
FILE_EXTENSION: ''
|
| 111 |
+
ANNO_FILE: 'annotation.json'
|
| 112 |
+
TIMESFORMER_AUG: True
|
| 113 |
+
SAMPLING_WEIGHT: 0.44
|
| 114 |
+
|
| 115 |
+
MODEL:
|
| 116 |
+
MAX_SEQ_LEN: -1
|
| 117 |
+
TEMP_NAME: logit_scale_video_cls
|
| 118 |
+
LOSSES:
|
| 119 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 120 |
+
LABELSMOOTHING: 0.1
|
| 121 |
+
LOSS_WEIGHT: 0.1
|
| 122 |
+
INFERENCE:
|
| 123 |
+
NAME: 'MiTEvaler'
|
| 124 |
+
ID_KEY: 'video_name'
|
| 125 |
+
VALUE: 'label'
|
| 126 |
+
VAL_ANNFILE: 'open_source_dataset/MomentsInTime/annotation.json'
|
| 127 |
+
TEST_ANNFILE: ''
|
| 128 |
+
GENERATION_MODE: False
|
| 129 |
+
NUM_VIEWS: 1
|
| 130 |
+
|
| 131 |
+
-
|
| 132 |
+
NAME: bookswiki_pretrain
|
| 133 |
+
DATASETS:
|
| 134 |
+
TRAIN: 'GeneralCorpusDataset'
|
| 135 |
+
TASK_TYPE: 'text_mlm'
|
| 136 |
+
DATASET_NAME: 'BooksWiki'
|
| 137 |
+
TARGET_SET: ['Vocab_Word']
|
| 138 |
+
VERSION: 'v2'
|
| 139 |
+
DATALOADER:
|
| 140 |
+
TRAIN_BATCH_SIZE: 512
|
| 141 |
+
TEST_BATCH_SIZE: 32
|
| 142 |
+
NUM_WORKERS: 2
|
| 143 |
+
ANNO_FOLDER: 'open_source_dataset/text_corpus' # 'open_source_dataset/bert_pretrain_data/bookswiki'
|
| 144 |
+
# ANNO_FOLDER: 'open_source_dataset/bert_pretrain_data/bookswiki'
|
| 145 |
+
SEQ_PER_SAMPLE: 1
|
| 146 |
+
SAMPLER: NodeDistributed
|
| 147 |
+
CACHE_MODE: True
|
| 148 |
+
SEQ_PER_SAMPLE: 128
|
| 149 |
+
MIN_SEQ_PER_SAMPLE: 128
|
| 150 |
+
APPEND_EOS: True
|
| 151 |
+
ONE_STREAM: False
|
| 152 |
+
SAMPLING_WEIGHT: 2.75
|
| 153 |
+
RANDOM_MASK: True
|
| 154 |
+
MODEL:
|
| 155 |
+
MAX_SEQ_LEN: 128
|
| 156 |
+
TEMP_NAME: logit_scale_text_mlm
|
| 157 |
+
LOSSES:
|
| 158 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 159 |
+
LOSS_WEIGHT: 0.5
|
| 160 |
+
REDUCTION: 'mean'
|
| 161 |
+
INFERENCE:
|
| 162 |
+
VOCAB: 'CLIP'
|
| 163 |
+
GENERATION_MODE: False
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
-
|
| 167 |
+
NAME: yfcc_caption
|
| 168 |
+
DATASETS:
|
| 169 |
+
TRAIN: 'ImageTextPairDataset'
|
| 170 |
+
TASK_TYPE: 'image_caption'
|
| 171 |
+
DATASET_NAME: 'YFCC'
|
| 172 |
+
TARGET_SET: ['Vocab_Word']
|
| 173 |
+
DATALOADER:
|
| 174 |
+
TRAIN_BATCH_SIZE: 300
|
| 175 |
+
TEST_BATCH_SIZE: 32
|
| 176 |
+
NUM_WORKERS: 2
|
| 177 |
+
S3_ANNO_FOLDER: 'cluster2:s3://yfcc'
|
| 178 |
+
ANNO_FOLDER: 'open_source_dataset/yfcc'
|
| 179 |
+
ANNO_FILENAME: 'yfcc100m_subset_available_untokenized.json'
|
| 180 |
+
FEATS_FOLDER: 'open_source_dataset/yfcc/'
|
| 181 |
+
S3_PATH: 'cluster2:s3://yfcc/'
|
| 182 |
+
SEQ_PER_SAMPLE: 1
|
| 183 |
+
SAMPLER: NodeDistributed
|
| 184 |
+
CACHE_MODE: True
|
| 185 |
+
CIRCULAR_CACHE_MODE: False
|
| 186 |
+
ZIP_MODE: False
|
| 187 |
+
CACHE_ORIGIN_IMAGE: False
|
| 188 |
+
RANDOM_CAPTION: True
|
| 189 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 190 |
+
SAMPLING_WEIGHT: 0.5840
|
| 191 |
+
TRANSFORM: 'clip_transforms'
|
| 192 |
+
MODEL:
|
| 193 |
+
MAX_SEQ_LEN: 50
|
| 194 |
+
TEMP_NAME: logit_scale_caption
|
| 195 |
+
LOSSES:
|
| 196 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 197 |
+
LOSS_WEIGHT: 1.0
|
| 198 |
+
REDUCTION: 'mean'
|
| 199 |
+
INFERENCE:
|
| 200 |
+
VOCAB: 'CLIP'
|
| 201 |
+
GENERATION_MODE: False
|
| 202 |
+
|
| 203 |
+
-
|
| 204 |
+
NAME: cc12m_caption
|
| 205 |
+
DATASETS:
|
| 206 |
+
TRAIN: 'ImageTextPairDataset'
|
| 207 |
+
TASK_TYPE: 'image_caption'
|
| 208 |
+
DATASET_NAME: 'CC12M'
|
| 209 |
+
TARGET_SET: ['Vocab_Word']
|
| 210 |
+
DATALOADER:
|
| 211 |
+
TRAIN_BATCH_SIZE: 300
|
| 212 |
+
TEST_BATCH_SIZE: 32
|
| 213 |
+
NUM_WORKERS: 2
|
| 214 |
+
S3_ANNO_FOLDER: 's3://cc12m/'
|
| 215 |
+
ANNO_FOLDER: 'open_source_dataset/c12m/'
|
| 216 |
+
ANNO_FILENAME: 'train_available.json'
|
| 217 |
+
FEATS_FOLDER: 'open_source_dataset/c12m/'
|
| 218 |
+
S3_PATH: 's3://cc12m/'
|
| 219 |
+
SEQ_PER_SAMPLE: 1
|
| 220 |
+
SAMPLER: NodeDistributed
|
| 221 |
+
CACHE_MODE: True
|
| 222 |
+
CIRCULAR_CACHE_MODE: False
|
| 223 |
+
ZIP_MODE: False
|
| 224 |
+
CACHE_ORIGIN_IMAGE: False
|
| 225 |
+
RANDOM_CAPTION: False
|
| 226 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 227 |
+
SAMPLING_WEIGHT: 0.5057
|
| 228 |
+
TRANSFORM: 'clip_transforms'
|
| 229 |
+
MODEL:
|
| 230 |
+
MAX_SEQ_LEN: 50
|
| 231 |
+
TEMP_NAME: logit_scale_caption
|
| 232 |
+
LOSSES:
|
| 233 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 234 |
+
LOSS_WEIGHT: 1.0
|
| 235 |
+
REDUCTION: 'mean'
|
| 236 |
+
INFERENCE:
|
| 237 |
+
VOCAB: 'CLIP'
|
| 238 |
+
GENERATION_MODE: False
|
| 239 |
+
|
| 240 |
+
-
|
| 241 |
+
NAME: cc3m_caption
|
| 242 |
+
DATASETS:
|
| 243 |
+
TRAIN: 'ImageTextPairDataset'
|
| 244 |
+
TASK_TYPE: 'image_caption'
|
| 245 |
+
DATASET_NAME: 'CC3M'
|
| 246 |
+
TARGET_SET: ['Vocab_Word']
|
| 247 |
+
DATALOADER:
|
| 248 |
+
TRAIN_BATCH_SIZE: 300
|
| 249 |
+
TEST_BATCH_SIZE: 32
|
| 250 |
+
NUM_WORKERS: 2
|
| 251 |
+
S3_ANNO_FOLDER: 's3://cc3m/'
|
| 252 |
+
ANNO_FOLDER: 'open_source_dataset/cc3m/'
|
| 253 |
+
ANNO_FILENAME: 'train_spacy.json'
|
| 254 |
+
FEATS_FOLDER: 'open_source_dataset/cc3m/'
|
| 255 |
+
S3_PATH: 's3://cc3m/'
|
| 256 |
+
SEQ_PER_SAMPLE: 1
|
| 257 |
+
SAMPLER: NodeDistributed
|
| 258 |
+
CACHE_MODE: True
|
| 259 |
+
CIRCULAR_CACHE_MODE: False
|
| 260 |
+
ZIP_MODE: False
|
| 261 |
+
CACHE_ORIGIN_IMAGE: False
|
| 262 |
+
RANDOM_CAPTION: False
|
| 263 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 264 |
+
SAMPLING_WEIGHT: 0.26295
|
| 265 |
+
TRANSFORM: 'clip_transforms'
|
| 266 |
+
MODEL:
|
| 267 |
+
MAX_SEQ_LEN: 50
|
| 268 |
+
TEMP_NAME: logit_scale_caption
|
| 269 |
+
LOSSES:
|
| 270 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 271 |
+
LOSS_WEIGHT: 1.0
|
| 272 |
+
REDUCTION: 'mean'
|
| 273 |
+
INFERENCE:
|
| 274 |
+
VOCAB: 'CLIP'
|
| 275 |
+
GENERATION_MODE: False
|
| 276 |
+
|
| 277 |
+
-
|
| 278 |
+
NAME: vg_caption
|
| 279 |
+
DATASETS:
|
| 280 |
+
TRAIN: 'ImageTextPairDataset'
|
| 281 |
+
TASK_TYPE: 'image_caption'
|
| 282 |
+
DATASET_NAME: 'VG'
|
| 283 |
+
TARGET_SET: ['Vocab_Word']
|
| 284 |
+
DATALOADER:
|
| 285 |
+
TRAIN_BATCH_SIZE: 300
|
| 286 |
+
TEST_BATCH_SIZE: 32
|
| 287 |
+
NUM_WORKERS: 2
|
| 288 |
+
FEATS_FOLDER: 'open_source_dataset/visual_genome/images'
|
| 289 |
+
ANNO_FOLDER: 'open_source_dataset/visual_genome/annotations'
|
| 290 |
+
S3_PATH: 's3://visual_genome/images'
|
| 291 |
+
ANNO_FILENAME: 'vg_captions_128filter.json'
|
| 292 |
+
SEQ_PER_SAMPLE: 1
|
| 293 |
+
CACHE_MODE: True
|
| 294 |
+
CIRCULAR_CACHE_MODE: False
|
| 295 |
+
ZIP_MODE: False
|
| 296 |
+
CACHE_ORIGIN_IMAGE: False
|
| 297 |
+
RANDOM_CAPTION: False
|
| 298 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 299 |
+
SAMPLING_WEIGHT: 0.1766
|
| 300 |
+
TRANSFORM: 'clip_transforms'
|
| 301 |
+
MODEL:
|
| 302 |
+
MAX_SEQ_LEN: 30
|
| 303 |
+
TEMP_NAME: logit_scale_caption
|
| 304 |
+
LOSSES:
|
| 305 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 306 |
+
LOSS_WEIGHT: 1.0
|
| 307 |
+
REDUCTION: 'mean'
|
| 308 |
+
INFERENCE:
|
| 309 |
+
VOCAB: 'CLIP'
|
| 310 |
+
GENERATION_MODE: True
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
-
|
| 314 |
+
NAME: mscoco_caption
|
| 315 |
+
DATASETS:
|
| 316 |
+
TRAIN: 'ImageTextPairDataset'
|
| 317 |
+
# VAL: 'ImageTextPairDataset'
|
| 318 |
+
# TEST: 'ImageTextPairDataset'
|
| 319 |
+
TASK_TYPE: 'image_caption'
|
| 320 |
+
DATASET_NAME: 'MSCOCO'
|
| 321 |
+
TARGET_SET: ['Vocab_Word']
|
| 322 |
+
DATALOADER:
|
| 323 |
+
TRAIN_BATCH_SIZE: 300
|
| 324 |
+
TEST_BATCH_SIZE: 32
|
| 325 |
+
NUM_WORKERS: 1
|
| 326 |
+
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 327 |
+
ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 328 |
+
S3_PATH: 's3://coco/'
|
| 329 |
+
SEQ_PER_SAMPLE: 1
|
| 330 |
+
CACHE_MODE: True
|
| 331 |
+
CIRCULAR_CACHE_MODE: False
|
| 332 |
+
ZIP_MODE: False
|
| 333 |
+
CACHE_ORIGIN_IMAGE: False
|
| 334 |
+
RANDOM_CAPTION: False
|
| 335 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 336 |
+
SAMPLING_WEIGHT: 0.1144
|
| 337 |
+
TRANSFORM: 'clip_transforms'
|
| 338 |
+
RANDOM_MASK: True
|
| 339 |
+
MODEL:
|
| 340 |
+
MAX_SEQ_LEN: 50
|
| 341 |
+
EVAL_MAX_SEQ_LEN: 21
|
| 342 |
+
TEMP_NAME: logit_scale_caption
|
| 343 |
+
LOSSES:
|
| 344 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 345 |
+
LOSS_WEIGHT: 1.0
|
| 346 |
+
REDUCTION: 'mean'
|
| 347 |
+
DECODE_STRATEGY:
|
| 348 |
+
NAME: 'CaptionBeamSearcherV3'
|
| 349 |
+
BEAM_SIZE: 2
|
| 350 |
+
# LEN_PENALTY: 1.0
|
| 351 |
+
INFERENCE:
|
| 352 |
+
NAME: 'COCOEvaler'
|
| 353 |
+
VOCAB: 'CLIP'
|
| 354 |
+
ID_KEY: 'image_id'
|
| 355 |
+
VALUE: 'caption'
|
| 356 |
+
VAL_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_val5k.json'
|
| 357 |
+
TEST_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_test5k.json'
|
| 358 |
+
GENERATION_MODE: True
|
| 359 |
+
|
| 360 |
+
-
|
| 361 |
+
NAME: sbu_caption
|
| 362 |
+
DATASETS:
|
| 363 |
+
TRAIN: 'ImageTextPairDataset'
|
| 364 |
+
TASK_TYPE: 'image_caption'
|
| 365 |
+
DATASET_NAME: 'SBU'
|
| 366 |
+
TARGET_SET: ['Vocab_Word']
|
| 367 |
+
DATALOADER:
|
| 368 |
+
TRAIN_BATCH_SIZE: 300
|
| 369 |
+
TEST_BATCH_SIZE: 32
|
| 370 |
+
NUM_WORKERS: 1
|
| 371 |
+
S3_ANNO_FOLDER: 's3://SBU/annotations'
|
| 372 |
+
ANNO_FOLDER: 'open_source_dataset/sbucaption/annotations'
|
| 373 |
+
ANNO_FILENAME: 'subcaption.json'
|
| 374 |
+
FEATS_FOLDER: 'open_source_dataset/sbucaption/'
|
| 375 |
+
S3_PATH: 's3://SBU/images'
|
| 376 |
+
SEQ_PER_SAMPLE: 1
|
| 377 |
+
SAMPLER: NodeDistributed
|
| 378 |
+
CACHE_MODE: True
|
| 379 |
+
CIRCULAR_CACHE_MODE: False
|
| 380 |
+
ZIP_MODE: False
|
| 381 |
+
CACHE_ORIGIN_IMAGE: False
|
| 382 |
+
RANDOM_CAPTION: False
|
| 383 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 384 |
+
SAMPLING_WEIGHT: 0.1383
|
| 385 |
+
TRANSFORM: 'clip_transforms'
|
| 386 |
+
MODEL:
|
| 387 |
+
MAX_SEQ_LEN: 50
|
| 388 |
+
TEMP_NAME: logit_scale_caption
|
| 389 |
+
LOSSES:
|
| 390 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 391 |
+
LOSS_WEIGHT: 1.0
|
| 392 |
+
REDUCTION: 'mean'
|
| 393 |
+
INFERENCE:
|
| 394 |
+
VOCAB: 'CLIP'
|
| 395 |
+
GENERATION_MODE: False
|
| 396 |
+
|
| 397 |
+
-
|
| 398 |
+
NAME: yfcc_retrieve
|
| 399 |
+
DATASETS:
|
| 400 |
+
TRAIN: 'ImageTextPairDataset'
|
| 401 |
+
TASK_TYPE: 'image_retrieval'
|
| 402 |
+
DATASET_NAME: 'YFCC'
|
| 403 |
+
DATALOADER:
|
| 404 |
+
TRAIN_BATCH_SIZE: 512
|
| 405 |
+
TEST_BATCH_SIZE: 32
|
| 406 |
+
NUM_WORKERS: 2
|
| 407 |
+
S3_ANNO_FOLDER: 'cluster2:s3://yfcc'
|
| 408 |
+
ANNO_FOLDER: 'open_source_dataset/yfcc'
|
| 409 |
+
ANNO_FILENAME: 'yfcc100m_subset_available_untokenized.json'
|
| 410 |
+
FEATS_FOLDER: 'open_source_dataset/yfcc/'
|
| 411 |
+
S3_PATH: 'cluster2:s3://yfcc/'
|
| 412 |
+
SAMPLER: NodeDistributed
|
| 413 |
+
CACHE_MODE: True
|
| 414 |
+
CIRCULAR_CACHE_MODE: False
|
| 415 |
+
ZIP_MODE: False
|
| 416 |
+
CACHE_ORIGIN_IMAGE: False
|
| 417 |
+
RANDOM_CAPTION: True
|
| 418 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 419 |
+
SAMPLING_WEIGHT: 0.5840
|
| 420 |
+
TRANSFORM: 'clip_transforms'
|
| 421 |
+
MODEL:
|
| 422 |
+
MAX_SEQ_LEN: 50
|
| 423 |
+
TEMP_NAME: logit_scale_retrieve
|
| 424 |
+
LOSSES:
|
| 425 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 426 |
+
LABELSMOOTHING: 0.1
|
| 427 |
+
LOSS_WEIGHT: 0.5
|
| 428 |
+
REDUCTION: 'mean'
|
| 429 |
+
INFERENCE:
|
| 430 |
+
VOCAB: 'CLIP'
|
| 431 |
+
GENERATION_MODE: False
|
| 432 |
+
|
| 433 |
+
-
|
| 434 |
+
NAME: cc12m_retrieve
|
| 435 |
+
DATASETS:
|
| 436 |
+
TRAIN: 'ImageTextPairDataset'
|
| 437 |
+
TASK_TYPE: 'image_retrieval'
|
| 438 |
+
DATASET_NAME: 'CC12M'
|
| 439 |
+
DATALOADER:
|
| 440 |
+
TRAIN_BATCH_SIZE: 512
|
| 441 |
+
TEST_BATCH_SIZE: 32
|
| 442 |
+
NUM_WORKERS: 2
|
| 443 |
+
S3_ANNO_FOLDER: 's3://cc12m/'
|
| 444 |
+
ANNO_FOLDER: 'open_source_dataset/c12m/'
|
| 445 |
+
ANNO_FILENAME: 'train_available.json'
|
| 446 |
+
FEATS_FOLDER: 'open_source_dataset/c12m/'
|
| 447 |
+
S3_PATH: 's3://cc12m/'
|
| 448 |
+
SAMPLER: NodeDistributed
|
| 449 |
+
CACHE_MODE: True
|
| 450 |
+
CIRCULAR_CACHE_MODE: False
|
| 451 |
+
ZIP_MODE: False
|
| 452 |
+
CACHE_ORIGIN_IMAGE: False
|
| 453 |
+
RANDOM_CAPTION: False
|
| 454 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 455 |
+
SAMPLING_WEIGHT: 0.5057
|
| 456 |
+
TRANSFORM: 'clip_transforms'
|
| 457 |
+
MODEL:
|
| 458 |
+
MAX_SEQ_LEN: 50
|
| 459 |
+
TEMP_NAME: logit_scale_retrieve
|
| 460 |
+
LOSSES:
|
| 461 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 462 |
+
LABELSMOOTHING: 0.1
|
| 463 |
+
LOSS_WEIGHT: 0.5
|
| 464 |
+
REDUCTION: 'mean'
|
| 465 |
+
INFERENCE:
|
| 466 |
+
VOCAB: 'CLIP'
|
| 467 |
+
GENERATION_MODE: False
|
| 468 |
+
|
| 469 |
+
-
|
| 470 |
+
NAME: cc3m_retrieve
|
| 471 |
+
DATASETS:
|
| 472 |
+
TRAIN: 'ImageTextPairDataset'
|
| 473 |
+
TASK_TYPE: 'image_retrieval'
|
| 474 |
+
DATASET_NAME: 'CC3M'
|
| 475 |
+
DATALOADER:
|
| 476 |
+
TRAIN_BATCH_SIZE: 512
|
| 477 |
+
TEST_BATCH_SIZE: 32
|
| 478 |
+
NUM_WORKERS: 2
|
| 479 |
+
S3_ANNO_FOLDER: 's3://cc3m/'
|
| 480 |
+
ANNO_FOLDER: 'open_source_dataset/cc3m/'
|
| 481 |
+
ANNO_FILENAME: 'train_spacy.json'
|
| 482 |
+
FEATS_FOLDER: 'open_source_dataset/cc3m/'
|
| 483 |
+
S3_PATH: 's3://cc3m/'
|
| 484 |
+
SAMPLER: NodeDistributed
|
| 485 |
+
CACHE_MODE: True
|
| 486 |
+
CIRCULAR_CACHE_MODE: False
|
| 487 |
+
ZIP_MODE: False
|
| 488 |
+
CACHE_ORIGIN_IMAGE: False
|
| 489 |
+
RANDOM_CAPTION: False
|
| 490 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 491 |
+
SAMPLING_WEIGHT: 0.26295
|
| 492 |
+
TRANSFORM: 'clip_transforms'
|
| 493 |
+
MODEL:
|
| 494 |
+
MAX_SEQ_LEN: 50
|
| 495 |
+
TEMP_NAME: logit_scale_retrieve
|
| 496 |
+
LOSSES:
|
| 497 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 498 |
+
LABELSMOOTHING: 0.1
|
| 499 |
+
LOSS_WEIGHT: 0.5
|
| 500 |
+
REDUCTION: 'mean'
|
| 501 |
+
INFERENCE:
|
| 502 |
+
VOCAB: 'CLIP'
|
| 503 |
+
GENERATION_MODE: False
|
| 504 |
+
|
| 505 |
+
-
|
| 506 |
+
NAME: vg_retrieve
|
| 507 |
+
DATASETS:
|
| 508 |
+
TRAIN: 'ImageTextPairDataset'
|
| 509 |
+
TASK_TYPE: 'image_retrieval'
|
| 510 |
+
DATASET_NAME: 'VG'
|
| 511 |
+
DATALOADER:
|
| 512 |
+
TRAIN_BATCH_SIZE: 512
|
| 513 |
+
TEST_BATCH_SIZE: 32
|
| 514 |
+
NUM_WORKERS: 2
|
| 515 |
+
FEATS_FOLDER: 'open_source_dataset/visual_genome/images'
|
| 516 |
+
ANNO_FOLDER: 'open_source_dataset/visual_genome/annotations'
|
| 517 |
+
S3_PATH: 's3://visual_genome/images'
|
| 518 |
+
ANNO_FILENAME: 'vg_captions_128filter.json'
|
| 519 |
+
SEQ_PER_SAMPLE: 1
|
| 520 |
+
CACHE_MODE: True
|
| 521 |
+
CIRCULAR_CACHE_MODE: False
|
| 522 |
+
ZIP_MODE: False
|
| 523 |
+
CACHE_ORIGIN_IMAGE: False
|
| 524 |
+
RANDOM_CAPTION: False
|
| 525 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 526 |
+
SAMPLING_WEIGHT: 0.1766
|
| 527 |
+
TRANSFORM: 'clip_transforms'
|
| 528 |
+
MODEL:
|
| 529 |
+
MAX_SEQ_LEN: 30
|
| 530 |
+
TEMP_NAME: logit_scale_retrieve
|
| 531 |
+
LOSSES:
|
| 532 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 533 |
+
LABELSMOOTHING: 0.1
|
| 534 |
+
LOSS_WEIGHT: 0.5
|
| 535 |
+
REDUCTION: 'mean'
|
| 536 |
+
INFERENCE:
|
| 537 |
+
VOCAB: 'CLIP'
|
| 538 |
+
GENERATION_MODE: False
|
| 539 |
+
|
| 540 |
+
-
|
| 541 |
+
NAME: mscoco_retrieve
|
| 542 |
+
DATASETS:
|
| 543 |
+
TRAIN: 'ImageTextPairDataset'
|
| 544 |
+
# TEST: 'ImageTextPairDataset'
|
| 545 |
+
TASK_TYPE: 'image_retrieval'
|
| 546 |
+
DATASET_NAME: 'MSCOCO'
|
| 547 |
+
DATALOADER:
|
| 548 |
+
TRAIN_BATCH_SIZE: 512
|
| 549 |
+
TEST_BATCH_SIZE: 32
|
| 550 |
+
NUM_WORKERS: 1
|
| 551 |
+
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 552 |
+
ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 553 |
+
S3_PATH: 's3://coco/'
|
| 554 |
+
SEQ_PER_SAMPLE: 1
|
| 555 |
+
CACHE_MODE: True
|
| 556 |
+
CIRCULAR_CACHE_MODE: False
|
| 557 |
+
ZIP_MODE: False
|
| 558 |
+
CACHE_ORIGIN_IMAGE: False
|
| 559 |
+
RANDOM_CAPTION: False
|
| 560 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 561 |
+
SAMPLING_WEIGHT: 0.1144
|
| 562 |
+
TRANSFORM: 'clip_transforms'
|
| 563 |
+
MODEL:
|
| 564 |
+
MAX_SEQ_LEN: 50
|
| 565 |
+
TEMP_NAME: logit_scale_retrieve
|
| 566 |
+
LOSSES:
|
| 567 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 568 |
+
LABELSMOOTHING: 0.1
|
| 569 |
+
LOSS_WEIGHT: 0.5
|
| 570 |
+
REDUCTION: 'mean'
|
| 571 |
+
INFERENCE:
|
| 572 |
+
VOCAB: 'CLIP'
|
| 573 |
+
ID_KEY: 'image_id'
|
| 574 |
+
VALUE: 'caption'
|
| 575 |
+
NAME: 'RetrievalEvaler'
|
| 576 |
+
VAL_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_val_set0_2014.jsonline'
|
| 577 |
+
TEST_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_test_set0_2014.jsonline'
|
| 578 |
+
GENERATION_MODE: False
|
| 579 |
+
|
| 580 |
+
-
|
| 581 |
+
NAME: sbu_retrieve
|
| 582 |
+
DATASETS:
|
| 583 |
+
TRAIN: 'ImageTextPairDataset'
|
| 584 |
+
TASK_TYPE: 'image_retrieval'
|
| 585 |
+
DATASET_NAME: 'SBU'
|
| 586 |
+
DATALOADER:
|
| 587 |
+
TRAIN_BATCH_SIZE: 512
|
| 588 |
+
TEST_BATCH_SIZE: 32
|
| 589 |
+
NUM_WORKERS: 1
|
| 590 |
+
S3_ANNO_FOLDER: 's3://SBU/annotations'
|
| 591 |
+
ANNO_FOLDER: 'open_source_dataset/sbucaption/annotations'
|
| 592 |
+
ANNO_FILENAME: 'subcaption.json'
|
| 593 |
+
FEATS_FOLDER: 'open_source_dataset/sbucaption/'
|
| 594 |
+
S3_PATH: 's3://SBU/images'
|
| 595 |
+
SAMPLER: NodeDistributed
|
| 596 |
+
CACHE_MODE: True
|
| 597 |
+
CIRCULAR_CACHE_MODE: False
|
| 598 |
+
ZIP_MODE: False
|
| 599 |
+
CACHE_ORIGIN_IMAGE: False
|
| 600 |
+
RANDOM_CAPTION: False
|
| 601 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 602 |
+
SAMPLING_WEIGHT: 0.1383
|
| 603 |
+
TRANSFORM: 'clip_transforms'
|
| 604 |
+
MODEL:
|
| 605 |
+
MAX_SEQ_LEN: 50
|
| 606 |
+
TEMP_NAME: logit_scale_retrieve
|
| 607 |
+
LOSSES:
|
| 608 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 609 |
+
LABELSMOOTHING: 0.1
|
| 610 |
+
LOSS_WEIGHT: 0.5
|
| 611 |
+
REDUCTION: 'mean'
|
| 612 |
+
INFERENCE:
|
| 613 |
+
VOCAB: 'CLIP'
|
| 614 |
+
GENERATION_MODE: False
|
| 615 |
+
|
| 616 |
+
|
| 617 |
+
ENGINE:
|
| 618 |
+
NAME: 'UnifiedTrainer'
|
| 619 |
+
|
| 620 |
+
MODEL:
|
| 621 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 622 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 623 |
+
|
| 624 |
+
|
| 625 |
+
SHARE_LAYERNORM: True
|
| 626 |
+
BERT:
|
| 627 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 628 |
+
DROP_PATH_PROB: 0.1
|
| 629 |
+
DROP_PATH_PROB_FIXED: True
|
| 630 |
+
|
| 631 |
+
UNIFY_QKV: True
|
| 632 |
+
|
| 633 |
+
MODEL_EMA: False
|
| 634 |
+
MODEL_EMA_DECAY: 0.9999
|
| 635 |
+
|
| 636 |
+
MAEParamsInit: True
|
| 637 |
+
POSEMBEDFIX: True
|
| 638 |
+
|
| 639 |
+
|
| 640 |
+
IMG_INPUT_SIZE: 160
|
| 641 |
+
PATCH_SIZE: 16
|
| 642 |
+
|
| 643 |
+
LAYER_SCALE: True
|
| 644 |
+
LAYER_SCALE_INIT: 1e-3
|
| 645 |
+
OLD_CHECKPONT: True
|
| 646 |
+
|
| 647 |
+
|
| 648 |
+
DATALOADER:
|
| 649 |
+
USE_WEIGHTED_SAMPLER: True
|
| 650 |
+
UNIFIED_DATASET: True
|
| 651 |
+
NUM_WORKERS: 32
|
| 652 |
+
|
| 653 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 654 |
+
|
| 655 |
+
|
| 656 |
+
|
| 657 |
+
####################################### Optimizer #######################################
|
| 658 |
+
SOLVER:
|
| 659 |
+
NAME: 'Adam'
|
| 660 |
+
TORCH_OPTIMIZER: True
|
| 661 |
+
PARAMS_SEPERATE: True
|
| 662 |
+
# PARAMS_GROUP: True
|
| 663 |
+
# EPOCH: 1
|
| 664 |
+
MAX_ITER: 200000
|
| 665 |
+
CHECKPOINT_PERIOD: 10000
|
| 666 |
+
EVAL_PERIOD: 10000000
|
| 667 |
+
BASE_LR: 0.001
|
| 668 |
+
BIAS_LR_FACTOR: 1.0
|
| 669 |
+
WEIGHT_DECAY: 0.2
|
| 670 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 671 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 672 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 673 |
+
MOMENTUM: 0.9
|
| 674 |
+
DAMPENING: 0.0
|
| 675 |
+
NESTEROV: 0.0
|
| 676 |
+
BETAS: [0.9, 0.95]
|
| 677 |
+
EPS: 1e-6
|
| 678 |
+
GRAD_CLIP: 0.1
|
| 679 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 680 |
+
ACCUM_ITER: 0
|
| 681 |
+
AMP_FP16: True
|
| 682 |
+
APEX_FP16: False # dangerous
|
| 683 |
+
|
| 684 |
+
WRITE_PERIOD: 50
|
| 685 |
+
MIN_LOSS_SCLE: 2048.0
|
| 686 |
+
# BF16: False # True
|
| 687 |
+
# ZEROSTAGE: 2
|
| 688 |
+
|
| 689 |
+
LOSS_SCALE_WINDOW: 200
|
| 690 |
+
|
| 691 |
+
|
| 692 |
+
####################################### lr scheduler #######################################
|
| 693 |
+
LR_SCHEDULER:
|
| 694 |
+
NAME: 'WarmupCosine'
|
| 695 |
+
WARMUP: 10000
|
| 696 |
+
MIN_LR: 0.000001
|
| 697 |
+
|
| 698 |
+
####################################### evaluation #######################################
|
| 699 |
+
INFERENCE:
|
| 700 |
+
|
| 701 |
+
VOCAB: 'CLIP'
|
| 702 |
+
ITER_BASED: True
|
| 703 |
+
|
| 704 |
+
|
| 705 |
+
find_unused_parameters: true
|
| 706 |
+
|
| 707 |
+
# ENCODERS:
|
| 708 |
+
# -
|
| 709 |
+
# NAME: VisualEncoder
|
| 710 |
+
# TYPE: VisualEncoder
|
| 711 |
+
# DROP_PATH_PROB: 0.0
|
| 712 |
+
# HIDDEN_SIZE: 192
|
| 713 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 714 |
+
# HIDDEN_ACT: "gelu"
|
| 715 |
+
# NUM_ATTENTION_HEADS: 3
|
| 716 |
+
# INTERMEDIATE_SIZE: 768
|
| 717 |
+
# INTERMEDIATE_DROP: 0.
|
| 718 |
+
# FFN_DROPOUT_PROB: 0.
|
| 719 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 720 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 721 |
+
# NUM_GENERATION_LAYERS: 0
|
| 722 |
+
# DROP_PATH_PROB_FIXED: True
|
| 723 |
+
|
| 724 |
+
# -
|
| 725 |
+
# NAME: TextEncoder
|
| 726 |
+
# TYPE: TextEncoder
|
| 727 |
+
# DROP_PATH_PROB: 0.0
|
| 728 |
+
# HIDDEN_SIZE: 192
|
| 729 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 730 |
+
# HIDDEN_ACT: "gelu"
|
| 731 |
+
# NUM_ATTENTION_HEADS: 3
|
| 732 |
+
# INTERMEDIATE_SIZE: 768
|
| 733 |
+
# INTERMEDIATE_DROP: 0.
|
| 734 |
+
# FFN_DROPOUT_PROB: 0.
|
| 735 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 736 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 737 |
+
# NUM_GENERATION_LAYERS: 0
|
| 738 |
+
# DROP_PATH_PROB_FIXED: True
|
| 739 |
+
|
configs/BERT_L12_H768_experiments/16tasks_training_basedense_stage2_64gpu.yaml
ADDED
|
@@ -0,0 +1,750 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base_model_bert_l12_h768.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
-
|
| 6 |
+
NAME: 'ImageNet22k'
|
| 7 |
+
SHARED_TARGETS_CFG:
|
| 8 |
+
FILE_PATH: 'open_source_dataset/imagenet_22k_class_name_CLIP_with_endoftext.pkl'
|
| 9 |
+
DISTRIBUTED: True
|
| 10 |
+
|
| 11 |
+
-
|
| 12 |
+
NAME: 'Vocab_Word'
|
| 13 |
+
SHARED_TARGETS_CFG:
|
| 14 |
+
FILE_PATH: 'open_source_dataset/vocabulary_CLIP_with_endoftext.pkl'
|
| 15 |
+
DISTRIBUTED: True
|
| 16 |
+
|
| 17 |
+
-
|
| 18 |
+
NAME: 'MomentsInTime'
|
| 19 |
+
SHARED_TARGETS_CFG:
|
| 20 |
+
FILE_PATH: 'open_source_dataset/MiT_class_name_CLIP_with_endoftext.pkl'
|
| 21 |
+
DISTRIBUTED: False
|
| 22 |
+
|
| 23 |
+
-
|
| 24 |
+
NAME: 'Kinetics700'
|
| 25 |
+
SHARED_TARGETS_CFG:
|
| 26 |
+
FILE_PATH: 'open_source_dataset/k700_class_name_CLIP_with_endoftext.pkl'
|
| 27 |
+
DISTRIBUTED: False
|
| 28 |
+
|
| 29 |
+
TASKS:
|
| 30 |
+
|
| 31 |
+
-
|
| 32 |
+
NAME: imagenet22k
|
| 33 |
+
DATASETS:
|
| 34 |
+
TRAIN: 'ImageNet22KDataset'
|
| 35 |
+
TASK_TYPE: 'image_classification'
|
| 36 |
+
DATASET_NAME: 'ImageNet22k'
|
| 37 |
+
TARGET_SET: ['ImageNet22k']
|
| 38 |
+
|
| 39 |
+
DATALOADER:
|
| 40 |
+
TRAIN_BATCH_SIZE: 440
|
| 41 |
+
# TEST_BATCH_SIZE: 2
|
| 42 |
+
NUM_WORKERS: 2
|
| 43 |
+
FEATS_FOLDER: 'open_source_dataset/imagenet22k'
|
| 44 |
+
S3_PATH: 'cluster2:s3://imagenet22k'
|
| 45 |
+
ANNO_FOLDER: 'open_source_dataset/'
|
| 46 |
+
SAMPLING_WEIGHT: 2.486
|
| 47 |
+
MIXUP: 0.0
|
| 48 |
+
CUTMIX: 0.0
|
| 49 |
+
MIXUP_PROB: 1.0
|
| 50 |
+
MIXUP_SWITCH_PROB: 0.5
|
| 51 |
+
MIXUP_MODE: 'batch'
|
| 52 |
+
MIXUP_LABEL_SMOOTHING: 0.1
|
| 53 |
+
MODEL:
|
| 54 |
+
MAX_SEQ_LEN: -1
|
| 55 |
+
LABELS_NUM: 21842
|
| 56 |
+
TEMP_NAME: logit_scale_img_cls
|
| 57 |
+
LOSSES:
|
| 58 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 59 |
+
LOSS_WEIGHT: 1.0
|
| 60 |
+
REDUCTION: 'mean'
|
| 61 |
+
LABELSMOOTHING: 0.1
|
| 62 |
+
INFERENCE:
|
| 63 |
+
NAME: 'ImageNetEvaler'
|
| 64 |
+
ID_KEY: 'image_id'
|
| 65 |
+
VALUE: 'cls_logits'
|
| 66 |
+
VAL_ANNFILE: 'open_source_dataset/imagenet/meta/val.txt'
|
| 67 |
+
# VAL_ANNFILE: '/mnt/lustrenew/lihao2/projects/xmodaler_2/val_debug.txt'
|
| 68 |
+
TEST_ANNFILE: ''
|
| 69 |
+
GENERATION_MODE: False
|
| 70 |
+
|
| 71 |
+
-
|
| 72 |
+
NAME: K700_retrieve
|
| 73 |
+
DATASETS:
|
| 74 |
+
TRAIN: 'VideoDataSet'
|
| 75 |
+
TASK_TYPE: 'video_classification'
|
| 76 |
+
DATASET_NAME: 'K700'
|
| 77 |
+
TARGET_SET: ['Kinetics700']
|
| 78 |
+
DATALOADER:
|
| 79 |
+
TRAIN_BATCH_SIZE: 12
|
| 80 |
+
TEST_BATCH_SIZE: 24
|
| 81 |
+
NUM_WORKERS: 2
|
| 82 |
+
FEATS_FOLDER: 'open_source_dataset/K700'
|
| 83 |
+
ANNO_FOLDER: 'open_source_dataset/K700'
|
| 84 |
+
S3_PATH: 's3://K700/'
|
| 85 |
+
FRAMES_PER_CLIP: 8
|
| 86 |
+
STRIDE: 32
|
| 87 |
+
FILE_EXTENSION: ''
|
| 88 |
+
ANNO_FILE: 'annotation.json'
|
| 89 |
+
TIMESFORMER_AUG: True
|
| 90 |
+
SAMPLING_WEIGHT: 1.0
|
| 91 |
+
|
| 92 |
+
MODEL:
|
| 93 |
+
MAX_SEQ_LEN: -1
|
| 94 |
+
TEMP_NAME: logit_scale_video_cls
|
| 95 |
+
LOSSES:
|
| 96 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 97 |
+
LABELSMOOTHING: 0.1
|
| 98 |
+
LOSS_WEIGHT: 0.05
|
| 99 |
+
INFERENCE:
|
| 100 |
+
VOCAB: 'CLIP'
|
| 101 |
+
GENERATION_MODE: False
|
| 102 |
+
|
| 103 |
+
-
|
| 104 |
+
NAME: MomentsInTime
|
| 105 |
+
DATASETS:
|
| 106 |
+
TRAIN: 'VideoDataSet'
|
| 107 |
+
TASK_TYPE: 'video_classification'
|
| 108 |
+
DATASET_NAME: 'MiT'
|
| 109 |
+
TARGET_SET: ['MomentsInTime']
|
| 110 |
+
DATALOADER:
|
| 111 |
+
TRAIN_BATCH_SIZE: 68
|
| 112 |
+
TEST_BATCH_SIZE: 8
|
| 113 |
+
NUM_WORKERS: 2
|
| 114 |
+
FEATS_FOLDER: 'open_source_dataset/MomentsInTime'
|
| 115 |
+
ANNO_FOLDER: 'open_source_dataset/MomentsInTime'
|
| 116 |
+
S3_PATH: 's3://MomentsInTime/'
|
| 117 |
+
FRAMES_PER_CLIP: 3
|
| 118 |
+
STRIDE: 32
|
| 119 |
+
FILE_EXTENSION: ''
|
| 120 |
+
ANNO_FILE: 'annotation.json'
|
| 121 |
+
TIMESFORMER_AUG: True
|
| 122 |
+
SAMPLING_WEIGHT: 0.2
|
| 123 |
+
|
| 124 |
+
MODEL:
|
| 125 |
+
MAX_SEQ_LEN: -1
|
| 126 |
+
TEMP_NAME: logit_scale_video_cls
|
| 127 |
+
LOSSES:
|
| 128 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 129 |
+
LABELSMOOTHING: 0.1
|
| 130 |
+
LOSS_WEIGHT: 0.05
|
| 131 |
+
INFERENCE:
|
| 132 |
+
NAME: 'MiTEvaler'
|
| 133 |
+
ID_KEY: 'video_name'
|
| 134 |
+
VALUE: 'label'
|
| 135 |
+
VAL_ANNFILE: 'open_source_dataset/MomentsInTime/annotation.json'
|
| 136 |
+
TEST_ANNFILE: ''
|
| 137 |
+
GENERATION_MODE: False
|
| 138 |
+
NUM_VIEWS: 1
|
| 139 |
+
|
| 140 |
+
-
|
| 141 |
+
NAME: bookswiki_pretrain
|
| 142 |
+
DATASETS:
|
| 143 |
+
TRAIN: 'GeneralCorpusDataset'
|
| 144 |
+
TASK_TYPE: 'text_mlm'
|
| 145 |
+
DATASET_NAME: 'BooksWiki'
|
| 146 |
+
TARGET_SET: ['Vocab_Word']
|
| 147 |
+
VERSION: 'v2'
|
| 148 |
+
DATALOADER:
|
| 149 |
+
TRAIN_BATCH_SIZE: 512
|
| 150 |
+
TEST_BATCH_SIZE: 32
|
| 151 |
+
NUM_WORKERS: 2
|
| 152 |
+
ANNO_FOLDER: 'open_source_dataset/text_corpus' # 'open_source_dataset/bert_pretrain_data/bookswiki'
|
| 153 |
+
# ANNO_FOLDER: 'open_source_dataset/bert_pretrain_data/bookswiki'
|
| 154 |
+
SEQ_PER_SAMPLE: 1
|
| 155 |
+
SAMPLER: NodeDistributed
|
| 156 |
+
CACHE_MODE: True
|
| 157 |
+
SEQ_PER_SAMPLE: 128
|
| 158 |
+
MIN_SEQ_PER_SAMPLE: 128
|
| 159 |
+
APPEND_EOS: True
|
| 160 |
+
ONE_STREAM: False
|
| 161 |
+
SAMPLING_WEIGHT: 2.75
|
| 162 |
+
RANDOM_MASK: True
|
| 163 |
+
MODEL:
|
| 164 |
+
MAX_SEQ_LEN: 128
|
| 165 |
+
TEMP_NAME: logit_scale_text_mlm
|
| 166 |
+
LOSSES:
|
| 167 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 168 |
+
LOSS_WEIGHT: 0.25
|
| 169 |
+
REDUCTION: 'mean'
|
| 170 |
+
INFERENCE:
|
| 171 |
+
VOCAB: 'CLIP'
|
| 172 |
+
GENERATION_MODE: False
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
-
|
| 176 |
+
NAME: yfcc_caption
|
| 177 |
+
DATASETS:
|
| 178 |
+
TRAIN: 'ImageTextPairDataset'
|
| 179 |
+
TASK_TYPE: 'image_caption'
|
| 180 |
+
DATASET_NAME: 'YFCC'
|
| 181 |
+
TARGET_SET: ['Vocab_Word']
|
| 182 |
+
DATALOADER:
|
| 183 |
+
TRAIN_BATCH_SIZE: 200
|
| 184 |
+
TEST_BATCH_SIZE: 32
|
| 185 |
+
NUM_WORKERS: 2
|
| 186 |
+
S3_ANNO_FOLDER: 'cluster2:s3://yfcc'
|
| 187 |
+
ANNO_FOLDER: 'open_source_dataset/yfcc'
|
| 188 |
+
ANNO_FILENAME: 'yfcc100m_subset_available_untokenized.json'
|
| 189 |
+
FEATS_FOLDER: 'open_source_dataset/yfcc/'
|
| 190 |
+
S3_PATH: 'cluster2:s3://yfcc/'
|
| 191 |
+
SEQ_PER_SAMPLE: 1
|
| 192 |
+
SAMPLER: NodeDistributed
|
| 193 |
+
CACHE_MODE: True
|
| 194 |
+
CIRCULAR_CACHE_MODE: False
|
| 195 |
+
ZIP_MODE: False
|
| 196 |
+
CACHE_ORIGIN_IMAGE: False
|
| 197 |
+
RANDOM_CAPTION: False
|
| 198 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 199 |
+
SAMPLING_WEIGHT: 0.5840
|
| 200 |
+
TRANSFORM: 'clip_transforms'
|
| 201 |
+
MODEL:
|
| 202 |
+
MAX_SEQ_LEN: 50
|
| 203 |
+
TEMP_NAME: logit_scale_caption
|
| 204 |
+
LOSSES:
|
| 205 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 206 |
+
LOSS_WEIGHT: 0.5
|
| 207 |
+
REDUCTION: 'mean'
|
| 208 |
+
INFERENCE:
|
| 209 |
+
VOCAB: 'CLIP'
|
| 210 |
+
GENERATION_MODE: False
|
| 211 |
+
|
| 212 |
+
-
|
| 213 |
+
NAME: cc12m_caption
|
| 214 |
+
DATASETS:
|
| 215 |
+
TRAIN: 'ImageTextPairDataset'
|
| 216 |
+
TASK_TYPE: 'image_caption'
|
| 217 |
+
DATASET_NAME: 'CC12M'
|
| 218 |
+
TARGET_SET: ['Vocab_Word']
|
| 219 |
+
DATALOADER:
|
| 220 |
+
TRAIN_BATCH_SIZE: 200
|
| 221 |
+
TEST_BATCH_SIZE: 32
|
| 222 |
+
NUM_WORKERS: 2
|
| 223 |
+
S3_ANNO_FOLDER: 's3://cc12m/'
|
| 224 |
+
ANNO_FOLDER: 'open_source_dataset/c12m/'
|
| 225 |
+
ANNO_FILENAME: 'train_available.json'
|
| 226 |
+
FEATS_FOLDER: 'open_source_dataset/c12m/'
|
| 227 |
+
S3_PATH: 's3://cc12m/'
|
| 228 |
+
SEQ_PER_SAMPLE: 1
|
| 229 |
+
SAMPLER: NodeDistributed
|
| 230 |
+
CACHE_MODE: True
|
| 231 |
+
CIRCULAR_CACHE_MODE: False
|
| 232 |
+
ZIP_MODE: False
|
| 233 |
+
CACHE_ORIGIN_IMAGE: False
|
| 234 |
+
RANDOM_CAPTION: False
|
| 235 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 236 |
+
SAMPLING_WEIGHT: 0.5057
|
| 237 |
+
TRANSFORM: 'clip_transforms'
|
| 238 |
+
MODEL:
|
| 239 |
+
MAX_SEQ_LEN: 50
|
| 240 |
+
TEMP_NAME: logit_scale_caption
|
| 241 |
+
LOSSES:
|
| 242 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 243 |
+
LOSS_WEIGHT: 0.5
|
| 244 |
+
REDUCTION: 'mean'
|
| 245 |
+
INFERENCE:
|
| 246 |
+
VOCAB: 'CLIP'
|
| 247 |
+
GENERATION_MODE: False
|
| 248 |
+
|
| 249 |
+
-
|
| 250 |
+
NAME: cc3m_caption
|
| 251 |
+
DATASETS:
|
| 252 |
+
TRAIN: 'ImageTextPairDataset'
|
| 253 |
+
TASK_TYPE: 'image_caption'
|
| 254 |
+
DATASET_NAME: 'CC3M'
|
| 255 |
+
TARGET_SET: ['Vocab_Word']
|
| 256 |
+
DATALOADER:
|
| 257 |
+
TRAIN_BATCH_SIZE: 200
|
| 258 |
+
TEST_BATCH_SIZE: 32
|
| 259 |
+
NUM_WORKERS: 2
|
| 260 |
+
S3_ANNO_FOLDER: 's3://cc3m/'
|
| 261 |
+
ANNO_FOLDER: 'open_source_dataset/cc3m/'
|
| 262 |
+
ANNO_FILENAME: 'train_spacy.json'
|
| 263 |
+
FEATS_FOLDER: 'open_source_dataset/cc3m/'
|
| 264 |
+
S3_PATH: 's3://cc3m/'
|
| 265 |
+
SEQ_PER_SAMPLE: 1
|
| 266 |
+
SAMPLER: NodeDistributed
|
| 267 |
+
CACHE_MODE: True
|
| 268 |
+
CIRCULAR_CACHE_MODE: False
|
| 269 |
+
ZIP_MODE: False
|
| 270 |
+
CACHE_ORIGIN_IMAGE: False
|
| 271 |
+
RANDOM_CAPTION: False
|
| 272 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 273 |
+
SAMPLING_WEIGHT: 0.26295
|
| 274 |
+
TRANSFORM: 'clip_transforms'
|
| 275 |
+
MODEL:
|
| 276 |
+
MAX_SEQ_LEN: 50
|
| 277 |
+
TEMP_NAME: logit_scale_caption
|
| 278 |
+
LOSSES:
|
| 279 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 280 |
+
LOSS_WEIGHT: 0.5
|
| 281 |
+
REDUCTION: 'mean'
|
| 282 |
+
INFERENCE:
|
| 283 |
+
VOCAB: 'CLIP'
|
| 284 |
+
GENERATION_MODE: False
|
| 285 |
+
|
| 286 |
+
-
|
| 287 |
+
NAME: vg_caption
|
| 288 |
+
DATASETS:
|
| 289 |
+
TRAIN: 'ImageTextPairDataset'
|
| 290 |
+
TASK_TYPE: 'image_caption'
|
| 291 |
+
DATASET_NAME: 'VG'
|
| 292 |
+
TARGET_SET: ['Vocab_Word']
|
| 293 |
+
DATALOADER:
|
| 294 |
+
TRAIN_BATCH_SIZE: 200
|
| 295 |
+
TEST_BATCH_SIZE: 32
|
| 296 |
+
NUM_WORKERS: 2
|
| 297 |
+
FEATS_FOLDER: 'open_source_dataset/visual_genome/images'
|
| 298 |
+
ANNO_FOLDER: 'open_source_dataset/visual_genome/annotations'
|
| 299 |
+
S3_PATH: 's3://visual_genome/images'
|
| 300 |
+
ANNO_FILENAME: 'vg_captions_128filter.json'
|
| 301 |
+
SEQ_PER_SAMPLE: 1
|
| 302 |
+
CACHE_MODE: True
|
| 303 |
+
CIRCULAR_CACHE_MODE: False
|
| 304 |
+
ZIP_MODE: False
|
| 305 |
+
CACHE_ORIGIN_IMAGE: False
|
| 306 |
+
RANDOM_CAPTION: False
|
| 307 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 308 |
+
SAMPLING_WEIGHT: 0.1766
|
| 309 |
+
TRANSFORM: 'clip_transforms'
|
| 310 |
+
MODEL:
|
| 311 |
+
MAX_SEQ_LEN: 30
|
| 312 |
+
TEMP_NAME: logit_scale_caption
|
| 313 |
+
LOSSES:
|
| 314 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 315 |
+
LOSS_WEIGHT: 0.5
|
| 316 |
+
REDUCTION: 'mean'
|
| 317 |
+
INFERENCE:
|
| 318 |
+
VOCAB: 'CLIP'
|
| 319 |
+
GENERATION_MODE: True
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
-
|
| 323 |
+
NAME: mscoco_caption
|
| 324 |
+
DATASETS:
|
| 325 |
+
TRAIN: 'ImageTextPairDataset'
|
| 326 |
+
# VAL: 'ImageTextPairDataset'
|
| 327 |
+
# TEST: 'ImageTextPairDataset'
|
| 328 |
+
TASK_TYPE: 'image_caption'
|
| 329 |
+
DATASET_NAME: 'MSCOCO'
|
| 330 |
+
TARGET_SET: ['Vocab_Word']
|
| 331 |
+
DATALOADER:
|
| 332 |
+
TRAIN_BATCH_SIZE: 200
|
| 333 |
+
TEST_BATCH_SIZE: 32
|
| 334 |
+
NUM_WORKERS: 1
|
| 335 |
+
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 336 |
+
ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 337 |
+
S3_PATH: 's3://coco/'
|
| 338 |
+
SEQ_PER_SAMPLE: 1
|
| 339 |
+
CACHE_MODE: True
|
| 340 |
+
CIRCULAR_CACHE_MODE: False
|
| 341 |
+
ZIP_MODE: False
|
| 342 |
+
CACHE_ORIGIN_IMAGE: False
|
| 343 |
+
RANDOM_CAPTION: False
|
| 344 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 345 |
+
SAMPLING_WEIGHT: 0.1144
|
| 346 |
+
TRANSFORM: 'clip_transforms'
|
| 347 |
+
RANDOM_MASK: True
|
| 348 |
+
MODEL:
|
| 349 |
+
MAX_SEQ_LEN: 50
|
| 350 |
+
EVAL_MAX_SEQ_LEN: 21
|
| 351 |
+
TEMP_NAME: logit_scale_caption
|
| 352 |
+
LOSSES:
|
| 353 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 354 |
+
LOSS_WEIGHT: 0.5
|
| 355 |
+
REDUCTION: 'mean'
|
| 356 |
+
DECODE_STRATEGY:
|
| 357 |
+
NAME: 'CaptionBeamSearcherV3'
|
| 358 |
+
BEAM_SIZE: 2
|
| 359 |
+
# LEN_PENALTY: 1.0
|
| 360 |
+
INFERENCE:
|
| 361 |
+
NAME: 'COCOEvaler'
|
| 362 |
+
VOCAB: 'CLIP'
|
| 363 |
+
ID_KEY: 'image_id'
|
| 364 |
+
VALUE: 'caption'
|
| 365 |
+
VAL_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_val5k.json'
|
| 366 |
+
TEST_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_test5k.json'
|
| 367 |
+
GENERATION_MODE: True
|
| 368 |
+
|
| 369 |
+
-
|
| 370 |
+
NAME: sbu_caption
|
| 371 |
+
DATASETS:
|
| 372 |
+
TRAIN: 'ImageTextPairDataset'
|
| 373 |
+
TASK_TYPE: 'image_caption'
|
| 374 |
+
DATASET_NAME: 'SBU'
|
| 375 |
+
TARGET_SET: ['Vocab_Word']
|
| 376 |
+
DATALOADER:
|
| 377 |
+
TRAIN_BATCH_SIZE: 200
|
| 378 |
+
TEST_BATCH_SIZE: 32
|
| 379 |
+
NUM_WORKERS: 1
|
| 380 |
+
S3_ANNO_FOLDER: 's3://SBU/annotations'
|
| 381 |
+
ANNO_FOLDER: 'open_source_dataset/sbucaption/annotations'
|
| 382 |
+
ANNO_FILENAME: 'subcaption.json'
|
| 383 |
+
FEATS_FOLDER: 'open_source_dataset/sbucaption/'
|
| 384 |
+
S3_PATH: 's3://SBU/images'
|
| 385 |
+
SEQ_PER_SAMPLE: 1
|
| 386 |
+
SAMPLER: NodeDistributed
|
| 387 |
+
CACHE_MODE: True
|
| 388 |
+
CIRCULAR_CACHE_MODE: False
|
| 389 |
+
ZIP_MODE: False
|
| 390 |
+
CACHE_ORIGIN_IMAGE: False
|
| 391 |
+
RANDOM_CAPTION: False
|
| 392 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 393 |
+
SAMPLING_WEIGHT: 0.1383
|
| 394 |
+
TRANSFORM: 'clip_transforms'
|
| 395 |
+
MODEL:
|
| 396 |
+
MAX_SEQ_LEN: 50
|
| 397 |
+
TEMP_NAME: logit_scale_caption
|
| 398 |
+
LOSSES:
|
| 399 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 400 |
+
LOSS_WEIGHT: 0.5
|
| 401 |
+
REDUCTION: 'mean'
|
| 402 |
+
INFERENCE:
|
| 403 |
+
VOCAB: 'CLIP'
|
| 404 |
+
GENERATION_MODE: False
|
| 405 |
+
|
| 406 |
+
-
|
| 407 |
+
NAME: yfcc_retrieve
|
| 408 |
+
DATASETS:
|
| 409 |
+
TRAIN: 'ImageTextPairDataset'
|
| 410 |
+
TASK_TYPE: 'image_retrieval'
|
| 411 |
+
DATASET_NAME: 'YFCC'
|
| 412 |
+
DATALOADER:
|
| 413 |
+
TRAIN_BATCH_SIZE: 320
|
| 414 |
+
TEST_BATCH_SIZE: 32
|
| 415 |
+
NUM_WORKERS: 2
|
| 416 |
+
S3_ANNO_FOLDER: 'cluster2:s3://yfcc'
|
| 417 |
+
ANNO_FOLDER: 'open_source_dataset/yfcc'
|
| 418 |
+
ANNO_FILENAME: 'yfcc100m_subset_available_untokenized.json'
|
| 419 |
+
FEATS_FOLDER: 'open_source_dataset/yfcc/'
|
| 420 |
+
S3_PATH: 'cluster2:s3://yfcc/'
|
| 421 |
+
SAMPLER: NodeDistributed
|
| 422 |
+
CACHE_MODE: True
|
| 423 |
+
CIRCULAR_CACHE_MODE: False
|
| 424 |
+
ZIP_MODE: False
|
| 425 |
+
CACHE_ORIGIN_IMAGE: False
|
| 426 |
+
RANDOM_CAPTION: False
|
| 427 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 428 |
+
SAMPLING_WEIGHT: 0.5840
|
| 429 |
+
TRANSFORM: 'clip_transforms'
|
| 430 |
+
MODEL:
|
| 431 |
+
MAX_SEQ_LEN: 50
|
| 432 |
+
TEMP_NAME: logit_scale_retrieve
|
| 433 |
+
LOSSES:
|
| 434 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 435 |
+
LABELSMOOTHING: 0.1
|
| 436 |
+
LOSS_WEIGHT: 0.25
|
| 437 |
+
REDUCTION: 'mean'
|
| 438 |
+
INFERENCE:
|
| 439 |
+
VOCAB: 'CLIP'
|
| 440 |
+
GENERATION_MODE: False
|
| 441 |
+
|
| 442 |
+
-
|
| 443 |
+
NAME: cc12m_retrieve
|
| 444 |
+
DATASETS:
|
| 445 |
+
TRAIN: 'ImageTextPairDataset'
|
| 446 |
+
TASK_TYPE: 'image_retrieval'
|
| 447 |
+
DATASET_NAME: 'CC12M'
|
| 448 |
+
DATALOADER:
|
| 449 |
+
TRAIN_BATCH_SIZE: 320
|
| 450 |
+
TEST_BATCH_SIZE: 32
|
| 451 |
+
NUM_WORKERS: 2
|
| 452 |
+
S3_ANNO_FOLDER: 's3://cc12m/'
|
| 453 |
+
ANNO_FOLDER: 'open_source_dataset/c12m/'
|
| 454 |
+
ANNO_FILENAME: 'train_available.json'
|
| 455 |
+
FEATS_FOLDER: 'open_source_dataset/c12m/'
|
| 456 |
+
S3_PATH: 's3://cc12m/'
|
| 457 |
+
SAMPLER: NodeDistributed
|
| 458 |
+
CACHE_MODE: True
|
| 459 |
+
CIRCULAR_CACHE_MODE: False
|
| 460 |
+
ZIP_MODE: False
|
| 461 |
+
CACHE_ORIGIN_IMAGE: False
|
| 462 |
+
RANDOM_CAPTION: False
|
| 463 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 464 |
+
SAMPLING_WEIGHT: 0.5057
|
| 465 |
+
TRANSFORM: 'clip_transforms'
|
| 466 |
+
MODEL:
|
| 467 |
+
MAX_SEQ_LEN: 50
|
| 468 |
+
TEMP_NAME: logit_scale_retrieve
|
| 469 |
+
LOSSES:
|
| 470 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 471 |
+
LABELSMOOTHING: 0.1
|
| 472 |
+
LOSS_WEIGHT: 0.25
|
| 473 |
+
REDUCTION: 'mean'
|
| 474 |
+
INFERENCE:
|
| 475 |
+
VOCAB: 'CLIP'
|
| 476 |
+
GENERATION_MODE: False
|
| 477 |
+
|
| 478 |
+
-
|
| 479 |
+
NAME: cc3m_retrieve
|
| 480 |
+
DATASETS:
|
| 481 |
+
TRAIN: 'ImageTextPairDataset'
|
| 482 |
+
TASK_TYPE: 'image_retrieval'
|
| 483 |
+
DATASET_NAME: 'CC3M'
|
| 484 |
+
DATALOADER:
|
| 485 |
+
TRAIN_BATCH_SIZE: 320
|
| 486 |
+
TEST_BATCH_SIZE: 32
|
| 487 |
+
NUM_WORKERS: 2
|
| 488 |
+
S3_ANNO_FOLDER: 's3://cc3m/'
|
| 489 |
+
ANNO_FOLDER: 'open_source_dataset/cc3m/'
|
| 490 |
+
ANNO_FILENAME: 'train_spacy.json'
|
| 491 |
+
FEATS_FOLDER: 'open_source_dataset/cc3m/'
|
| 492 |
+
S3_PATH: 's3://cc3m/'
|
| 493 |
+
SAMPLER: NodeDistributed
|
| 494 |
+
CACHE_MODE: True
|
| 495 |
+
CIRCULAR_CACHE_MODE: False
|
| 496 |
+
ZIP_MODE: False
|
| 497 |
+
CACHE_ORIGIN_IMAGE: False
|
| 498 |
+
RANDOM_CAPTION: False
|
| 499 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 500 |
+
SAMPLING_WEIGHT: 0.26295
|
| 501 |
+
TRANSFORM: 'clip_transforms'
|
| 502 |
+
MODEL:
|
| 503 |
+
MAX_SEQ_LEN: 50
|
| 504 |
+
TEMP_NAME: logit_scale_retrieve
|
| 505 |
+
LOSSES:
|
| 506 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 507 |
+
LABELSMOOTHING: 0.1
|
| 508 |
+
LOSS_WEIGHT: 0.25
|
| 509 |
+
REDUCTION: 'mean'
|
| 510 |
+
INFERENCE:
|
| 511 |
+
VOCAB: 'CLIP'
|
| 512 |
+
GENERATION_MODE: False
|
| 513 |
+
|
| 514 |
+
-
|
| 515 |
+
NAME: vg_retrieve
|
| 516 |
+
DATASETS:
|
| 517 |
+
TRAIN: 'ImageTextPairDataset'
|
| 518 |
+
TASK_TYPE: 'image_retrieval'
|
| 519 |
+
DATASET_NAME: 'VG'
|
| 520 |
+
DATALOADER:
|
| 521 |
+
TRAIN_BATCH_SIZE: 320
|
| 522 |
+
TEST_BATCH_SIZE: 32
|
| 523 |
+
NUM_WORKERS: 2
|
| 524 |
+
FEATS_FOLDER: 'open_source_dataset/visual_genome/images'
|
| 525 |
+
ANNO_FOLDER: 'open_source_dataset/visual_genome/annotations'
|
| 526 |
+
S3_PATH: 's3://visual_genome/images'
|
| 527 |
+
ANNO_FILENAME: 'vg_captions_128filter.json'
|
| 528 |
+
SEQ_PER_SAMPLE: 1
|
| 529 |
+
CACHE_MODE: True
|
| 530 |
+
CIRCULAR_CACHE_MODE: False
|
| 531 |
+
ZIP_MODE: False
|
| 532 |
+
CACHE_ORIGIN_IMAGE: False
|
| 533 |
+
RANDOM_CAPTION: False
|
| 534 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 535 |
+
SAMPLING_WEIGHT: 0.1766
|
| 536 |
+
TRANSFORM: 'clip_transforms'
|
| 537 |
+
MODEL:
|
| 538 |
+
MAX_SEQ_LEN: 30
|
| 539 |
+
TEMP_NAME: logit_scale_retrieve
|
| 540 |
+
LOSSES:
|
| 541 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 542 |
+
LABELSMOOTHING: 0.1
|
| 543 |
+
LOSS_WEIGHT: 0.25
|
| 544 |
+
REDUCTION: 'mean'
|
| 545 |
+
INFERENCE:
|
| 546 |
+
VOCAB: 'CLIP'
|
| 547 |
+
GENERATION_MODE: False
|
| 548 |
+
|
| 549 |
+
-
|
| 550 |
+
NAME: mscoco_retrieve
|
| 551 |
+
DATASETS:
|
| 552 |
+
TRAIN: 'ImageTextPairDataset'
|
| 553 |
+
# TEST: 'ImageTextPairDataset'
|
| 554 |
+
TASK_TYPE: 'image_retrieval'
|
| 555 |
+
DATASET_NAME: 'MSCOCO'
|
| 556 |
+
DATALOADER:
|
| 557 |
+
TRAIN_BATCH_SIZE: 320
|
| 558 |
+
TEST_BATCH_SIZE: 32
|
| 559 |
+
NUM_WORKERS: 1
|
| 560 |
+
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 561 |
+
ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 562 |
+
S3_PATH: 's3://coco/'
|
| 563 |
+
SEQ_PER_SAMPLE: 1
|
| 564 |
+
CACHE_MODE: True
|
| 565 |
+
CIRCULAR_CACHE_MODE: False
|
| 566 |
+
ZIP_MODE: False
|
| 567 |
+
CACHE_ORIGIN_IMAGE: False
|
| 568 |
+
RANDOM_CAPTION: False
|
| 569 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 570 |
+
SAMPLING_WEIGHT: 0.1144
|
| 571 |
+
TRANSFORM: 'clip_transforms'
|
| 572 |
+
MODEL:
|
| 573 |
+
MAX_SEQ_LEN: 50
|
| 574 |
+
TEMP_NAME: logit_scale_retrieve
|
| 575 |
+
LOSSES:
|
| 576 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 577 |
+
LABELSMOOTHING: 0.1
|
| 578 |
+
LOSS_WEIGHT: 0.25
|
| 579 |
+
REDUCTION: 'mean'
|
| 580 |
+
INFERENCE:
|
| 581 |
+
VOCAB: 'CLIP'
|
| 582 |
+
ID_KEY: 'image_id'
|
| 583 |
+
VALUE: 'caption'
|
| 584 |
+
NAME: 'RetrievalEvaler'
|
| 585 |
+
VAL_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_val_set0_2014.jsonline'
|
| 586 |
+
TEST_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_test_set0_2014.jsonline'
|
| 587 |
+
GENERATION_MODE: False
|
| 588 |
+
|
| 589 |
+
-
|
| 590 |
+
NAME: sbu_retrieve
|
| 591 |
+
DATASETS:
|
| 592 |
+
TRAIN: 'ImageTextPairDataset'
|
| 593 |
+
TASK_TYPE: 'image_retrieval'
|
| 594 |
+
DATASET_NAME: 'SBU'
|
| 595 |
+
DATALOADER:
|
| 596 |
+
TRAIN_BATCH_SIZE: 320
|
| 597 |
+
TEST_BATCH_SIZE: 32
|
| 598 |
+
NUM_WORKERS: 1
|
| 599 |
+
S3_ANNO_FOLDER: 's3://SBU/annotations'
|
| 600 |
+
ANNO_FOLDER: 'open_source_dataset/sbucaption/annotations'
|
| 601 |
+
ANNO_FILENAME: 'subcaption.json'
|
| 602 |
+
FEATS_FOLDER: 'open_source_dataset/sbucaption/'
|
| 603 |
+
S3_PATH: 's3://SBU/images'
|
| 604 |
+
SAMPLER: NodeDistributed
|
| 605 |
+
CACHE_MODE: True
|
| 606 |
+
CIRCULAR_CACHE_MODE: False
|
| 607 |
+
ZIP_MODE: False
|
| 608 |
+
CACHE_ORIGIN_IMAGE: False
|
| 609 |
+
RANDOM_CAPTION: False
|
| 610 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 611 |
+
SAMPLING_WEIGHT: 0.1383
|
| 612 |
+
TRANSFORM: 'clip_transforms'
|
| 613 |
+
MODEL:
|
| 614 |
+
MAX_SEQ_LEN: 50
|
| 615 |
+
TEMP_NAME: logit_scale_retrieve
|
| 616 |
+
LOSSES:
|
| 617 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 618 |
+
LABELSMOOTHING: 0.1
|
| 619 |
+
LOSS_WEIGHT: 0.25
|
| 620 |
+
REDUCTION: 'mean'
|
| 621 |
+
INFERENCE:
|
| 622 |
+
VOCAB: 'CLIP'
|
| 623 |
+
GENERATION_MODE: False
|
| 624 |
+
|
| 625 |
+
|
| 626 |
+
ENGINE:
|
| 627 |
+
NAME: 'UnifiedTrainer'
|
| 628 |
+
|
| 629 |
+
MODEL:
|
| 630 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 631 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 632 |
+
|
| 633 |
+
|
| 634 |
+
SHARE_LAYERNORM: True
|
| 635 |
+
BERT:
|
| 636 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 637 |
+
DROP_PATH_PROB: 0.1
|
| 638 |
+
DROP_PATH_PROB_FIXED: True
|
| 639 |
+
|
| 640 |
+
UNIFY_QKV: True
|
| 641 |
+
|
| 642 |
+
MODEL_EMA: False
|
| 643 |
+
MODEL_EMA_DECAY: 0.9999
|
| 644 |
+
|
| 645 |
+
MAEParamsInit: True
|
| 646 |
+
POSEMBEDFIX: True
|
| 647 |
+
|
| 648 |
+
|
| 649 |
+
IMG_INPUT_SIZE: 224
|
| 650 |
+
PATCH_SIZE: 16
|
| 651 |
+
POSEMBED_SCALE: !!python/object/apply:eval ["160/224"]
|
| 652 |
+
CHECKPOINT_FILETER: False
|
| 653 |
+
|
| 654 |
+
LAYER_SCALE: True
|
| 655 |
+
LAYER_SCALE_INIT: 1e-3
|
| 656 |
+
OLD_CHECKPONT: True
|
| 657 |
+
|
| 658 |
+
|
| 659 |
+
DATALOADER:
|
| 660 |
+
USE_WEIGHTED_SAMPLER: True
|
| 661 |
+
UNIFIED_DATASET: True
|
| 662 |
+
NUM_WORKERS: 32
|
| 663 |
+
|
| 664 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 665 |
+
|
| 666 |
+
|
| 667 |
+
|
| 668 |
+
####################################### Optimizer #######################################
|
| 669 |
+
SOLVER:
|
| 670 |
+
NAME: 'Adam'
|
| 671 |
+
TORCH_OPTIMIZER: True
|
| 672 |
+
PARAMS_SEPERATE: True
|
| 673 |
+
# PARAMS_GROUP: True
|
| 674 |
+
# EPOCH: 1
|
| 675 |
+
MAX_ITER: 45000
|
| 676 |
+
CHECKPOINT_PERIOD: 5000
|
| 677 |
+
EVAL_PERIOD: 10000000
|
| 678 |
+
BASE_LR: 0.00002
|
| 679 |
+
BIAS_LR_FACTOR: 1.0
|
| 680 |
+
WEIGHT_DECAY: 0.05
|
| 681 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 682 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 683 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 684 |
+
MOMENTUM: 0.9
|
| 685 |
+
DAMPENING: 0.0
|
| 686 |
+
NESTEROV: 0.0
|
| 687 |
+
BETAS: [0.9, 0.95]
|
| 688 |
+
EPS: 1e-6
|
| 689 |
+
GRAD_CLIP: 0.1
|
| 690 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 691 |
+
ACCUM_ITER: 0
|
| 692 |
+
AMP_FP16: True
|
| 693 |
+
APEX_FP16: False # dangerous
|
| 694 |
+
|
| 695 |
+
WRITE_PERIOD: 50
|
| 696 |
+
MIN_LOSS_SCLE: 2048.0
|
| 697 |
+
# BF16: False # True
|
| 698 |
+
# ZEROSTAGE: 2
|
| 699 |
+
|
| 700 |
+
LOSS_SCALE_WINDOW: 200
|
| 701 |
+
|
| 702 |
+
|
| 703 |
+
####################################### lr scheduler #######################################
|
| 704 |
+
LR_SCHEDULER:
|
| 705 |
+
NAME: 'WarmupCosine'
|
| 706 |
+
WARMUP: 5000
|
| 707 |
+
MIN_LR: 0.000001
|
| 708 |
+
|
| 709 |
+
####################################### evaluation #######################################
|
| 710 |
+
INFERENCE:
|
| 711 |
+
|
| 712 |
+
VOCAB: 'CLIP'
|
| 713 |
+
ITER_BASED: True
|
| 714 |
+
|
| 715 |
+
|
| 716 |
+
find_unused_parameters: true
|
| 717 |
+
|
| 718 |
+
# ENCODERS:
|
| 719 |
+
# -
|
| 720 |
+
# NAME: VisualEncoder
|
| 721 |
+
# TYPE: VisualEncoder
|
| 722 |
+
# DROP_PATH_PROB: 0.0
|
| 723 |
+
# HIDDEN_SIZE: 192
|
| 724 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 725 |
+
# HIDDEN_ACT: "gelu"
|
| 726 |
+
# NUM_ATTENTION_HEADS: 3
|
| 727 |
+
# INTERMEDIATE_SIZE: 768
|
| 728 |
+
# INTERMEDIATE_DROP: 0.
|
| 729 |
+
# FFN_DROPOUT_PROB: 0.
|
| 730 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 731 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 732 |
+
# NUM_GENERATION_LAYERS: 0
|
| 733 |
+
# DROP_PATH_PROB_FIXED: True
|
| 734 |
+
|
| 735 |
+
# -
|
| 736 |
+
# NAME: TextEncoder
|
| 737 |
+
# TYPE: TextEncoder
|
| 738 |
+
# DROP_PATH_PROB: 0.0
|
| 739 |
+
# HIDDEN_SIZE: 192
|
| 740 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 741 |
+
# HIDDEN_ACT: "gelu"
|
| 742 |
+
# NUM_ATTENTION_HEADS: 3
|
| 743 |
+
# INTERMEDIATE_SIZE: 768
|
| 744 |
+
# INTERMEDIATE_DROP: 0.
|
| 745 |
+
# FFN_DROPOUT_PROB: 0.
|
| 746 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 747 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 748 |
+
# NUM_GENERATION_LAYERS: 0
|
| 749 |
+
# DROP_PATH_PROB_FIXED: True
|
| 750 |
+
|
configs/BERT_L12_H768_experiments/16tasks_training_basemoe_stage1_56gpu.yaml
ADDED
|
@@ -0,0 +1,733 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base_model_bert_l12_h768.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
-
|
| 6 |
+
NAME: 'ImageNet22k'
|
| 7 |
+
SHARED_TARGETS_CFG:
|
| 8 |
+
FILE_PATH: 'open_source_dataset/imagenet_22k_class_name_CLIP_with_endoftext.pkl'
|
| 9 |
+
DISTRIBUTED: True
|
| 10 |
+
|
| 11 |
+
-
|
| 12 |
+
NAME: 'Vocab_Word'
|
| 13 |
+
SHARED_TARGETS_CFG:
|
| 14 |
+
FILE_PATH: 'open_source_dataset/vocabulary_CLIP_with_endoftext.pkl'
|
| 15 |
+
DISTRIBUTED: True
|
| 16 |
+
|
| 17 |
+
-
|
| 18 |
+
NAME: 'MomentsInTime'
|
| 19 |
+
SHARED_TARGETS_CFG:
|
| 20 |
+
FILE_PATH: 'open_source_dataset/MiT_class_name_CLIP_with_endoftext.pkl'
|
| 21 |
+
DISTRIBUTED: False
|
| 22 |
+
|
| 23 |
+
-
|
| 24 |
+
NAME: 'Kinetics700'
|
| 25 |
+
SHARED_TARGETS_CFG:
|
| 26 |
+
FILE_PATH: 'open_source_dataset/k700_class_name_CLIP_with_endoftext.pkl'
|
| 27 |
+
DISTRIBUTED: False
|
| 28 |
+
|
| 29 |
+
TASKS:
|
| 30 |
+
|
| 31 |
+
-
|
| 32 |
+
NAME: imagenet22k
|
| 33 |
+
DATASETS:
|
| 34 |
+
TRAIN: 'ImageNet22KDataset'
|
| 35 |
+
TASK_TYPE: 'image_classification'
|
| 36 |
+
DATASET_NAME: 'ImageNet22k'
|
| 37 |
+
TARGET_SET: ['ImageNet22k']
|
| 38 |
+
|
| 39 |
+
DATALOADER:
|
| 40 |
+
TRAIN_BATCH_SIZE: 720
|
| 41 |
+
# TEST_BATCH_SIZE: 2
|
| 42 |
+
NUM_WORKERS: 2
|
| 43 |
+
FEATS_FOLDER: 'open_source_dataset/imagenet22k'
|
| 44 |
+
S3_PATH: 'cluster2:s3://imagenet22k'
|
| 45 |
+
ANNO_FOLDER: 'open_source_dataset/'
|
| 46 |
+
SAMPLING_WEIGHT: 2.486
|
| 47 |
+
MIXUP: 0.8
|
| 48 |
+
CUTMIX: 1.0
|
| 49 |
+
MIXUP_PROB: 1.0
|
| 50 |
+
MIXUP_SWITCH_PROB: 0.5
|
| 51 |
+
MIXUP_MODE: 'batch'
|
| 52 |
+
MIXUP_LABEL_SMOOTHING: 0.1
|
| 53 |
+
MODEL:
|
| 54 |
+
MAX_SEQ_LEN: -1
|
| 55 |
+
LABELS_NUM: 21842
|
| 56 |
+
TEMP_NAME: logit_scale_img_cls
|
| 57 |
+
LOSSES:
|
| 58 |
+
NAMES: ['SoftTargetCrossEntropy', 'Accuracy']
|
| 59 |
+
LOSS_WEIGHT: 1.0
|
| 60 |
+
REDUCTION: 'mean'
|
| 61 |
+
|
| 62 |
+
-
|
| 63 |
+
NAME: K700_retrieve
|
| 64 |
+
DATASETS:
|
| 65 |
+
TRAIN: 'VideoDataSet'
|
| 66 |
+
TASK_TYPE: 'video_classification'
|
| 67 |
+
DATASET_NAME: 'K700'
|
| 68 |
+
TARGET_SET: ['Kinetics700']
|
| 69 |
+
DATALOADER:
|
| 70 |
+
TRAIN_BATCH_SIZE: 64
|
| 71 |
+
TEST_BATCH_SIZE: 24
|
| 72 |
+
NUM_WORKERS: 2
|
| 73 |
+
FEATS_FOLDER: 'open_source_dataset/K700'
|
| 74 |
+
ANNO_FOLDER: 'open_source_dataset/K700'
|
| 75 |
+
S3_PATH: 's3://K700/'
|
| 76 |
+
FRAMES_PER_CLIP: 4
|
| 77 |
+
STRIDE: 32
|
| 78 |
+
FILE_EXTENSION: ''
|
| 79 |
+
ANNO_FILE: 'annotation.json'
|
| 80 |
+
TIMESFORMER_AUG: True
|
| 81 |
+
SAMPLING_WEIGHT: 0.76
|
| 82 |
+
|
| 83 |
+
MODEL:
|
| 84 |
+
MAX_SEQ_LEN: -1
|
| 85 |
+
TEMP_NAME: logit_scale_video_cls
|
| 86 |
+
LOSSES:
|
| 87 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 88 |
+
LABELSMOOTHING: 0.1
|
| 89 |
+
LOSS_WEIGHT: 0.1
|
| 90 |
+
INFERENCE:
|
| 91 |
+
VOCAB: 'CLIP'
|
| 92 |
+
GENERATION_MODE: False
|
| 93 |
+
|
| 94 |
+
-
|
| 95 |
+
NAME: MomentsInTime
|
| 96 |
+
DATASETS:
|
| 97 |
+
TRAIN: 'VideoDataSet'
|
| 98 |
+
TASK_TYPE: 'video_classification'
|
| 99 |
+
DATASET_NAME: 'MiT'
|
| 100 |
+
TARGET_SET: ['MomentsInTime']
|
| 101 |
+
DATALOADER:
|
| 102 |
+
TRAIN_BATCH_SIZE: 112
|
| 103 |
+
TEST_BATCH_SIZE: 8
|
| 104 |
+
NUM_WORKERS: 2
|
| 105 |
+
FEATS_FOLDER: 'open_source_dataset/MomentsInTime'
|
| 106 |
+
ANNO_FOLDER: 'open_source_dataset/MomentsInTime'
|
| 107 |
+
S3_PATH: 's3://MomentsInTime/'
|
| 108 |
+
FRAMES_PER_CLIP: 3
|
| 109 |
+
STRIDE: 32
|
| 110 |
+
FILE_EXTENSION: ''
|
| 111 |
+
ANNO_FILE: 'annotation.json'
|
| 112 |
+
TIMESFORMER_AUG: True
|
| 113 |
+
SAMPLING_WEIGHT: 0.44
|
| 114 |
+
|
| 115 |
+
MODEL:
|
| 116 |
+
MAX_SEQ_LEN: -1
|
| 117 |
+
TEMP_NAME: logit_scale_video_cls
|
| 118 |
+
LOSSES:
|
| 119 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 120 |
+
LABELSMOOTHING: 0.1
|
| 121 |
+
LOSS_WEIGHT: 0.1
|
| 122 |
+
INFERENCE:
|
| 123 |
+
NAME: 'MiTEvaler'
|
| 124 |
+
ID_KEY: 'video_name'
|
| 125 |
+
VALUE: 'label'
|
| 126 |
+
VAL_ANNFILE: 'open_source_dataset/MomentsInTime/annotation.json'
|
| 127 |
+
TEST_ANNFILE: ''
|
| 128 |
+
GENERATION_MODE: False
|
| 129 |
+
NUM_VIEWS: 1
|
| 130 |
+
|
| 131 |
+
-
|
| 132 |
+
NAME: bookswiki_pretrain
|
| 133 |
+
DATASETS:
|
| 134 |
+
TRAIN: 'GeneralCorpusDataset'
|
| 135 |
+
TASK_TYPE: 'text_mlm'
|
| 136 |
+
DATASET_NAME: 'BooksWiki'
|
| 137 |
+
TARGET_SET: ['Vocab_Word']
|
| 138 |
+
VERSION: 'v2'
|
| 139 |
+
DATALOADER:
|
| 140 |
+
TRAIN_BATCH_SIZE: 512
|
| 141 |
+
TEST_BATCH_SIZE: 32
|
| 142 |
+
NUM_WORKERS: 2
|
| 143 |
+
ANNO_FOLDER: 'open_source_dataset/text_corpus' # 'open_source_dataset/bert_pretrain_data/bookswiki'
|
| 144 |
+
# ANNO_FOLDER: 'open_source_dataset/bert_pretrain_data/bookswiki'
|
| 145 |
+
SEQ_PER_SAMPLE: 1
|
| 146 |
+
SAMPLER: NodeDistributed
|
| 147 |
+
CACHE_MODE: True
|
| 148 |
+
SEQ_PER_SAMPLE: 128
|
| 149 |
+
MIN_SEQ_PER_SAMPLE: 128
|
| 150 |
+
APPEND_EOS: True
|
| 151 |
+
ONE_STREAM: False
|
| 152 |
+
SAMPLING_WEIGHT: 2.75
|
| 153 |
+
RANDOM_MASK: True
|
| 154 |
+
MODEL:
|
| 155 |
+
MAX_SEQ_LEN: 128
|
| 156 |
+
TEMP_NAME: logit_scale_text_mlm
|
| 157 |
+
LOSSES:
|
| 158 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 159 |
+
LOSS_WEIGHT: 0.5
|
| 160 |
+
REDUCTION: 'mean'
|
| 161 |
+
INFERENCE:
|
| 162 |
+
VOCAB: 'CLIP'
|
| 163 |
+
GENERATION_MODE: False
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
-
|
| 167 |
+
NAME: yfcc_caption
|
| 168 |
+
DATASETS:
|
| 169 |
+
TRAIN: 'ImageTextPairDataset'
|
| 170 |
+
TASK_TYPE: 'image_caption'
|
| 171 |
+
DATASET_NAME: 'YFCC'
|
| 172 |
+
TARGET_SET: ['Vocab_Word']
|
| 173 |
+
DATALOADER:
|
| 174 |
+
TRAIN_BATCH_SIZE: 300
|
| 175 |
+
TEST_BATCH_SIZE: 32
|
| 176 |
+
NUM_WORKERS: 2
|
| 177 |
+
S3_ANNO_FOLDER: 'cluster2:s3://yfcc'
|
| 178 |
+
ANNO_FOLDER: 'open_source_dataset/yfcc'
|
| 179 |
+
ANNO_FILENAME: 'yfcc100m_subset_available_untokenized.json'
|
| 180 |
+
FEATS_FOLDER: 'open_source_dataset/yfcc/'
|
| 181 |
+
S3_PATH: 'cluster2:s3://yfcc/'
|
| 182 |
+
SEQ_PER_SAMPLE: 1
|
| 183 |
+
SAMPLER: NodeDistributed
|
| 184 |
+
CACHE_MODE: True
|
| 185 |
+
CIRCULAR_CACHE_MODE: False
|
| 186 |
+
ZIP_MODE: False
|
| 187 |
+
CACHE_ORIGIN_IMAGE: False
|
| 188 |
+
RANDOM_CAPTION: True
|
| 189 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 190 |
+
SAMPLING_WEIGHT: 0.5840
|
| 191 |
+
TRANSFORM: 'clip_transforms'
|
| 192 |
+
MODEL:
|
| 193 |
+
MAX_SEQ_LEN: 50
|
| 194 |
+
TEMP_NAME: logit_scale_caption
|
| 195 |
+
LOSSES:
|
| 196 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 197 |
+
LOSS_WEIGHT: 1.0
|
| 198 |
+
REDUCTION: 'mean'
|
| 199 |
+
INFERENCE:
|
| 200 |
+
VOCAB: 'CLIP'
|
| 201 |
+
GENERATION_MODE: False
|
| 202 |
+
|
| 203 |
+
-
|
| 204 |
+
NAME: cc12m_caption
|
| 205 |
+
DATASETS:
|
| 206 |
+
TRAIN: 'ImageTextPairDataset'
|
| 207 |
+
TASK_TYPE: 'image_caption'
|
| 208 |
+
DATASET_NAME: 'CC12M'
|
| 209 |
+
TARGET_SET: ['Vocab_Word']
|
| 210 |
+
DATALOADER:
|
| 211 |
+
TRAIN_BATCH_SIZE: 300
|
| 212 |
+
TEST_BATCH_SIZE: 32
|
| 213 |
+
NUM_WORKERS: 2
|
| 214 |
+
S3_ANNO_FOLDER: 's3://cc12m/'
|
| 215 |
+
ANNO_FOLDER: 'open_source_dataset/c12m/'
|
| 216 |
+
ANNO_FILENAME: 'train_available.json'
|
| 217 |
+
FEATS_FOLDER: 'open_source_dataset/c12m/'
|
| 218 |
+
S3_PATH: 's3://cc12m/'
|
| 219 |
+
SEQ_PER_SAMPLE: 1
|
| 220 |
+
SAMPLER: NodeDistributed
|
| 221 |
+
CACHE_MODE: True
|
| 222 |
+
CIRCULAR_CACHE_MODE: False
|
| 223 |
+
ZIP_MODE: False
|
| 224 |
+
CACHE_ORIGIN_IMAGE: False
|
| 225 |
+
RANDOM_CAPTION: False
|
| 226 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 227 |
+
SAMPLING_WEIGHT: 0.5057
|
| 228 |
+
TRANSFORM: 'clip_transforms'
|
| 229 |
+
MODEL:
|
| 230 |
+
MAX_SEQ_LEN: 50
|
| 231 |
+
TEMP_NAME: logit_scale_caption
|
| 232 |
+
LOSSES:
|
| 233 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 234 |
+
LOSS_WEIGHT: 1.0
|
| 235 |
+
REDUCTION: 'mean'
|
| 236 |
+
INFERENCE:
|
| 237 |
+
VOCAB: 'CLIP'
|
| 238 |
+
GENERATION_MODE: False
|
| 239 |
+
|
| 240 |
+
-
|
| 241 |
+
NAME: cc3m_caption
|
| 242 |
+
DATASETS:
|
| 243 |
+
TRAIN: 'ImageTextPairDataset'
|
| 244 |
+
TASK_TYPE: 'image_caption'
|
| 245 |
+
DATASET_NAME: 'CC3M'
|
| 246 |
+
TARGET_SET: ['Vocab_Word']
|
| 247 |
+
DATALOADER:
|
| 248 |
+
TRAIN_BATCH_SIZE: 300
|
| 249 |
+
TEST_BATCH_SIZE: 32
|
| 250 |
+
NUM_WORKERS: 2
|
| 251 |
+
S3_ANNO_FOLDER: 's3://cc3m/'
|
| 252 |
+
ANNO_FOLDER: 'open_source_dataset/cc3m/'
|
| 253 |
+
ANNO_FILENAME: 'train_spacy.json'
|
| 254 |
+
FEATS_FOLDER: 'open_source_dataset/cc3m/'
|
| 255 |
+
S3_PATH: 's3://cc3m/'
|
| 256 |
+
SEQ_PER_SAMPLE: 1
|
| 257 |
+
SAMPLER: NodeDistributed
|
| 258 |
+
CACHE_MODE: True
|
| 259 |
+
CIRCULAR_CACHE_MODE: False
|
| 260 |
+
ZIP_MODE: False
|
| 261 |
+
CACHE_ORIGIN_IMAGE: False
|
| 262 |
+
RANDOM_CAPTION: False
|
| 263 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 264 |
+
SAMPLING_WEIGHT: 0.26295
|
| 265 |
+
TRANSFORM: 'clip_transforms'
|
| 266 |
+
MODEL:
|
| 267 |
+
MAX_SEQ_LEN: 50
|
| 268 |
+
TEMP_NAME: logit_scale_caption
|
| 269 |
+
LOSSES:
|
| 270 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 271 |
+
LOSS_WEIGHT: 1.0
|
| 272 |
+
REDUCTION: 'mean'
|
| 273 |
+
INFERENCE:
|
| 274 |
+
VOCAB: 'CLIP'
|
| 275 |
+
GENERATION_MODE: False
|
| 276 |
+
|
| 277 |
+
-
|
| 278 |
+
NAME: vg_caption
|
| 279 |
+
DATASETS:
|
| 280 |
+
TRAIN: 'ImageTextPairDataset'
|
| 281 |
+
TASK_TYPE: 'image_caption'
|
| 282 |
+
DATASET_NAME: 'VG'
|
| 283 |
+
TARGET_SET: ['Vocab_Word']
|
| 284 |
+
DATALOADER:
|
| 285 |
+
TRAIN_BATCH_SIZE: 300
|
| 286 |
+
TEST_BATCH_SIZE: 32
|
| 287 |
+
NUM_WORKERS: 2
|
| 288 |
+
FEATS_FOLDER: 'open_source_dataset/visual_genome/images'
|
| 289 |
+
ANNO_FOLDER: 'open_source_dataset/visual_genome/annotations'
|
| 290 |
+
S3_PATH: 's3://visual_genome/images'
|
| 291 |
+
ANNO_FILENAME: 'vg_captions_128filter.json'
|
| 292 |
+
SEQ_PER_SAMPLE: 1
|
| 293 |
+
CACHE_MODE: True
|
| 294 |
+
CIRCULAR_CACHE_MODE: False
|
| 295 |
+
ZIP_MODE: False
|
| 296 |
+
CACHE_ORIGIN_IMAGE: False
|
| 297 |
+
RANDOM_CAPTION: False
|
| 298 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 299 |
+
SAMPLING_WEIGHT: 0.1766
|
| 300 |
+
TRANSFORM: 'clip_transforms'
|
| 301 |
+
MODEL:
|
| 302 |
+
MAX_SEQ_LEN: 30
|
| 303 |
+
TEMP_NAME: logit_scale_caption
|
| 304 |
+
LOSSES:
|
| 305 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 306 |
+
LOSS_WEIGHT: 1.0
|
| 307 |
+
REDUCTION: 'mean'
|
| 308 |
+
INFERENCE:
|
| 309 |
+
VOCAB: 'CLIP'
|
| 310 |
+
GENERATION_MODE: True
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
-
|
| 314 |
+
NAME: mscoco_caption
|
| 315 |
+
DATASETS:
|
| 316 |
+
TRAIN: 'ImageTextPairDataset'
|
| 317 |
+
# VAL: 'ImageTextPairDataset'
|
| 318 |
+
# TEST: 'ImageTextPairDataset'
|
| 319 |
+
TASK_TYPE: 'image_caption'
|
| 320 |
+
DATASET_NAME: 'MSCOCO'
|
| 321 |
+
TARGET_SET: ['Vocab_Word']
|
| 322 |
+
DATALOADER:
|
| 323 |
+
TRAIN_BATCH_SIZE: 300
|
| 324 |
+
TEST_BATCH_SIZE: 32
|
| 325 |
+
NUM_WORKERS: 1
|
| 326 |
+
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 327 |
+
ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 328 |
+
S3_PATH: 's3://coco/'
|
| 329 |
+
SEQ_PER_SAMPLE: 1
|
| 330 |
+
CACHE_MODE: True
|
| 331 |
+
CIRCULAR_CACHE_MODE: False
|
| 332 |
+
ZIP_MODE: False
|
| 333 |
+
CACHE_ORIGIN_IMAGE: False
|
| 334 |
+
RANDOM_CAPTION: False
|
| 335 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 336 |
+
SAMPLING_WEIGHT: 0.1144
|
| 337 |
+
TRANSFORM: 'clip_transforms'
|
| 338 |
+
RANDOM_MASK: True
|
| 339 |
+
MODEL:
|
| 340 |
+
MAX_SEQ_LEN: 50
|
| 341 |
+
EVAL_MAX_SEQ_LEN: 21
|
| 342 |
+
TEMP_NAME: logit_scale_caption
|
| 343 |
+
LOSSES:
|
| 344 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 345 |
+
LOSS_WEIGHT: 1.0
|
| 346 |
+
REDUCTION: 'mean'
|
| 347 |
+
DECODE_STRATEGY:
|
| 348 |
+
NAME: 'CaptionBeamSearcherV3'
|
| 349 |
+
BEAM_SIZE: 2
|
| 350 |
+
# LEN_PENALTY: 1.0
|
| 351 |
+
INFERENCE:
|
| 352 |
+
NAME: 'COCOEvaler'
|
| 353 |
+
VOCAB: 'CLIP'
|
| 354 |
+
ID_KEY: 'image_id'
|
| 355 |
+
VALUE: 'caption'
|
| 356 |
+
VAL_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_val5k.json'
|
| 357 |
+
TEST_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_test5k.json'
|
| 358 |
+
GENERATION_MODE: True
|
| 359 |
+
|
| 360 |
+
-
|
| 361 |
+
NAME: sbu_caption
|
| 362 |
+
DATASETS:
|
| 363 |
+
TRAIN: 'ImageTextPairDataset'
|
| 364 |
+
TASK_TYPE: 'image_caption'
|
| 365 |
+
DATASET_NAME: 'SBU'
|
| 366 |
+
TARGET_SET: ['Vocab_Word']
|
| 367 |
+
DATALOADER:
|
| 368 |
+
TRAIN_BATCH_SIZE: 300
|
| 369 |
+
TEST_BATCH_SIZE: 32
|
| 370 |
+
NUM_WORKERS: 1
|
| 371 |
+
S3_ANNO_FOLDER: 's3://SBU/annotations'
|
| 372 |
+
ANNO_FOLDER: 'open_source_dataset/sbucaption/annotations'
|
| 373 |
+
ANNO_FILENAME: 'subcaption.json'
|
| 374 |
+
FEATS_FOLDER: 'open_source_dataset/sbucaption/'
|
| 375 |
+
S3_PATH: 's3://SBU/images'
|
| 376 |
+
SEQ_PER_SAMPLE: 1
|
| 377 |
+
SAMPLER: NodeDistributed
|
| 378 |
+
CACHE_MODE: True
|
| 379 |
+
CIRCULAR_CACHE_MODE: False
|
| 380 |
+
ZIP_MODE: False
|
| 381 |
+
CACHE_ORIGIN_IMAGE: False
|
| 382 |
+
RANDOM_CAPTION: False
|
| 383 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 384 |
+
SAMPLING_WEIGHT: 0.1383
|
| 385 |
+
TRANSFORM: 'clip_transforms'
|
| 386 |
+
MODEL:
|
| 387 |
+
MAX_SEQ_LEN: 50
|
| 388 |
+
TEMP_NAME: logit_scale_caption
|
| 389 |
+
LOSSES:
|
| 390 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 391 |
+
LOSS_WEIGHT: 1.0
|
| 392 |
+
REDUCTION: 'mean'
|
| 393 |
+
INFERENCE:
|
| 394 |
+
VOCAB: 'CLIP'
|
| 395 |
+
GENERATION_MODE: False
|
| 396 |
+
|
| 397 |
+
-
|
| 398 |
+
NAME: yfcc_retrieve
|
| 399 |
+
DATASETS:
|
| 400 |
+
TRAIN: 'ImageTextPairDataset'
|
| 401 |
+
TASK_TYPE: 'image_retrieval'
|
| 402 |
+
DATASET_NAME: 'YFCC'
|
| 403 |
+
DATALOADER:
|
| 404 |
+
TRAIN_BATCH_SIZE: 512
|
| 405 |
+
TEST_BATCH_SIZE: 32
|
| 406 |
+
NUM_WORKERS: 2
|
| 407 |
+
S3_ANNO_FOLDER: 'cluster2:s3://yfcc'
|
| 408 |
+
ANNO_FOLDER: 'open_source_dataset/yfcc'
|
| 409 |
+
ANNO_FILENAME: 'yfcc100m_subset_available_untokenized.json'
|
| 410 |
+
FEATS_FOLDER: 'open_source_dataset/yfcc/'
|
| 411 |
+
S3_PATH: 'cluster2:s3://yfcc/'
|
| 412 |
+
SAMPLER: NodeDistributed
|
| 413 |
+
CACHE_MODE: True
|
| 414 |
+
CIRCULAR_CACHE_MODE: False
|
| 415 |
+
ZIP_MODE: False
|
| 416 |
+
CACHE_ORIGIN_IMAGE: False
|
| 417 |
+
RANDOM_CAPTION: True
|
| 418 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 419 |
+
SAMPLING_WEIGHT: 0.5840
|
| 420 |
+
TRANSFORM: 'clip_transforms'
|
| 421 |
+
MODEL:
|
| 422 |
+
MAX_SEQ_LEN: 50
|
| 423 |
+
TEMP_NAME: logit_scale_retrieve
|
| 424 |
+
LOSSES:
|
| 425 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 426 |
+
LABELSMOOTHING: 0.1
|
| 427 |
+
LOSS_WEIGHT: 0.5
|
| 428 |
+
REDUCTION: 'mean'
|
| 429 |
+
INFERENCE:
|
| 430 |
+
VOCAB: 'CLIP'
|
| 431 |
+
GENERATION_MODE: False
|
| 432 |
+
|
| 433 |
+
-
|
| 434 |
+
NAME: cc12m_retrieve
|
| 435 |
+
DATASETS:
|
| 436 |
+
TRAIN: 'ImageTextPairDataset'
|
| 437 |
+
TASK_TYPE: 'image_retrieval'
|
| 438 |
+
DATASET_NAME: 'CC12M'
|
| 439 |
+
DATALOADER:
|
| 440 |
+
TRAIN_BATCH_SIZE: 512
|
| 441 |
+
TEST_BATCH_SIZE: 32
|
| 442 |
+
NUM_WORKERS: 2
|
| 443 |
+
S3_ANNO_FOLDER: 's3://cc12m/'
|
| 444 |
+
ANNO_FOLDER: 'open_source_dataset/c12m/'
|
| 445 |
+
ANNO_FILENAME: 'train_available.json'
|
| 446 |
+
FEATS_FOLDER: 'open_source_dataset/c12m/'
|
| 447 |
+
S3_PATH: 's3://cc12m/'
|
| 448 |
+
SAMPLER: NodeDistributed
|
| 449 |
+
CACHE_MODE: True
|
| 450 |
+
CIRCULAR_CACHE_MODE: False
|
| 451 |
+
ZIP_MODE: False
|
| 452 |
+
CACHE_ORIGIN_IMAGE: False
|
| 453 |
+
RANDOM_CAPTION: False
|
| 454 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 455 |
+
SAMPLING_WEIGHT: 0.5057
|
| 456 |
+
TRANSFORM: 'clip_transforms'
|
| 457 |
+
MODEL:
|
| 458 |
+
MAX_SEQ_LEN: 50
|
| 459 |
+
TEMP_NAME: logit_scale_retrieve
|
| 460 |
+
LOSSES:
|
| 461 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 462 |
+
LABELSMOOTHING: 0.1
|
| 463 |
+
LOSS_WEIGHT: 0.5
|
| 464 |
+
REDUCTION: 'mean'
|
| 465 |
+
INFERENCE:
|
| 466 |
+
VOCAB: 'CLIP'
|
| 467 |
+
GENERATION_MODE: False
|
| 468 |
+
|
| 469 |
+
-
|
| 470 |
+
NAME: cc3m_retrieve
|
| 471 |
+
DATASETS:
|
| 472 |
+
TRAIN: 'ImageTextPairDataset'
|
| 473 |
+
TASK_TYPE: 'image_retrieval'
|
| 474 |
+
DATASET_NAME: 'CC3M'
|
| 475 |
+
DATALOADER:
|
| 476 |
+
TRAIN_BATCH_SIZE: 512
|
| 477 |
+
TEST_BATCH_SIZE: 32
|
| 478 |
+
NUM_WORKERS: 2
|
| 479 |
+
S3_ANNO_FOLDER: 's3://cc3m/'
|
| 480 |
+
ANNO_FOLDER: 'open_source_dataset/cc3m/'
|
| 481 |
+
ANNO_FILENAME: 'train_spacy.json'
|
| 482 |
+
FEATS_FOLDER: 'open_source_dataset/cc3m/'
|
| 483 |
+
S3_PATH: 's3://cc3m/'
|
| 484 |
+
SAMPLER: NodeDistributed
|
| 485 |
+
CACHE_MODE: True
|
| 486 |
+
CIRCULAR_CACHE_MODE: False
|
| 487 |
+
ZIP_MODE: False
|
| 488 |
+
CACHE_ORIGIN_IMAGE: False
|
| 489 |
+
RANDOM_CAPTION: False
|
| 490 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 491 |
+
SAMPLING_WEIGHT: 0.26295
|
| 492 |
+
TRANSFORM: 'clip_transforms'
|
| 493 |
+
MODEL:
|
| 494 |
+
MAX_SEQ_LEN: 50
|
| 495 |
+
TEMP_NAME: logit_scale_retrieve
|
| 496 |
+
LOSSES:
|
| 497 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 498 |
+
LABELSMOOTHING: 0.1
|
| 499 |
+
LOSS_WEIGHT: 0.5
|
| 500 |
+
REDUCTION: 'mean'
|
| 501 |
+
INFERENCE:
|
| 502 |
+
VOCAB: 'CLIP'
|
| 503 |
+
GENERATION_MODE: False
|
| 504 |
+
|
| 505 |
+
-
|
| 506 |
+
NAME: vg_retrieve
|
| 507 |
+
DATASETS:
|
| 508 |
+
TRAIN: 'ImageTextPairDataset'
|
| 509 |
+
TASK_TYPE: 'image_retrieval'
|
| 510 |
+
DATASET_NAME: 'VG'
|
| 511 |
+
DATALOADER:
|
| 512 |
+
TRAIN_BATCH_SIZE: 512
|
| 513 |
+
TEST_BATCH_SIZE: 32
|
| 514 |
+
NUM_WORKERS: 2
|
| 515 |
+
FEATS_FOLDER: 'open_source_dataset/visual_genome/images'
|
| 516 |
+
ANNO_FOLDER: 'open_source_dataset/visual_genome/annotations'
|
| 517 |
+
S3_PATH: 's3://visual_genome/images'
|
| 518 |
+
ANNO_FILENAME: 'vg_captions_128filter.json'
|
| 519 |
+
SEQ_PER_SAMPLE: 1
|
| 520 |
+
CACHE_MODE: True
|
| 521 |
+
CIRCULAR_CACHE_MODE: False
|
| 522 |
+
ZIP_MODE: False
|
| 523 |
+
CACHE_ORIGIN_IMAGE: False
|
| 524 |
+
RANDOM_CAPTION: False
|
| 525 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 526 |
+
SAMPLING_WEIGHT: 0.1766
|
| 527 |
+
TRANSFORM: 'clip_transforms'
|
| 528 |
+
MODEL:
|
| 529 |
+
MAX_SEQ_LEN: 30
|
| 530 |
+
TEMP_NAME: logit_scale_retrieve
|
| 531 |
+
LOSSES:
|
| 532 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 533 |
+
LABELSMOOTHING: 0.1
|
| 534 |
+
LOSS_WEIGHT: 0.5
|
| 535 |
+
REDUCTION: 'mean'
|
| 536 |
+
INFERENCE:
|
| 537 |
+
VOCAB: 'CLIP'
|
| 538 |
+
GENERATION_MODE: False
|
| 539 |
+
|
| 540 |
+
-
|
| 541 |
+
NAME: mscoco_retrieve
|
| 542 |
+
DATASETS:
|
| 543 |
+
TRAIN: 'ImageTextPairDataset'
|
| 544 |
+
# TEST: 'ImageTextPairDataset'
|
| 545 |
+
TASK_TYPE: 'image_retrieval'
|
| 546 |
+
DATASET_NAME: 'MSCOCO'
|
| 547 |
+
DATALOADER:
|
| 548 |
+
TRAIN_BATCH_SIZE: 512
|
| 549 |
+
TEST_BATCH_SIZE: 32
|
| 550 |
+
NUM_WORKERS: 1
|
| 551 |
+
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 552 |
+
ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 553 |
+
S3_PATH: 's3://coco/'
|
| 554 |
+
SEQ_PER_SAMPLE: 1
|
| 555 |
+
CACHE_MODE: True
|
| 556 |
+
CIRCULAR_CACHE_MODE: False
|
| 557 |
+
ZIP_MODE: False
|
| 558 |
+
CACHE_ORIGIN_IMAGE: False
|
| 559 |
+
RANDOM_CAPTION: False
|
| 560 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 561 |
+
SAMPLING_WEIGHT: 0.1144
|
| 562 |
+
TRANSFORM: 'clip_transforms'
|
| 563 |
+
MODEL:
|
| 564 |
+
MAX_SEQ_LEN: 50
|
| 565 |
+
TEMP_NAME: logit_scale_retrieve
|
| 566 |
+
LOSSES:
|
| 567 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 568 |
+
LABELSMOOTHING: 0.1
|
| 569 |
+
LOSS_WEIGHT: 0.5
|
| 570 |
+
REDUCTION: 'mean'
|
| 571 |
+
INFERENCE:
|
| 572 |
+
VOCAB: 'CLIP'
|
| 573 |
+
ID_KEY: 'image_id'
|
| 574 |
+
VALUE: 'caption'
|
| 575 |
+
NAME: 'RetrievalEvaler'
|
| 576 |
+
VAL_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_val_set0_2014.jsonline'
|
| 577 |
+
TEST_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_test_set0_2014.jsonline'
|
| 578 |
+
GENERATION_MODE: False
|
| 579 |
+
|
| 580 |
+
-
|
| 581 |
+
NAME: sbu_retrieve
|
| 582 |
+
DATASETS:
|
| 583 |
+
TRAIN: 'ImageTextPairDataset'
|
| 584 |
+
TASK_TYPE: 'image_retrieval'
|
| 585 |
+
DATASET_NAME: 'SBU'
|
| 586 |
+
DATALOADER:
|
| 587 |
+
TRAIN_BATCH_SIZE: 512
|
| 588 |
+
TEST_BATCH_SIZE: 32
|
| 589 |
+
NUM_WORKERS: 1
|
| 590 |
+
S3_ANNO_FOLDER: 's3://SBU/annotations'
|
| 591 |
+
ANNO_FOLDER: 'open_source_dataset/sbucaption/annotations'
|
| 592 |
+
ANNO_FILENAME: 'subcaption.json'
|
| 593 |
+
FEATS_FOLDER: 'open_source_dataset/sbucaption/'
|
| 594 |
+
S3_PATH: 's3://SBU/images'
|
| 595 |
+
SAMPLER: NodeDistributed
|
| 596 |
+
CACHE_MODE: True
|
| 597 |
+
CIRCULAR_CACHE_MODE: False
|
| 598 |
+
ZIP_MODE: False
|
| 599 |
+
CACHE_ORIGIN_IMAGE: False
|
| 600 |
+
RANDOM_CAPTION: False
|
| 601 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 602 |
+
SAMPLING_WEIGHT: 0.1383
|
| 603 |
+
TRANSFORM: 'clip_transforms'
|
| 604 |
+
MODEL:
|
| 605 |
+
MAX_SEQ_LEN: 50
|
| 606 |
+
TEMP_NAME: logit_scale_retrieve
|
| 607 |
+
LOSSES:
|
| 608 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 609 |
+
LABELSMOOTHING: 0.1
|
| 610 |
+
LOSS_WEIGHT: 0.5
|
| 611 |
+
REDUCTION: 'mean'
|
| 612 |
+
INFERENCE:
|
| 613 |
+
VOCAB: 'CLIP'
|
| 614 |
+
GENERATION_MODE: False
|
| 615 |
+
|
| 616 |
+
|
| 617 |
+
ENGINE:
|
| 618 |
+
NAME: 'UnifiedTrainer'
|
| 619 |
+
|
| 620 |
+
MODEL:
|
| 621 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 622 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 623 |
+
|
| 624 |
+
|
| 625 |
+
SHARE_LAYERNORM: True
|
| 626 |
+
BERT:
|
| 627 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 628 |
+
DROP_PATH_PROB: 0.1
|
| 629 |
+
DROP_PATH_PROB_FIXED: True
|
| 630 |
+
|
| 631 |
+
UNIFY_QKV: True
|
| 632 |
+
|
| 633 |
+
MODEL_EMA: False
|
| 634 |
+
MODEL_EMA_DECAY: 0.9999
|
| 635 |
+
|
| 636 |
+
MAEParamsInit: True
|
| 637 |
+
POSEMBEDFIX: True
|
| 638 |
+
|
| 639 |
+
|
| 640 |
+
IMG_INPUT_SIZE: 160
|
| 641 |
+
PATCH_SIZE: 16
|
| 642 |
+
|
| 643 |
+
LAYER_SCALE: True
|
| 644 |
+
LAYER_SCALE_INIT: 1e-3
|
| 645 |
+
OLD_CHECKPONT: True
|
| 646 |
+
|
| 647 |
+
LAYER_SCALE_FP32: True
|
| 648 |
+
GATE_FP32: False
|
| 649 |
+
TAG_TRANSFORM_FP32: False
|
| 650 |
+
|
| 651 |
+
|
| 652 |
+
DATALOADER:
|
| 653 |
+
USE_WEIGHTED_SAMPLER: True
|
| 654 |
+
UNIFIED_DATASET: True
|
| 655 |
+
NUM_WORKERS: 32
|
| 656 |
+
|
| 657 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 658 |
+
|
| 659 |
+
|
| 660 |
+
|
| 661 |
+
####################################### Optimizer #######################################
|
| 662 |
+
SOLVER:
|
| 663 |
+
NAME: 'Adam'
|
| 664 |
+
TORCH_OPTIMIZER: True
|
| 665 |
+
PARAMS_SEPERATE: True
|
| 666 |
+
# PARAMS_GROUP: True
|
| 667 |
+
# EPOCH: 1
|
| 668 |
+
MAX_ITER: 230000
|
| 669 |
+
CHECKPOINT_PERIOD: 10000
|
| 670 |
+
EVAL_PERIOD: 10000000
|
| 671 |
+
BASE_LR: 0.001
|
| 672 |
+
BIAS_LR_FACTOR: 1.0
|
| 673 |
+
WEIGHT_DECAY: 0.2
|
| 674 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 675 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 676 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 677 |
+
MOMENTUM: 0.9
|
| 678 |
+
DAMPENING: 0.0
|
| 679 |
+
NESTEROV: 0.0
|
| 680 |
+
BETAS: [0.9, 0.95]
|
| 681 |
+
EPS: 1e-6
|
| 682 |
+
GRAD_CLIP: 0.1
|
| 683 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 684 |
+
ACCUM_ITER: 0
|
| 685 |
+
AMP_FP16: True
|
| 686 |
+
APEX_FP16: False # dangerous
|
| 687 |
+
|
| 688 |
+
WRITE_PERIOD: 50
|
| 689 |
+
MIN_LOSS_SCLE: 2048.0
|
| 690 |
+
# BF16: False # True
|
| 691 |
+
# ZEROSTAGE: 2
|
| 692 |
+
|
| 693 |
+
LOSS_SCALE_WINDOW: 200
|
| 694 |
+
|
| 695 |
+
|
| 696 |
+
####################################### lr scheduler #######################################
|
| 697 |
+
LR_SCHEDULER:
|
| 698 |
+
NAME: 'WarmupCosine'
|
| 699 |
+
WARMUP: 10000
|
| 700 |
+
MIN_LR: 0.000001
|
| 701 |
+
|
| 702 |
+
####################################### evaluation #######################################
|
| 703 |
+
INFERENCE:
|
| 704 |
+
|
| 705 |
+
VOCAB: 'CLIP'
|
| 706 |
+
ITER_BASED: True
|
| 707 |
+
|
| 708 |
+
|
| 709 |
+
find_unused_parameters: true
|
| 710 |
+
|
| 711 |
+
MOE:
|
| 712 |
+
MOE: True
|
| 713 |
+
MOE_TYPE: 'attribute'
|
| 714 |
+
TAG_Transform: True
|
| 715 |
+
ATTRIBUTE_LENGTH: 8
|
| 716 |
+
EP_WORLD_SIZE: 1 # tag moe only
|
| 717 |
+
NUM_EXPERTS: 8
|
| 718 |
+
TOP_K: 2
|
| 719 |
+
CAPACITY_FACTOR: 3.0
|
| 720 |
+
EVAL_MIN_CAPACITY: 4.0
|
| 721 |
+
MIN_CAPACITY: 4
|
| 722 |
+
NOISY_GATE_POLICY: 'vmoe'
|
| 723 |
+
MOE_PARAM_GROUP: True
|
| 724 |
+
MOE_EXPERT_TYPE: 'FFN,SA'
|
| 725 |
+
SA_LINEAR_OUT_MOE: True
|
| 726 |
+
MOE_EXPERT_LOCATION: 'odd' # 'odd'
|
| 727 |
+
# MOE_LAYER_START_IDX: 3
|
| 728 |
+
# MOE_LAYER_END_IDX: 21
|
| 729 |
+
# MOE_LAYER_START_IDX: 18
|
| 730 |
+
# MOE_LAYER_END_IDX: 12
|
| 731 |
+
BATCH_PRIO: True
|
| 732 |
+
USE_TUTEL: True
|
| 733 |
+
FFN_SHARE_GATE_DECISION: True
|
configs/BERT_L12_H768_experiments/16tasks_training_basemoe_stage2_56gpu.yaml
ADDED
|
@@ -0,0 +1,744 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base_model_bert_l12_h768.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
-
|
| 6 |
+
NAME: 'ImageNet22k'
|
| 7 |
+
SHARED_TARGETS_CFG:
|
| 8 |
+
FILE_PATH: 'open_source_dataset/imagenet_22k_class_name_CLIP_with_endoftext.pkl'
|
| 9 |
+
DISTRIBUTED: True
|
| 10 |
+
|
| 11 |
+
-
|
| 12 |
+
NAME: 'Vocab_Word'
|
| 13 |
+
SHARED_TARGETS_CFG:
|
| 14 |
+
FILE_PATH: 'open_source_dataset/vocabulary_CLIP_with_endoftext.pkl'
|
| 15 |
+
DISTRIBUTED: True
|
| 16 |
+
|
| 17 |
+
-
|
| 18 |
+
NAME: 'MomentsInTime'
|
| 19 |
+
SHARED_TARGETS_CFG:
|
| 20 |
+
FILE_PATH: 'open_source_dataset/MiT_class_name_CLIP_with_endoftext.pkl'
|
| 21 |
+
DISTRIBUTED: False
|
| 22 |
+
|
| 23 |
+
-
|
| 24 |
+
NAME: 'Kinetics700'
|
| 25 |
+
SHARED_TARGETS_CFG:
|
| 26 |
+
FILE_PATH: 'open_source_dataset/k700_class_name_CLIP_with_endoftext.pkl'
|
| 27 |
+
DISTRIBUTED: False
|
| 28 |
+
|
| 29 |
+
TASKS:
|
| 30 |
+
|
| 31 |
+
-
|
| 32 |
+
NAME: imagenet22k
|
| 33 |
+
DATASETS:
|
| 34 |
+
TRAIN: 'ImageNet22KDataset'
|
| 35 |
+
TASK_TYPE: 'image_classification'
|
| 36 |
+
DATASET_NAME: 'ImageNet22k'
|
| 37 |
+
TARGET_SET: ['ImageNet22k']
|
| 38 |
+
|
| 39 |
+
DATALOADER:
|
| 40 |
+
TRAIN_BATCH_SIZE: 440
|
| 41 |
+
# TEST_BATCH_SIZE: 2
|
| 42 |
+
NUM_WORKERS: 2
|
| 43 |
+
FEATS_FOLDER: 'open_source_dataset/imagenet22k'
|
| 44 |
+
S3_PATH: 'cluster2:s3://imagenet22k'
|
| 45 |
+
ANNO_FOLDER: 'open_source_dataset/'
|
| 46 |
+
SAMPLING_WEIGHT: 2.486
|
| 47 |
+
MIXUP: 0.0
|
| 48 |
+
CUTMIX: 0.0
|
| 49 |
+
MIXUP_PROB: 1.0
|
| 50 |
+
MIXUP_SWITCH_PROB: 0.5
|
| 51 |
+
MIXUP_MODE: 'batch'
|
| 52 |
+
MIXUP_LABEL_SMOOTHING: 0.1
|
| 53 |
+
MODEL:
|
| 54 |
+
MAX_SEQ_LEN: -1
|
| 55 |
+
LABELS_NUM: 21842
|
| 56 |
+
TEMP_NAME: logit_scale_img_cls
|
| 57 |
+
LOSSES:
|
| 58 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 59 |
+
LOSS_WEIGHT: 1.0
|
| 60 |
+
REDUCTION: 'mean'
|
| 61 |
+
LABELSMOOTHING: 0.1
|
| 62 |
+
INFERENCE:
|
| 63 |
+
NAME: 'ImageNetEvaler'
|
| 64 |
+
ID_KEY: 'image_id'
|
| 65 |
+
VALUE: 'cls_logits'
|
| 66 |
+
VAL_ANNFILE: 'open_source_dataset/imagenet/meta/val.txt'
|
| 67 |
+
# VAL_ANNFILE: '/mnt/lustrenew/lihao2/projects/xmodaler_2/val_debug.txt'
|
| 68 |
+
TEST_ANNFILE: ''
|
| 69 |
+
GENERATION_MODE: False
|
| 70 |
+
|
| 71 |
+
-
|
| 72 |
+
NAME: K700_retrieve
|
| 73 |
+
DATASETS:
|
| 74 |
+
TRAIN: 'VideoDataSet'
|
| 75 |
+
TASK_TYPE: 'video_classification'
|
| 76 |
+
DATASET_NAME: 'K700'
|
| 77 |
+
TARGET_SET: ['Kinetics700']
|
| 78 |
+
DATALOADER:
|
| 79 |
+
TRAIN_BATCH_SIZE: 12
|
| 80 |
+
TEST_BATCH_SIZE: 24
|
| 81 |
+
NUM_WORKERS: 2
|
| 82 |
+
FEATS_FOLDER: 'open_source_dataset/K700'
|
| 83 |
+
ANNO_FOLDER: 'open_source_dataset/K700'
|
| 84 |
+
S3_PATH: 's3://K700/'
|
| 85 |
+
FRAMES_PER_CLIP: 8
|
| 86 |
+
STRIDE: 32
|
| 87 |
+
FILE_EXTENSION: ''
|
| 88 |
+
ANNO_FILE: 'annotation.json'
|
| 89 |
+
TIMESFORMER_AUG: True
|
| 90 |
+
SAMPLING_WEIGHT: 1.0
|
| 91 |
+
|
| 92 |
+
MODEL:
|
| 93 |
+
MAX_SEQ_LEN: -1
|
| 94 |
+
TEMP_NAME: logit_scale_video_cls
|
| 95 |
+
LOSSES:
|
| 96 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 97 |
+
LABELSMOOTHING: 0.1
|
| 98 |
+
LOSS_WEIGHT: 0.1
|
| 99 |
+
INFERENCE:
|
| 100 |
+
VOCAB: 'CLIP'
|
| 101 |
+
GENERATION_MODE: False
|
| 102 |
+
|
| 103 |
+
-
|
| 104 |
+
NAME: MomentsInTime
|
| 105 |
+
DATASETS:
|
| 106 |
+
TRAIN: 'VideoDataSet'
|
| 107 |
+
TASK_TYPE: 'video_classification'
|
| 108 |
+
DATASET_NAME: 'MiT'
|
| 109 |
+
TARGET_SET: ['MomentsInTime']
|
| 110 |
+
DATALOADER:
|
| 111 |
+
TRAIN_BATCH_SIZE: 68
|
| 112 |
+
TEST_BATCH_SIZE: 8
|
| 113 |
+
NUM_WORKERS: 2
|
| 114 |
+
FEATS_FOLDER: 'open_source_dataset/MomentsInTime'
|
| 115 |
+
ANNO_FOLDER: 'open_source_dataset/MomentsInTime'
|
| 116 |
+
S3_PATH: 's3://MomentsInTime/'
|
| 117 |
+
FRAMES_PER_CLIP: 3
|
| 118 |
+
STRIDE: 32
|
| 119 |
+
FILE_EXTENSION: ''
|
| 120 |
+
ANNO_FILE: 'annotation.json'
|
| 121 |
+
TIMESFORMER_AUG: True
|
| 122 |
+
SAMPLING_WEIGHT: 0.2
|
| 123 |
+
|
| 124 |
+
MODEL:
|
| 125 |
+
MAX_SEQ_LEN: -1
|
| 126 |
+
TEMP_NAME: logit_scale_video_cls
|
| 127 |
+
LOSSES:
|
| 128 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 129 |
+
LABELSMOOTHING: 0.1
|
| 130 |
+
LOSS_WEIGHT: 0.1
|
| 131 |
+
INFERENCE:
|
| 132 |
+
NAME: 'MiTEvaler'
|
| 133 |
+
ID_KEY: 'video_name'
|
| 134 |
+
VALUE: 'label'
|
| 135 |
+
VAL_ANNFILE: 'open_source_dataset/MomentsInTime/annotation.json'
|
| 136 |
+
TEST_ANNFILE: ''
|
| 137 |
+
GENERATION_MODE: False
|
| 138 |
+
NUM_VIEWS: 1
|
| 139 |
+
|
| 140 |
+
-
|
| 141 |
+
NAME: bookswiki_pretrain
|
| 142 |
+
DATASETS:
|
| 143 |
+
TRAIN: 'GeneralCorpusDataset'
|
| 144 |
+
TASK_TYPE: 'text_mlm'
|
| 145 |
+
DATASET_NAME: 'BooksWiki'
|
| 146 |
+
TARGET_SET: ['Vocab_Word']
|
| 147 |
+
VERSION: 'v2'
|
| 148 |
+
DATALOADER:
|
| 149 |
+
TRAIN_BATCH_SIZE: 512
|
| 150 |
+
TEST_BATCH_SIZE: 32
|
| 151 |
+
NUM_WORKERS: 2
|
| 152 |
+
ANNO_FOLDER: 'open_source_dataset/text_corpus' # 'open_source_dataset/bert_pretrain_data/bookswiki'
|
| 153 |
+
# ANNO_FOLDER: 'open_source_dataset/bert_pretrain_data/bookswiki'
|
| 154 |
+
SEQ_PER_SAMPLE: 1
|
| 155 |
+
SAMPLER: NodeDistributed
|
| 156 |
+
CACHE_MODE: True
|
| 157 |
+
SEQ_PER_SAMPLE: 128
|
| 158 |
+
MIN_SEQ_PER_SAMPLE: 128
|
| 159 |
+
APPEND_EOS: True
|
| 160 |
+
ONE_STREAM: False
|
| 161 |
+
SAMPLING_WEIGHT: 2.75
|
| 162 |
+
RANDOM_MASK: True
|
| 163 |
+
MODEL:
|
| 164 |
+
MAX_SEQ_LEN: 128
|
| 165 |
+
TEMP_NAME: logit_scale_text_mlm
|
| 166 |
+
LOSSES:
|
| 167 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 168 |
+
LOSS_WEIGHT: 0.5
|
| 169 |
+
REDUCTION: 'mean'
|
| 170 |
+
INFERENCE:
|
| 171 |
+
VOCAB: 'CLIP'
|
| 172 |
+
GENERATION_MODE: False
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
-
|
| 176 |
+
NAME: yfcc_caption
|
| 177 |
+
DATASETS:
|
| 178 |
+
TRAIN: 'ImageTextPairDataset'
|
| 179 |
+
TASK_TYPE: 'image_caption'
|
| 180 |
+
DATASET_NAME: 'YFCC'
|
| 181 |
+
TARGET_SET: ['Vocab_Word']
|
| 182 |
+
DATALOADER:
|
| 183 |
+
TRAIN_BATCH_SIZE: 200
|
| 184 |
+
TEST_BATCH_SIZE: 32
|
| 185 |
+
NUM_WORKERS: 2
|
| 186 |
+
S3_ANNO_FOLDER: 'cluster2:s3://yfcc'
|
| 187 |
+
ANNO_FOLDER: 'open_source_dataset/yfcc'
|
| 188 |
+
ANNO_FILENAME: 'yfcc100m_subset_available_untokenized.json'
|
| 189 |
+
FEATS_FOLDER: 'open_source_dataset/yfcc/'
|
| 190 |
+
S3_PATH: 'cluster2:s3://yfcc/'
|
| 191 |
+
SEQ_PER_SAMPLE: 1
|
| 192 |
+
SAMPLER: NodeDistributed
|
| 193 |
+
CACHE_MODE: True
|
| 194 |
+
CIRCULAR_CACHE_MODE: False
|
| 195 |
+
ZIP_MODE: False
|
| 196 |
+
CACHE_ORIGIN_IMAGE: False
|
| 197 |
+
RANDOM_CAPTION: False
|
| 198 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 199 |
+
SAMPLING_WEIGHT: 0.5840
|
| 200 |
+
TRANSFORM: 'clip_transforms'
|
| 201 |
+
MODEL:
|
| 202 |
+
MAX_SEQ_LEN: 50
|
| 203 |
+
TEMP_NAME: logit_scale_caption
|
| 204 |
+
LOSSES:
|
| 205 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 206 |
+
LOSS_WEIGHT: 1.0
|
| 207 |
+
REDUCTION: 'mean'
|
| 208 |
+
INFERENCE:
|
| 209 |
+
VOCAB: 'CLIP'
|
| 210 |
+
GENERATION_MODE: False
|
| 211 |
+
|
| 212 |
+
-
|
| 213 |
+
NAME: cc12m_caption
|
| 214 |
+
DATASETS:
|
| 215 |
+
TRAIN: 'ImageTextPairDataset'
|
| 216 |
+
TASK_TYPE: 'image_caption'
|
| 217 |
+
DATASET_NAME: 'CC12M'
|
| 218 |
+
TARGET_SET: ['Vocab_Word']
|
| 219 |
+
DATALOADER:
|
| 220 |
+
TRAIN_BATCH_SIZE: 200
|
| 221 |
+
TEST_BATCH_SIZE: 32
|
| 222 |
+
NUM_WORKERS: 2
|
| 223 |
+
S3_ANNO_FOLDER: 's3://cc12m/'
|
| 224 |
+
ANNO_FOLDER: 'open_source_dataset/c12m/'
|
| 225 |
+
ANNO_FILENAME: 'train_available.json'
|
| 226 |
+
FEATS_FOLDER: 'open_source_dataset/c12m/'
|
| 227 |
+
S3_PATH: 's3://cc12m/'
|
| 228 |
+
SEQ_PER_SAMPLE: 1
|
| 229 |
+
SAMPLER: NodeDistributed
|
| 230 |
+
CACHE_MODE: True
|
| 231 |
+
CIRCULAR_CACHE_MODE: False
|
| 232 |
+
ZIP_MODE: False
|
| 233 |
+
CACHE_ORIGIN_IMAGE: False
|
| 234 |
+
RANDOM_CAPTION: False
|
| 235 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 236 |
+
SAMPLING_WEIGHT: 0.5057
|
| 237 |
+
TRANSFORM: 'clip_transforms'
|
| 238 |
+
MODEL:
|
| 239 |
+
MAX_SEQ_LEN: 50
|
| 240 |
+
TEMP_NAME: logit_scale_caption
|
| 241 |
+
LOSSES:
|
| 242 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 243 |
+
LOSS_WEIGHT: 1.0
|
| 244 |
+
REDUCTION: 'mean'
|
| 245 |
+
INFERENCE:
|
| 246 |
+
VOCAB: 'CLIP'
|
| 247 |
+
GENERATION_MODE: False
|
| 248 |
+
|
| 249 |
+
-
|
| 250 |
+
NAME: cc3m_caption
|
| 251 |
+
DATASETS:
|
| 252 |
+
TRAIN: 'ImageTextPairDataset'
|
| 253 |
+
TASK_TYPE: 'image_caption'
|
| 254 |
+
DATASET_NAME: 'CC3M'
|
| 255 |
+
TARGET_SET: ['Vocab_Word']
|
| 256 |
+
DATALOADER:
|
| 257 |
+
TRAIN_BATCH_SIZE: 200
|
| 258 |
+
TEST_BATCH_SIZE: 32
|
| 259 |
+
NUM_WORKERS: 2
|
| 260 |
+
S3_ANNO_FOLDER: 's3://cc3m/'
|
| 261 |
+
ANNO_FOLDER: 'open_source_dataset/cc3m/'
|
| 262 |
+
ANNO_FILENAME: 'train_spacy.json'
|
| 263 |
+
FEATS_FOLDER: 'open_source_dataset/cc3m/'
|
| 264 |
+
S3_PATH: 's3://cc3m/'
|
| 265 |
+
SEQ_PER_SAMPLE: 1
|
| 266 |
+
SAMPLER: NodeDistributed
|
| 267 |
+
CACHE_MODE: True
|
| 268 |
+
CIRCULAR_CACHE_MODE: False
|
| 269 |
+
ZIP_MODE: False
|
| 270 |
+
CACHE_ORIGIN_IMAGE: False
|
| 271 |
+
RANDOM_CAPTION: False
|
| 272 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 273 |
+
SAMPLING_WEIGHT: 0.26295
|
| 274 |
+
TRANSFORM: 'clip_transforms'
|
| 275 |
+
MODEL:
|
| 276 |
+
MAX_SEQ_LEN: 50
|
| 277 |
+
TEMP_NAME: logit_scale_caption
|
| 278 |
+
LOSSES:
|
| 279 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 280 |
+
LOSS_WEIGHT: 1.0
|
| 281 |
+
REDUCTION: 'mean'
|
| 282 |
+
INFERENCE:
|
| 283 |
+
VOCAB: 'CLIP'
|
| 284 |
+
GENERATION_MODE: False
|
| 285 |
+
|
| 286 |
+
-
|
| 287 |
+
NAME: vg_caption
|
| 288 |
+
DATASETS:
|
| 289 |
+
TRAIN: 'ImageTextPairDataset'
|
| 290 |
+
TASK_TYPE: 'image_caption'
|
| 291 |
+
DATASET_NAME: 'VG'
|
| 292 |
+
TARGET_SET: ['Vocab_Word']
|
| 293 |
+
DATALOADER:
|
| 294 |
+
TRAIN_BATCH_SIZE: 200
|
| 295 |
+
TEST_BATCH_SIZE: 32
|
| 296 |
+
NUM_WORKERS: 2
|
| 297 |
+
FEATS_FOLDER: 'open_source_dataset/visual_genome/images'
|
| 298 |
+
ANNO_FOLDER: 'open_source_dataset/visual_genome/annotations'
|
| 299 |
+
S3_PATH: 's3://visual_genome/images'
|
| 300 |
+
ANNO_FILENAME: 'vg_captions_128filter.json'
|
| 301 |
+
SEQ_PER_SAMPLE: 1
|
| 302 |
+
CACHE_MODE: True
|
| 303 |
+
CIRCULAR_CACHE_MODE: False
|
| 304 |
+
ZIP_MODE: False
|
| 305 |
+
CACHE_ORIGIN_IMAGE: False
|
| 306 |
+
RANDOM_CAPTION: False
|
| 307 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 308 |
+
SAMPLING_WEIGHT: 0.1766
|
| 309 |
+
TRANSFORM: 'clip_transforms'
|
| 310 |
+
MODEL:
|
| 311 |
+
MAX_SEQ_LEN: 30
|
| 312 |
+
TEMP_NAME: logit_scale_caption
|
| 313 |
+
LOSSES:
|
| 314 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 315 |
+
LOSS_WEIGHT: 1.0
|
| 316 |
+
REDUCTION: 'mean'
|
| 317 |
+
INFERENCE:
|
| 318 |
+
VOCAB: 'CLIP'
|
| 319 |
+
GENERATION_MODE: True
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
-
|
| 323 |
+
NAME: mscoco_caption
|
| 324 |
+
DATASETS:
|
| 325 |
+
TRAIN: 'ImageTextPairDataset'
|
| 326 |
+
# VAL: 'ImageTextPairDataset'
|
| 327 |
+
# TEST: 'ImageTextPairDataset'
|
| 328 |
+
TASK_TYPE: 'image_caption'
|
| 329 |
+
DATASET_NAME: 'MSCOCO'
|
| 330 |
+
TARGET_SET: ['Vocab_Word']
|
| 331 |
+
DATALOADER:
|
| 332 |
+
TRAIN_BATCH_SIZE: 200
|
| 333 |
+
TEST_BATCH_SIZE: 32
|
| 334 |
+
NUM_WORKERS: 1
|
| 335 |
+
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 336 |
+
ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 337 |
+
S3_PATH: 's3://coco/'
|
| 338 |
+
SEQ_PER_SAMPLE: 1
|
| 339 |
+
CACHE_MODE: True
|
| 340 |
+
CIRCULAR_CACHE_MODE: False
|
| 341 |
+
ZIP_MODE: False
|
| 342 |
+
CACHE_ORIGIN_IMAGE: False
|
| 343 |
+
RANDOM_CAPTION: False
|
| 344 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 345 |
+
SAMPLING_WEIGHT: 0.1144
|
| 346 |
+
TRANSFORM: 'clip_transforms'
|
| 347 |
+
RANDOM_MASK: True
|
| 348 |
+
MODEL:
|
| 349 |
+
MAX_SEQ_LEN: 50
|
| 350 |
+
EVAL_MAX_SEQ_LEN: 21
|
| 351 |
+
TEMP_NAME: logit_scale_caption
|
| 352 |
+
LOSSES:
|
| 353 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 354 |
+
LOSS_WEIGHT: 1.0
|
| 355 |
+
REDUCTION: 'mean'
|
| 356 |
+
DECODE_STRATEGY:
|
| 357 |
+
NAME: 'CaptionBeamSearcherV3'
|
| 358 |
+
BEAM_SIZE: 2
|
| 359 |
+
# LEN_PENALTY: 1.0
|
| 360 |
+
INFERENCE:
|
| 361 |
+
NAME: 'COCOEvaler'
|
| 362 |
+
VOCAB: 'CLIP'
|
| 363 |
+
ID_KEY: 'image_id'
|
| 364 |
+
VALUE: 'caption'
|
| 365 |
+
VAL_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_val5k.json'
|
| 366 |
+
TEST_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_test5k.json'
|
| 367 |
+
GENERATION_MODE: True
|
| 368 |
+
|
| 369 |
+
-
|
| 370 |
+
NAME: sbu_caption
|
| 371 |
+
DATASETS:
|
| 372 |
+
TRAIN: 'ImageTextPairDataset'
|
| 373 |
+
TASK_TYPE: 'image_caption'
|
| 374 |
+
DATASET_NAME: 'SBU'
|
| 375 |
+
TARGET_SET: ['Vocab_Word']
|
| 376 |
+
DATALOADER:
|
| 377 |
+
TRAIN_BATCH_SIZE: 200
|
| 378 |
+
TEST_BATCH_SIZE: 32
|
| 379 |
+
NUM_WORKERS: 1
|
| 380 |
+
S3_ANNO_FOLDER: 's3://SBU/annotations'
|
| 381 |
+
ANNO_FOLDER: 'open_source_dataset/sbucaption/annotations'
|
| 382 |
+
ANNO_FILENAME: 'subcaption.json'
|
| 383 |
+
FEATS_FOLDER: 'open_source_dataset/sbucaption/'
|
| 384 |
+
S3_PATH: 's3://SBU/images'
|
| 385 |
+
SEQ_PER_SAMPLE: 1
|
| 386 |
+
SAMPLER: NodeDistributed
|
| 387 |
+
CACHE_MODE: True
|
| 388 |
+
CIRCULAR_CACHE_MODE: False
|
| 389 |
+
ZIP_MODE: False
|
| 390 |
+
CACHE_ORIGIN_IMAGE: False
|
| 391 |
+
RANDOM_CAPTION: False
|
| 392 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 393 |
+
SAMPLING_WEIGHT: 0.1383
|
| 394 |
+
TRANSFORM: 'clip_transforms'
|
| 395 |
+
MODEL:
|
| 396 |
+
MAX_SEQ_LEN: 50
|
| 397 |
+
TEMP_NAME: logit_scale_caption
|
| 398 |
+
LOSSES:
|
| 399 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 400 |
+
LOSS_WEIGHT: 1.0
|
| 401 |
+
REDUCTION: 'mean'
|
| 402 |
+
INFERENCE:
|
| 403 |
+
VOCAB: 'CLIP'
|
| 404 |
+
GENERATION_MODE: False
|
| 405 |
+
|
| 406 |
+
-
|
| 407 |
+
NAME: yfcc_retrieve
|
| 408 |
+
DATASETS:
|
| 409 |
+
TRAIN: 'ImageTextPairDataset'
|
| 410 |
+
TASK_TYPE: 'image_retrieval'
|
| 411 |
+
DATASET_NAME: 'YFCC'
|
| 412 |
+
DATALOADER:
|
| 413 |
+
TRAIN_BATCH_SIZE: 320
|
| 414 |
+
TEST_BATCH_SIZE: 32
|
| 415 |
+
NUM_WORKERS: 2
|
| 416 |
+
S3_ANNO_FOLDER: 'cluster2:s3://yfcc'
|
| 417 |
+
ANNO_FOLDER: 'open_source_dataset/yfcc'
|
| 418 |
+
ANNO_FILENAME: 'yfcc100m_subset_available_untokenized.json'
|
| 419 |
+
FEATS_FOLDER: 'open_source_dataset/yfcc/'
|
| 420 |
+
S3_PATH: 'cluster2:s3://yfcc/'
|
| 421 |
+
SAMPLER: NodeDistributed
|
| 422 |
+
CACHE_MODE: True
|
| 423 |
+
CIRCULAR_CACHE_MODE: False
|
| 424 |
+
ZIP_MODE: False
|
| 425 |
+
CACHE_ORIGIN_IMAGE: False
|
| 426 |
+
RANDOM_CAPTION: False
|
| 427 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 428 |
+
SAMPLING_WEIGHT: 0.5840
|
| 429 |
+
TRANSFORM: 'clip_transforms'
|
| 430 |
+
MODEL:
|
| 431 |
+
MAX_SEQ_LEN: 50
|
| 432 |
+
TEMP_NAME: logit_scale_retrieve
|
| 433 |
+
LOSSES:
|
| 434 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 435 |
+
LABELSMOOTHING: 0.1
|
| 436 |
+
LOSS_WEIGHT: 0.5
|
| 437 |
+
REDUCTION: 'mean'
|
| 438 |
+
INFERENCE:
|
| 439 |
+
VOCAB: 'CLIP'
|
| 440 |
+
GENERATION_MODE: False
|
| 441 |
+
|
| 442 |
+
-
|
| 443 |
+
NAME: cc12m_retrieve
|
| 444 |
+
DATASETS:
|
| 445 |
+
TRAIN: 'ImageTextPairDataset'
|
| 446 |
+
TASK_TYPE: 'image_retrieval'
|
| 447 |
+
DATASET_NAME: 'CC12M'
|
| 448 |
+
DATALOADER:
|
| 449 |
+
TRAIN_BATCH_SIZE: 320
|
| 450 |
+
TEST_BATCH_SIZE: 32
|
| 451 |
+
NUM_WORKERS: 2
|
| 452 |
+
S3_ANNO_FOLDER: 's3://cc12m/'
|
| 453 |
+
ANNO_FOLDER: 'open_source_dataset/c12m/'
|
| 454 |
+
ANNO_FILENAME: 'train_available.json'
|
| 455 |
+
FEATS_FOLDER: 'open_source_dataset/c12m/'
|
| 456 |
+
S3_PATH: 's3://cc12m/'
|
| 457 |
+
SAMPLER: NodeDistributed
|
| 458 |
+
CACHE_MODE: True
|
| 459 |
+
CIRCULAR_CACHE_MODE: False
|
| 460 |
+
ZIP_MODE: False
|
| 461 |
+
CACHE_ORIGIN_IMAGE: False
|
| 462 |
+
RANDOM_CAPTION: False
|
| 463 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 464 |
+
SAMPLING_WEIGHT: 0.5057
|
| 465 |
+
TRANSFORM: 'clip_transforms'
|
| 466 |
+
MODEL:
|
| 467 |
+
MAX_SEQ_LEN: 50
|
| 468 |
+
TEMP_NAME: logit_scale_retrieve
|
| 469 |
+
LOSSES:
|
| 470 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 471 |
+
LABELSMOOTHING: 0.1
|
| 472 |
+
LOSS_WEIGHT: 0.5
|
| 473 |
+
REDUCTION: 'mean'
|
| 474 |
+
INFERENCE:
|
| 475 |
+
VOCAB: 'CLIP'
|
| 476 |
+
GENERATION_MODE: False
|
| 477 |
+
|
| 478 |
+
-
|
| 479 |
+
NAME: cc3m_retrieve
|
| 480 |
+
DATASETS:
|
| 481 |
+
TRAIN: 'ImageTextPairDataset'
|
| 482 |
+
TASK_TYPE: 'image_retrieval'
|
| 483 |
+
DATASET_NAME: 'CC3M'
|
| 484 |
+
DATALOADER:
|
| 485 |
+
TRAIN_BATCH_SIZE: 320
|
| 486 |
+
TEST_BATCH_SIZE: 32
|
| 487 |
+
NUM_WORKERS: 2
|
| 488 |
+
S3_ANNO_FOLDER: 's3://cc3m/'
|
| 489 |
+
ANNO_FOLDER: 'open_source_dataset/cc3m/'
|
| 490 |
+
ANNO_FILENAME: 'train_spacy.json'
|
| 491 |
+
FEATS_FOLDER: 'open_source_dataset/cc3m/'
|
| 492 |
+
S3_PATH: 's3://cc3m/'
|
| 493 |
+
SAMPLER: NodeDistributed
|
| 494 |
+
CACHE_MODE: True
|
| 495 |
+
CIRCULAR_CACHE_MODE: False
|
| 496 |
+
ZIP_MODE: False
|
| 497 |
+
CACHE_ORIGIN_IMAGE: False
|
| 498 |
+
RANDOM_CAPTION: False
|
| 499 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 500 |
+
SAMPLING_WEIGHT: 0.26295
|
| 501 |
+
TRANSFORM: 'clip_transforms'
|
| 502 |
+
MODEL:
|
| 503 |
+
MAX_SEQ_LEN: 50
|
| 504 |
+
TEMP_NAME: logit_scale_retrieve
|
| 505 |
+
LOSSES:
|
| 506 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 507 |
+
LABELSMOOTHING: 0.1
|
| 508 |
+
LOSS_WEIGHT: 0.5
|
| 509 |
+
REDUCTION: 'mean'
|
| 510 |
+
INFERENCE:
|
| 511 |
+
VOCAB: 'CLIP'
|
| 512 |
+
GENERATION_MODE: False
|
| 513 |
+
|
| 514 |
+
-
|
| 515 |
+
NAME: vg_retrieve
|
| 516 |
+
DATASETS:
|
| 517 |
+
TRAIN: 'ImageTextPairDataset'
|
| 518 |
+
TASK_TYPE: 'image_retrieval'
|
| 519 |
+
DATASET_NAME: 'VG'
|
| 520 |
+
DATALOADER:
|
| 521 |
+
TRAIN_BATCH_SIZE: 320
|
| 522 |
+
TEST_BATCH_SIZE: 32
|
| 523 |
+
NUM_WORKERS: 2
|
| 524 |
+
FEATS_FOLDER: 'open_source_dataset/visual_genome/images'
|
| 525 |
+
ANNO_FOLDER: 'open_source_dataset/visual_genome/annotations'
|
| 526 |
+
S3_PATH: 's3://visual_genome/images'
|
| 527 |
+
ANNO_FILENAME: 'vg_captions_128filter.json'
|
| 528 |
+
SEQ_PER_SAMPLE: 1
|
| 529 |
+
CACHE_MODE: True
|
| 530 |
+
CIRCULAR_CACHE_MODE: False
|
| 531 |
+
ZIP_MODE: False
|
| 532 |
+
CACHE_ORIGIN_IMAGE: False
|
| 533 |
+
RANDOM_CAPTION: False
|
| 534 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 535 |
+
SAMPLING_WEIGHT: 0.1766
|
| 536 |
+
TRANSFORM: 'clip_transforms'
|
| 537 |
+
MODEL:
|
| 538 |
+
MAX_SEQ_LEN: 30
|
| 539 |
+
TEMP_NAME: logit_scale_retrieve
|
| 540 |
+
LOSSES:
|
| 541 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 542 |
+
LABELSMOOTHING: 0.1
|
| 543 |
+
LOSS_WEIGHT: 0.5
|
| 544 |
+
REDUCTION: 'mean'
|
| 545 |
+
INFERENCE:
|
| 546 |
+
VOCAB: 'CLIP'
|
| 547 |
+
GENERATION_MODE: False
|
| 548 |
+
|
| 549 |
+
-
|
| 550 |
+
NAME: mscoco_retrieve
|
| 551 |
+
DATASETS:
|
| 552 |
+
TRAIN: 'ImageTextPairDataset'
|
| 553 |
+
# TEST: 'ImageTextPairDataset'
|
| 554 |
+
TASK_TYPE: 'image_retrieval'
|
| 555 |
+
DATASET_NAME: 'MSCOCO'
|
| 556 |
+
DATALOADER:
|
| 557 |
+
TRAIN_BATCH_SIZE: 320
|
| 558 |
+
TEST_BATCH_SIZE: 32
|
| 559 |
+
NUM_WORKERS: 1
|
| 560 |
+
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 561 |
+
ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 562 |
+
S3_PATH: 's3://coco/'
|
| 563 |
+
SEQ_PER_SAMPLE: 1
|
| 564 |
+
CACHE_MODE: True
|
| 565 |
+
CIRCULAR_CACHE_MODE: False
|
| 566 |
+
ZIP_MODE: False
|
| 567 |
+
CACHE_ORIGIN_IMAGE: False
|
| 568 |
+
RANDOM_CAPTION: False
|
| 569 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 570 |
+
SAMPLING_WEIGHT: 0.1144
|
| 571 |
+
TRANSFORM: 'clip_transforms'
|
| 572 |
+
MODEL:
|
| 573 |
+
MAX_SEQ_LEN: 50
|
| 574 |
+
TEMP_NAME: logit_scale_retrieve
|
| 575 |
+
LOSSES:
|
| 576 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 577 |
+
LABELSMOOTHING: 0.1
|
| 578 |
+
LOSS_WEIGHT: 0.5
|
| 579 |
+
REDUCTION: 'mean'
|
| 580 |
+
INFERENCE:
|
| 581 |
+
VOCAB: 'CLIP'
|
| 582 |
+
ID_KEY: 'image_id'
|
| 583 |
+
VALUE: 'caption'
|
| 584 |
+
NAME: 'RetrievalEvaler'
|
| 585 |
+
VAL_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_val_set0_2014.jsonline'
|
| 586 |
+
TEST_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_test_set0_2014.jsonline'
|
| 587 |
+
GENERATION_MODE: False
|
| 588 |
+
|
| 589 |
+
-
|
| 590 |
+
NAME: sbu_retrieve
|
| 591 |
+
DATASETS:
|
| 592 |
+
TRAIN: 'ImageTextPairDataset'
|
| 593 |
+
TASK_TYPE: 'image_retrieval'
|
| 594 |
+
DATASET_NAME: 'SBU'
|
| 595 |
+
DATALOADER:
|
| 596 |
+
TRAIN_BATCH_SIZE: 320
|
| 597 |
+
TEST_BATCH_SIZE: 32
|
| 598 |
+
NUM_WORKERS: 1
|
| 599 |
+
S3_ANNO_FOLDER: 's3://SBU/annotations'
|
| 600 |
+
ANNO_FOLDER: 'open_source_dataset/sbucaption/annotations'
|
| 601 |
+
ANNO_FILENAME: 'subcaption.json'
|
| 602 |
+
FEATS_FOLDER: 'open_source_dataset/sbucaption/'
|
| 603 |
+
S3_PATH: 's3://SBU/images'
|
| 604 |
+
SAMPLER: NodeDistributed
|
| 605 |
+
CACHE_MODE: True
|
| 606 |
+
CIRCULAR_CACHE_MODE: False
|
| 607 |
+
ZIP_MODE: False
|
| 608 |
+
CACHE_ORIGIN_IMAGE: False
|
| 609 |
+
RANDOM_CAPTION: False
|
| 610 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 611 |
+
SAMPLING_WEIGHT: 0.1383
|
| 612 |
+
TRANSFORM: 'clip_transforms'
|
| 613 |
+
MODEL:
|
| 614 |
+
MAX_SEQ_LEN: 50
|
| 615 |
+
TEMP_NAME: logit_scale_retrieve
|
| 616 |
+
LOSSES:
|
| 617 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 618 |
+
LABELSMOOTHING: 0.1
|
| 619 |
+
LOSS_WEIGHT: 0.5
|
| 620 |
+
REDUCTION: 'mean'
|
| 621 |
+
INFERENCE:
|
| 622 |
+
VOCAB: 'CLIP'
|
| 623 |
+
GENERATION_MODE: False
|
| 624 |
+
|
| 625 |
+
|
| 626 |
+
ENGINE:
|
| 627 |
+
NAME: 'UnifiedTrainer'
|
| 628 |
+
|
| 629 |
+
MODEL:
|
| 630 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 631 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 632 |
+
|
| 633 |
+
|
| 634 |
+
SHARE_LAYERNORM: True
|
| 635 |
+
BERT:
|
| 636 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 637 |
+
DROP_PATH_PROB: 0.1
|
| 638 |
+
DROP_PATH_PROB_FIXED: True
|
| 639 |
+
|
| 640 |
+
UNIFY_QKV: True
|
| 641 |
+
|
| 642 |
+
MODEL_EMA: False
|
| 643 |
+
MODEL_EMA_DECAY: 0.9999
|
| 644 |
+
|
| 645 |
+
MAEParamsInit: True
|
| 646 |
+
POSEMBEDFIX: True
|
| 647 |
+
|
| 648 |
+
|
| 649 |
+
IMG_INPUT_SIZE: 224
|
| 650 |
+
PATCH_SIZE: 16
|
| 651 |
+
POSEMBED_SCALE: !!python/object/apply:eval ["160/224"]
|
| 652 |
+
CHECKPOINT_FILETER: False
|
| 653 |
+
|
| 654 |
+
LAYER_SCALE: True
|
| 655 |
+
LAYER_SCALE_INIT: 1e-3
|
| 656 |
+
OLD_CHECKPONT: True
|
| 657 |
+
|
| 658 |
+
LAYER_SCALE_FP32: True
|
| 659 |
+
GATE_FP32: False
|
| 660 |
+
TAG_TRANSFORM_FP32: False
|
| 661 |
+
|
| 662 |
+
|
| 663 |
+
DATALOADER:
|
| 664 |
+
USE_WEIGHTED_SAMPLER: True
|
| 665 |
+
UNIFIED_DATASET: True
|
| 666 |
+
NUM_WORKERS: 32
|
| 667 |
+
|
| 668 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 669 |
+
|
| 670 |
+
|
| 671 |
+
|
| 672 |
+
####################################### Optimizer #######################################
|
| 673 |
+
SOLVER:
|
| 674 |
+
NAME: 'Adam'
|
| 675 |
+
TORCH_OPTIMIZER: True
|
| 676 |
+
PARAMS_SEPERATE: True
|
| 677 |
+
# PARAMS_GROUP: True
|
| 678 |
+
# EPOCH: 1
|
| 679 |
+
MAX_ITER: 50000
|
| 680 |
+
CHECKPOINT_PERIOD: 5000
|
| 681 |
+
EVAL_PERIOD: 10000000
|
| 682 |
+
BASE_LR: 0.00002
|
| 683 |
+
BIAS_LR_FACTOR: 1.0
|
| 684 |
+
WEIGHT_DECAY: 0.05
|
| 685 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 686 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 687 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 688 |
+
MOMENTUM: 0.9
|
| 689 |
+
DAMPENING: 0.0
|
| 690 |
+
NESTEROV: 0.0
|
| 691 |
+
BETAS: [0.9, 0.95]
|
| 692 |
+
EPS: 1e-6
|
| 693 |
+
GRAD_CLIP: 0.1
|
| 694 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 695 |
+
ACCUM_ITER: 0
|
| 696 |
+
AMP_FP16: True
|
| 697 |
+
APEX_FP16: False # dangerous
|
| 698 |
+
|
| 699 |
+
WRITE_PERIOD: 50
|
| 700 |
+
MIN_LOSS_SCLE: 2048.0
|
| 701 |
+
# BF16: False # True
|
| 702 |
+
# ZEROSTAGE: 2
|
| 703 |
+
|
| 704 |
+
LOSS_SCALE_WINDOW: 200
|
| 705 |
+
|
| 706 |
+
|
| 707 |
+
####################################### lr scheduler #######################################
|
| 708 |
+
LR_SCHEDULER:
|
| 709 |
+
NAME: 'WarmupCosine'
|
| 710 |
+
WARMUP: 5000
|
| 711 |
+
MIN_LR: 0.000001
|
| 712 |
+
|
| 713 |
+
####################################### evaluation #######################################
|
| 714 |
+
INFERENCE:
|
| 715 |
+
|
| 716 |
+
VOCAB: 'CLIP'
|
| 717 |
+
ITER_BASED: True
|
| 718 |
+
|
| 719 |
+
|
| 720 |
+
find_unused_parameters: true
|
| 721 |
+
|
| 722 |
+
MOE:
|
| 723 |
+
MOE: True
|
| 724 |
+
MOE_TYPE: 'attribute'
|
| 725 |
+
TAG_Transform: True
|
| 726 |
+
ATTRIBUTE_LENGTH: 8
|
| 727 |
+
EP_WORLD_SIZE: 1 # tag moe only
|
| 728 |
+
NUM_EXPERTS: 8
|
| 729 |
+
TOP_K: 2
|
| 730 |
+
CAPACITY_FACTOR: 3.0
|
| 731 |
+
EVAL_MIN_CAPACITY: 4.0
|
| 732 |
+
MIN_CAPACITY: 4
|
| 733 |
+
NOISY_GATE_POLICY: 'vmoe'
|
| 734 |
+
MOE_PARAM_GROUP: True
|
| 735 |
+
MOE_EXPERT_TYPE: 'FFN,SA'
|
| 736 |
+
SA_LINEAR_OUT_MOE: True
|
| 737 |
+
MOE_EXPERT_LOCATION: 'odd' # 'odd'
|
| 738 |
+
# MOE_LAYER_START_IDX: 3
|
| 739 |
+
# MOE_LAYER_END_IDX: 21
|
| 740 |
+
# MOE_LAYER_START_IDX: 18
|
| 741 |
+
# MOE_LAYER_END_IDX: 12
|
| 742 |
+
BATCH_PRIO: True
|
| 743 |
+
USE_TUTEL: True
|
| 744 |
+
FFN_SHARE_GATE_DECISION: True
|
configs/BERT_L12_H768_experiments/16tasks_training_stage2_64gpu_v1.yaml
ADDED
|
@@ -0,0 +1,750 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base_model_bert_l12_h768.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
-
|
| 6 |
+
NAME: 'ImageNet22k'
|
| 7 |
+
SHARED_TARGETS_CFG:
|
| 8 |
+
FILE_PATH: 'open_source_dataset/imagenet_22k_class_name_CLIP_with_endoftext.pkl'
|
| 9 |
+
DISTRIBUTED: True
|
| 10 |
+
|
| 11 |
+
-
|
| 12 |
+
NAME: 'Vocab_Word'
|
| 13 |
+
SHARED_TARGETS_CFG:
|
| 14 |
+
FILE_PATH: 'open_source_dataset/vocabulary_CLIP_with_endoftext.pkl'
|
| 15 |
+
DISTRIBUTED: True
|
| 16 |
+
|
| 17 |
+
-
|
| 18 |
+
NAME: 'MomentsInTime'
|
| 19 |
+
SHARED_TARGETS_CFG:
|
| 20 |
+
FILE_PATH: 'open_source_dataset/MiT_class_name_CLIP_with_endoftext.pkl'
|
| 21 |
+
DISTRIBUTED: False
|
| 22 |
+
|
| 23 |
+
-
|
| 24 |
+
NAME: 'Kinetics700'
|
| 25 |
+
SHARED_TARGETS_CFG:
|
| 26 |
+
FILE_PATH: 'open_source_dataset/k700_class_name_CLIP_with_endoftext.pkl'
|
| 27 |
+
DISTRIBUTED: False
|
| 28 |
+
|
| 29 |
+
TASKS:
|
| 30 |
+
|
| 31 |
+
-
|
| 32 |
+
NAME: imagenet22k
|
| 33 |
+
DATASETS:
|
| 34 |
+
TRAIN: 'ImageNet22KDataset'
|
| 35 |
+
TASK_TYPE: 'image_classification'
|
| 36 |
+
DATASET_NAME: 'ImageNet22k'
|
| 37 |
+
TARGET_SET: ['ImageNet22k']
|
| 38 |
+
|
| 39 |
+
DATALOADER:
|
| 40 |
+
TRAIN_BATCH_SIZE: 440
|
| 41 |
+
# TEST_BATCH_SIZE: 2
|
| 42 |
+
NUM_WORKERS: 2
|
| 43 |
+
FEATS_FOLDER: 'open_source_dataset/imagenet22k'
|
| 44 |
+
S3_PATH: 'cluster2:s3://imagenet22k'
|
| 45 |
+
ANNO_FOLDER: 'open_source_dataset/'
|
| 46 |
+
SAMPLING_WEIGHT: 2.486
|
| 47 |
+
MIXUP: 0.0
|
| 48 |
+
CUTMIX: 0.0
|
| 49 |
+
MIXUP_PROB: 1.0
|
| 50 |
+
MIXUP_SWITCH_PROB: 0.5
|
| 51 |
+
MIXUP_MODE: 'batch'
|
| 52 |
+
MIXUP_LABEL_SMOOTHING: 0.1
|
| 53 |
+
MODEL:
|
| 54 |
+
MAX_SEQ_LEN: -1
|
| 55 |
+
LABELS_NUM: 21842
|
| 56 |
+
TEMP_NAME: logit_scale_img_cls
|
| 57 |
+
LOSSES:
|
| 58 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 59 |
+
LOSS_WEIGHT: 1.0
|
| 60 |
+
REDUCTION: 'mean'
|
| 61 |
+
LABELSMOOTHING: 0.1
|
| 62 |
+
INFERENCE:
|
| 63 |
+
NAME: 'ImageNetEvaler'
|
| 64 |
+
ID_KEY: 'image_id'
|
| 65 |
+
VALUE: 'cls_logits'
|
| 66 |
+
VAL_ANNFILE: 'open_source_dataset/imagenet/meta/val.txt'
|
| 67 |
+
# VAL_ANNFILE: '/mnt/lustrenew/lihao2/projects/xmodaler_2/val_debug.txt'
|
| 68 |
+
TEST_ANNFILE: ''
|
| 69 |
+
GENERATION_MODE: False
|
| 70 |
+
|
| 71 |
+
-
|
| 72 |
+
NAME: K700_retrieve
|
| 73 |
+
DATASETS:
|
| 74 |
+
TRAIN: 'VideoDataSet'
|
| 75 |
+
TASK_TYPE: 'video_classification'
|
| 76 |
+
DATASET_NAME: 'K700'
|
| 77 |
+
TARGET_SET: ['Kinetics700']
|
| 78 |
+
DATALOADER:
|
| 79 |
+
TRAIN_BATCH_SIZE: 12
|
| 80 |
+
TEST_BATCH_SIZE: 24
|
| 81 |
+
NUM_WORKERS: 2
|
| 82 |
+
FEATS_FOLDER: 'open_source_dataset/K700'
|
| 83 |
+
ANNO_FOLDER: 'open_source_dataset/K700'
|
| 84 |
+
S3_PATH: 's3://K700/'
|
| 85 |
+
FRAMES_PER_CLIP: 8
|
| 86 |
+
STRIDE: 32
|
| 87 |
+
FILE_EXTENSION: ''
|
| 88 |
+
ANNO_FILE: 'annotation.json'
|
| 89 |
+
TIMESFORMER_AUG: True
|
| 90 |
+
SAMPLING_WEIGHT: 1.0
|
| 91 |
+
|
| 92 |
+
MODEL:
|
| 93 |
+
MAX_SEQ_LEN: -1
|
| 94 |
+
TEMP_NAME: logit_scale_video_cls
|
| 95 |
+
LOSSES:
|
| 96 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 97 |
+
LABELSMOOTHING: 0.1
|
| 98 |
+
LOSS_WEIGHT: 0.1
|
| 99 |
+
INFERENCE:
|
| 100 |
+
VOCAB: 'CLIP'
|
| 101 |
+
GENERATION_MODE: False
|
| 102 |
+
|
| 103 |
+
-
|
| 104 |
+
NAME: MomentsInTime
|
| 105 |
+
DATASETS:
|
| 106 |
+
TRAIN: 'VideoDataSet'
|
| 107 |
+
TASK_TYPE: 'video_classification'
|
| 108 |
+
DATASET_NAME: 'MiT'
|
| 109 |
+
TARGET_SET: ['MomentsInTime']
|
| 110 |
+
DATALOADER:
|
| 111 |
+
TRAIN_BATCH_SIZE: 68
|
| 112 |
+
TEST_BATCH_SIZE: 8
|
| 113 |
+
NUM_WORKERS: 2
|
| 114 |
+
FEATS_FOLDER: 'open_source_dataset/MomentsInTime'
|
| 115 |
+
ANNO_FOLDER: 'open_source_dataset/MomentsInTime'
|
| 116 |
+
S3_PATH: 's3://MomentsInTime/'
|
| 117 |
+
FRAMES_PER_CLIP: 3
|
| 118 |
+
STRIDE: 32
|
| 119 |
+
FILE_EXTENSION: ''
|
| 120 |
+
ANNO_FILE: 'annotation.json'
|
| 121 |
+
TIMESFORMER_AUG: True
|
| 122 |
+
SAMPLING_WEIGHT: 0.2
|
| 123 |
+
|
| 124 |
+
MODEL:
|
| 125 |
+
MAX_SEQ_LEN: -1
|
| 126 |
+
TEMP_NAME: logit_scale_video_cls
|
| 127 |
+
LOSSES:
|
| 128 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 129 |
+
LABELSMOOTHING: 0.1
|
| 130 |
+
LOSS_WEIGHT: 0.1
|
| 131 |
+
INFERENCE:
|
| 132 |
+
NAME: 'MiTEvaler'
|
| 133 |
+
ID_KEY: 'video_name'
|
| 134 |
+
VALUE: 'label'
|
| 135 |
+
VAL_ANNFILE: 'open_source_dataset/MomentsInTime/annotation.json'
|
| 136 |
+
TEST_ANNFILE: ''
|
| 137 |
+
GENERATION_MODE: False
|
| 138 |
+
NUM_VIEWS: 1
|
| 139 |
+
|
| 140 |
+
-
|
| 141 |
+
NAME: bookswiki_pretrain
|
| 142 |
+
DATASETS:
|
| 143 |
+
TRAIN: 'GeneralCorpusDataset'
|
| 144 |
+
TASK_TYPE: 'text_mlm'
|
| 145 |
+
DATASET_NAME: 'BooksWiki'
|
| 146 |
+
TARGET_SET: ['Vocab_Word']
|
| 147 |
+
VERSION: 'v2'
|
| 148 |
+
DATALOADER:
|
| 149 |
+
TRAIN_BATCH_SIZE: 512
|
| 150 |
+
TEST_BATCH_SIZE: 32
|
| 151 |
+
NUM_WORKERS: 2
|
| 152 |
+
ANNO_FOLDER: 'open_source_dataset/text_corpus' # 'open_source_dataset/bert_pretrain_data/bookswiki'
|
| 153 |
+
# ANNO_FOLDER: 'open_source_dataset/bert_pretrain_data/bookswiki'
|
| 154 |
+
SEQ_PER_SAMPLE: 1
|
| 155 |
+
SAMPLER: NodeDistributed
|
| 156 |
+
CACHE_MODE: True
|
| 157 |
+
SEQ_PER_SAMPLE: 128
|
| 158 |
+
MIN_SEQ_PER_SAMPLE: 128
|
| 159 |
+
APPEND_EOS: True
|
| 160 |
+
ONE_STREAM: False
|
| 161 |
+
SAMPLING_WEIGHT: 2.75
|
| 162 |
+
RANDOM_MASK: True
|
| 163 |
+
MODEL:
|
| 164 |
+
MAX_SEQ_LEN: 128
|
| 165 |
+
TEMP_NAME: logit_scale_text_mlm
|
| 166 |
+
LOSSES:
|
| 167 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 168 |
+
LOSS_WEIGHT: 0.5
|
| 169 |
+
REDUCTION: 'mean'
|
| 170 |
+
INFERENCE:
|
| 171 |
+
VOCAB: 'CLIP'
|
| 172 |
+
GENERATION_MODE: False
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
-
|
| 176 |
+
NAME: yfcc_caption
|
| 177 |
+
DATASETS:
|
| 178 |
+
TRAIN: 'ImageTextPairDataset'
|
| 179 |
+
TASK_TYPE: 'image_caption'
|
| 180 |
+
DATASET_NAME: 'YFCC'
|
| 181 |
+
TARGET_SET: ['Vocab_Word']
|
| 182 |
+
DATALOADER:
|
| 183 |
+
TRAIN_BATCH_SIZE: 200
|
| 184 |
+
TEST_BATCH_SIZE: 32
|
| 185 |
+
NUM_WORKERS: 2
|
| 186 |
+
S3_ANNO_FOLDER: 'cluster2:s3://yfcc'
|
| 187 |
+
ANNO_FOLDER: 'open_source_dataset/yfcc'
|
| 188 |
+
ANNO_FILENAME: 'yfcc100m_subset_available_untokenized.json'
|
| 189 |
+
FEATS_FOLDER: 'open_source_dataset/yfcc/'
|
| 190 |
+
S3_PATH: 'cluster2:s3://yfcc/'
|
| 191 |
+
SEQ_PER_SAMPLE: 1
|
| 192 |
+
SAMPLER: NodeDistributed
|
| 193 |
+
CACHE_MODE: True
|
| 194 |
+
CIRCULAR_CACHE_MODE: False
|
| 195 |
+
ZIP_MODE: False
|
| 196 |
+
CACHE_ORIGIN_IMAGE: False
|
| 197 |
+
RANDOM_CAPTION: False
|
| 198 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 199 |
+
SAMPLING_WEIGHT: 0.5840
|
| 200 |
+
TRANSFORM: 'clip_transforms'
|
| 201 |
+
MODEL:
|
| 202 |
+
MAX_SEQ_LEN: 50
|
| 203 |
+
TEMP_NAME: logit_scale_caption
|
| 204 |
+
LOSSES:
|
| 205 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 206 |
+
LOSS_WEIGHT: 1.0
|
| 207 |
+
REDUCTION: 'mean'
|
| 208 |
+
INFERENCE:
|
| 209 |
+
VOCAB: 'CLIP'
|
| 210 |
+
GENERATION_MODE: False
|
| 211 |
+
|
| 212 |
+
-
|
| 213 |
+
NAME: cc12m_caption
|
| 214 |
+
DATASETS:
|
| 215 |
+
TRAIN: 'ImageTextPairDataset'
|
| 216 |
+
TASK_TYPE: 'image_caption'
|
| 217 |
+
DATASET_NAME: 'CC12M'
|
| 218 |
+
TARGET_SET: ['Vocab_Word']
|
| 219 |
+
DATALOADER:
|
| 220 |
+
TRAIN_BATCH_SIZE: 200
|
| 221 |
+
TEST_BATCH_SIZE: 32
|
| 222 |
+
NUM_WORKERS: 2
|
| 223 |
+
S3_ANNO_FOLDER: 's3://cc12m/'
|
| 224 |
+
ANNO_FOLDER: 'open_source_dataset/c12m/'
|
| 225 |
+
ANNO_FILENAME: 'train_available.json'
|
| 226 |
+
FEATS_FOLDER: 'open_source_dataset/c12m/'
|
| 227 |
+
S3_PATH: 's3://cc12m/'
|
| 228 |
+
SEQ_PER_SAMPLE: 1
|
| 229 |
+
SAMPLER: NodeDistributed
|
| 230 |
+
CACHE_MODE: True
|
| 231 |
+
CIRCULAR_CACHE_MODE: False
|
| 232 |
+
ZIP_MODE: False
|
| 233 |
+
CACHE_ORIGIN_IMAGE: False
|
| 234 |
+
RANDOM_CAPTION: False
|
| 235 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 236 |
+
SAMPLING_WEIGHT: 0.5057
|
| 237 |
+
TRANSFORM: 'clip_transforms'
|
| 238 |
+
MODEL:
|
| 239 |
+
MAX_SEQ_LEN: 50
|
| 240 |
+
TEMP_NAME: logit_scale_caption
|
| 241 |
+
LOSSES:
|
| 242 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 243 |
+
LOSS_WEIGHT: 1.0
|
| 244 |
+
REDUCTION: 'mean'
|
| 245 |
+
INFERENCE:
|
| 246 |
+
VOCAB: 'CLIP'
|
| 247 |
+
GENERATION_MODE: False
|
| 248 |
+
|
| 249 |
+
-
|
| 250 |
+
NAME: cc3m_caption
|
| 251 |
+
DATASETS:
|
| 252 |
+
TRAIN: 'ImageTextPairDataset'
|
| 253 |
+
TASK_TYPE: 'image_caption'
|
| 254 |
+
DATASET_NAME: 'CC3M'
|
| 255 |
+
TARGET_SET: ['Vocab_Word']
|
| 256 |
+
DATALOADER:
|
| 257 |
+
TRAIN_BATCH_SIZE: 200
|
| 258 |
+
TEST_BATCH_SIZE: 32
|
| 259 |
+
NUM_WORKERS: 2
|
| 260 |
+
S3_ANNO_FOLDER: 's3://cc3m/'
|
| 261 |
+
ANNO_FOLDER: 'open_source_dataset/cc3m/'
|
| 262 |
+
ANNO_FILENAME: 'train_spacy.json'
|
| 263 |
+
FEATS_FOLDER: 'open_source_dataset/cc3m/'
|
| 264 |
+
S3_PATH: 's3://cc3m/'
|
| 265 |
+
SEQ_PER_SAMPLE: 1
|
| 266 |
+
SAMPLER: NodeDistributed
|
| 267 |
+
CACHE_MODE: True
|
| 268 |
+
CIRCULAR_CACHE_MODE: False
|
| 269 |
+
ZIP_MODE: False
|
| 270 |
+
CACHE_ORIGIN_IMAGE: False
|
| 271 |
+
RANDOM_CAPTION: False
|
| 272 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 273 |
+
SAMPLING_WEIGHT: 0.26295
|
| 274 |
+
TRANSFORM: 'clip_transforms'
|
| 275 |
+
MODEL:
|
| 276 |
+
MAX_SEQ_LEN: 50
|
| 277 |
+
TEMP_NAME: logit_scale_caption
|
| 278 |
+
LOSSES:
|
| 279 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 280 |
+
LOSS_WEIGHT: 1.0
|
| 281 |
+
REDUCTION: 'mean'
|
| 282 |
+
INFERENCE:
|
| 283 |
+
VOCAB: 'CLIP'
|
| 284 |
+
GENERATION_MODE: False
|
| 285 |
+
|
| 286 |
+
-
|
| 287 |
+
NAME: vg_caption
|
| 288 |
+
DATASETS:
|
| 289 |
+
TRAIN: 'ImageTextPairDataset'
|
| 290 |
+
TASK_TYPE: 'image_caption'
|
| 291 |
+
DATASET_NAME: 'VG'
|
| 292 |
+
TARGET_SET: ['Vocab_Word']
|
| 293 |
+
DATALOADER:
|
| 294 |
+
TRAIN_BATCH_SIZE: 200
|
| 295 |
+
TEST_BATCH_SIZE: 32
|
| 296 |
+
NUM_WORKERS: 2
|
| 297 |
+
FEATS_FOLDER: 'open_source_dataset/visual_genome/images'
|
| 298 |
+
ANNO_FOLDER: 'open_source_dataset/visual_genome/annotations'
|
| 299 |
+
S3_PATH: 's3://visual_genome/images'
|
| 300 |
+
ANNO_FILENAME: 'vg_captions_128filter.json'
|
| 301 |
+
SEQ_PER_SAMPLE: 1
|
| 302 |
+
CACHE_MODE: True
|
| 303 |
+
CIRCULAR_CACHE_MODE: False
|
| 304 |
+
ZIP_MODE: False
|
| 305 |
+
CACHE_ORIGIN_IMAGE: False
|
| 306 |
+
RANDOM_CAPTION: False
|
| 307 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 308 |
+
SAMPLING_WEIGHT: 0.1766
|
| 309 |
+
TRANSFORM: 'clip_transforms'
|
| 310 |
+
MODEL:
|
| 311 |
+
MAX_SEQ_LEN: 30
|
| 312 |
+
TEMP_NAME: logit_scale_caption
|
| 313 |
+
LOSSES:
|
| 314 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 315 |
+
LOSS_WEIGHT: 1.0
|
| 316 |
+
REDUCTION: 'mean'
|
| 317 |
+
INFERENCE:
|
| 318 |
+
VOCAB: 'CLIP'
|
| 319 |
+
GENERATION_MODE: True
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
-
|
| 323 |
+
NAME: mscoco_caption
|
| 324 |
+
DATASETS:
|
| 325 |
+
TRAIN: 'ImageTextPairDataset'
|
| 326 |
+
# VAL: 'ImageTextPairDataset'
|
| 327 |
+
# TEST: 'ImageTextPairDataset'
|
| 328 |
+
TASK_TYPE: 'image_caption'
|
| 329 |
+
DATASET_NAME: 'MSCOCO'
|
| 330 |
+
TARGET_SET: ['Vocab_Word']
|
| 331 |
+
DATALOADER:
|
| 332 |
+
TRAIN_BATCH_SIZE: 200
|
| 333 |
+
TEST_BATCH_SIZE: 32
|
| 334 |
+
NUM_WORKERS: 1
|
| 335 |
+
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 336 |
+
ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 337 |
+
S3_PATH: 's3://coco/'
|
| 338 |
+
SEQ_PER_SAMPLE: 1
|
| 339 |
+
CACHE_MODE: True
|
| 340 |
+
CIRCULAR_CACHE_MODE: False
|
| 341 |
+
ZIP_MODE: False
|
| 342 |
+
CACHE_ORIGIN_IMAGE: False
|
| 343 |
+
RANDOM_CAPTION: False
|
| 344 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 345 |
+
SAMPLING_WEIGHT: 0.1144
|
| 346 |
+
TRANSFORM: 'clip_transforms'
|
| 347 |
+
RANDOM_MASK: True
|
| 348 |
+
MODEL:
|
| 349 |
+
MAX_SEQ_LEN: 50
|
| 350 |
+
EVAL_MAX_SEQ_LEN: 21
|
| 351 |
+
TEMP_NAME: logit_scale_caption
|
| 352 |
+
LOSSES:
|
| 353 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 354 |
+
LOSS_WEIGHT: 1.0
|
| 355 |
+
REDUCTION: 'mean'
|
| 356 |
+
DECODE_STRATEGY:
|
| 357 |
+
NAME: 'CaptionBeamSearcherV3'
|
| 358 |
+
BEAM_SIZE: 2
|
| 359 |
+
# LEN_PENALTY: 1.0
|
| 360 |
+
INFERENCE:
|
| 361 |
+
NAME: 'COCOEvaler'
|
| 362 |
+
VOCAB: 'CLIP'
|
| 363 |
+
ID_KEY: 'image_id'
|
| 364 |
+
VALUE: 'caption'
|
| 365 |
+
VAL_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_val5k.json'
|
| 366 |
+
TEST_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_test5k.json'
|
| 367 |
+
GENERATION_MODE: True
|
| 368 |
+
|
| 369 |
+
-
|
| 370 |
+
NAME: sbu_caption
|
| 371 |
+
DATASETS:
|
| 372 |
+
TRAIN: 'ImageTextPairDataset'
|
| 373 |
+
TASK_TYPE: 'image_caption'
|
| 374 |
+
DATASET_NAME: 'SBU'
|
| 375 |
+
TARGET_SET: ['Vocab_Word']
|
| 376 |
+
DATALOADER:
|
| 377 |
+
TRAIN_BATCH_SIZE: 200
|
| 378 |
+
TEST_BATCH_SIZE: 32
|
| 379 |
+
NUM_WORKERS: 1
|
| 380 |
+
S3_ANNO_FOLDER: 's3://SBU/annotations'
|
| 381 |
+
ANNO_FOLDER: 'open_source_dataset/sbucaption/annotations'
|
| 382 |
+
ANNO_FILENAME: 'subcaption.json'
|
| 383 |
+
FEATS_FOLDER: 'open_source_dataset/sbucaption/'
|
| 384 |
+
S3_PATH: 's3://SBU/images'
|
| 385 |
+
SEQ_PER_SAMPLE: 1
|
| 386 |
+
SAMPLER: NodeDistributed
|
| 387 |
+
CACHE_MODE: True
|
| 388 |
+
CIRCULAR_CACHE_MODE: False
|
| 389 |
+
ZIP_MODE: False
|
| 390 |
+
CACHE_ORIGIN_IMAGE: False
|
| 391 |
+
RANDOM_CAPTION: False
|
| 392 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 393 |
+
SAMPLING_WEIGHT: 0.1383
|
| 394 |
+
TRANSFORM: 'clip_transforms'
|
| 395 |
+
MODEL:
|
| 396 |
+
MAX_SEQ_LEN: 50
|
| 397 |
+
TEMP_NAME: logit_scale_caption
|
| 398 |
+
LOSSES:
|
| 399 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 400 |
+
LOSS_WEIGHT: 1.0
|
| 401 |
+
REDUCTION: 'mean'
|
| 402 |
+
INFERENCE:
|
| 403 |
+
VOCAB: 'CLIP'
|
| 404 |
+
GENERATION_MODE: False
|
| 405 |
+
|
| 406 |
+
-
|
| 407 |
+
NAME: yfcc_retrieve
|
| 408 |
+
DATASETS:
|
| 409 |
+
TRAIN: 'ImageTextPairDataset'
|
| 410 |
+
TASK_TYPE: 'image_retrieval'
|
| 411 |
+
DATASET_NAME: 'YFCC'
|
| 412 |
+
DATALOADER:
|
| 413 |
+
TRAIN_BATCH_SIZE: 320
|
| 414 |
+
TEST_BATCH_SIZE: 32
|
| 415 |
+
NUM_WORKERS: 2
|
| 416 |
+
S3_ANNO_FOLDER: 'cluster2:s3://yfcc'
|
| 417 |
+
ANNO_FOLDER: 'open_source_dataset/yfcc'
|
| 418 |
+
ANNO_FILENAME: 'yfcc100m_subset_available_untokenized.json'
|
| 419 |
+
FEATS_FOLDER: 'open_source_dataset/yfcc/'
|
| 420 |
+
S3_PATH: 'cluster2:s3://yfcc/'
|
| 421 |
+
SAMPLER: NodeDistributed
|
| 422 |
+
CACHE_MODE: True
|
| 423 |
+
CIRCULAR_CACHE_MODE: False
|
| 424 |
+
ZIP_MODE: False
|
| 425 |
+
CACHE_ORIGIN_IMAGE: False
|
| 426 |
+
RANDOM_CAPTION: False
|
| 427 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 428 |
+
SAMPLING_WEIGHT: 0.5840
|
| 429 |
+
TRANSFORM: 'clip_transforms'
|
| 430 |
+
MODEL:
|
| 431 |
+
MAX_SEQ_LEN: 50
|
| 432 |
+
TEMP_NAME: logit_scale_retrieve
|
| 433 |
+
LOSSES:
|
| 434 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 435 |
+
LABELSMOOTHING: 0.1
|
| 436 |
+
LOSS_WEIGHT: 0.5
|
| 437 |
+
REDUCTION: 'mean'
|
| 438 |
+
INFERENCE:
|
| 439 |
+
VOCAB: 'CLIP'
|
| 440 |
+
GENERATION_MODE: False
|
| 441 |
+
|
| 442 |
+
-
|
| 443 |
+
NAME: cc12m_retrieve
|
| 444 |
+
DATASETS:
|
| 445 |
+
TRAIN: 'ImageTextPairDataset'
|
| 446 |
+
TASK_TYPE: 'image_retrieval'
|
| 447 |
+
DATASET_NAME: 'CC12M'
|
| 448 |
+
DATALOADER:
|
| 449 |
+
TRAIN_BATCH_SIZE: 320
|
| 450 |
+
TEST_BATCH_SIZE: 32
|
| 451 |
+
NUM_WORKERS: 2
|
| 452 |
+
S3_ANNO_FOLDER: 's3://cc12m/'
|
| 453 |
+
ANNO_FOLDER: 'open_source_dataset/c12m/'
|
| 454 |
+
ANNO_FILENAME: 'train_available.json'
|
| 455 |
+
FEATS_FOLDER: 'open_source_dataset/c12m/'
|
| 456 |
+
S3_PATH: 's3://cc12m/'
|
| 457 |
+
SAMPLER: NodeDistributed
|
| 458 |
+
CACHE_MODE: True
|
| 459 |
+
CIRCULAR_CACHE_MODE: False
|
| 460 |
+
ZIP_MODE: False
|
| 461 |
+
CACHE_ORIGIN_IMAGE: False
|
| 462 |
+
RANDOM_CAPTION: False
|
| 463 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 464 |
+
SAMPLING_WEIGHT: 0.5057
|
| 465 |
+
TRANSFORM: 'clip_transforms'
|
| 466 |
+
MODEL:
|
| 467 |
+
MAX_SEQ_LEN: 50
|
| 468 |
+
TEMP_NAME: logit_scale_retrieve
|
| 469 |
+
LOSSES:
|
| 470 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 471 |
+
LABELSMOOTHING: 0.1
|
| 472 |
+
LOSS_WEIGHT: 0.5
|
| 473 |
+
REDUCTION: 'mean'
|
| 474 |
+
INFERENCE:
|
| 475 |
+
VOCAB: 'CLIP'
|
| 476 |
+
GENERATION_MODE: False
|
| 477 |
+
|
| 478 |
+
-
|
| 479 |
+
NAME: cc3m_retrieve
|
| 480 |
+
DATASETS:
|
| 481 |
+
TRAIN: 'ImageTextPairDataset'
|
| 482 |
+
TASK_TYPE: 'image_retrieval'
|
| 483 |
+
DATASET_NAME: 'CC3M'
|
| 484 |
+
DATALOADER:
|
| 485 |
+
TRAIN_BATCH_SIZE: 320
|
| 486 |
+
TEST_BATCH_SIZE: 32
|
| 487 |
+
NUM_WORKERS: 2
|
| 488 |
+
S3_ANNO_FOLDER: 's3://cc3m/'
|
| 489 |
+
ANNO_FOLDER: 'open_source_dataset/cc3m/'
|
| 490 |
+
ANNO_FILENAME: 'train_spacy.json'
|
| 491 |
+
FEATS_FOLDER: 'open_source_dataset/cc3m/'
|
| 492 |
+
S3_PATH: 's3://cc3m/'
|
| 493 |
+
SAMPLER: NodeDistributed
|
| 494 |
+
CACHE_MODE: True
|
| 495 |
+
CIRCULAR_CACHE_MODE: False
|
| 496 |
+
ZIP_MODE: False
|
| 497 |
+
CACHE_ORIGIN_IMAGE: False
|
| 498 |
+
RANDOM_CAPTION: False
|
| 499 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 500 |
+
SAMPLING_WEIGHT: 0.26295
|
| 501 |
+
TRANSFORM: 'clip_transforms'
|
| 502 |
+
MODEL:
|
| 503 |
+
MAX_SEQ_LEN: 50
|
| 504 |
+
TEMP_NAME: logit_scale_retrieve
|
| 505 |
+
LOSSES:
|
| 506 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 507 |
+
LABELSMOOTHING: 0.1
|
| 508 |
+
LOSS_WEIGHT: 0.5
|
| 509 |
+
REDUCTION: 'mean'
|
| 510 |
+
INFERENCE:
|
| 511 |
+
VOCAB: 'CLIP'
|
| 512 |
+
GENERATION_MODE: False
|
| 513 |
+
|
| 514 |
+
-
|
| 515 |
+
NAME: vg_retrieve
|
| 516 |
+
DATASETS:
|
| 517 |
+
TRAIN: 'ImageTextPairDataset'
|
| 518 |
+
TASK_TYPE: 'image_retrieval'
|
| 519 |
+
DATASET_NAME: 'VG'
|
| 520 |
+
DATALOADER:
|
| 521 |
+
TRAIN_BATCH_SIZE: 320
|
| 522 |
+
TEST_BATCH_SIZE: 32
|
| 523 |
+
NUM_WORKERS: 2
|
| 524 |
+
FEATS_FOLDER: 'open_source_dataset/visual_genome/images'
|
| 525 |
+
ANNO_FOLDER: 'open_source_dataset/visual_genome/annotations'
|
| 526 |
+
S3_PATH: 's3://visual_genome/images'
|
| 527 |
+
ANNO_FILENAME: 'vg_captions_128filter.json'
|
| 528 |
+
SEQ_PER_SAMPLE: 1
|
| 529 |
+
CACHE_MODE: True
|
| 530 |
+
CIRCULAR_CACHE_MODE: False
|
| 531 |
+
ZIP_MODE: False
|
| 532 |
+
CACHE_ORIGIN_IMAGE: False
|
| 533 |
+
RANDOM_CAPTION: False
|
| 534 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 535 |
+
SAMPLING_WEIGHT: 0.1766
|
| 536 |
+
TRANSFORM: 'clip_transforms'
|
| 537 |
+
MODEL:
|
| 538 |
+
MAX_SEQ_LEN: 30
|
| 539 |
+
TEMP_NAME: logit_scale_retrieve
|
| 540 |
+
LOSSES:
|
| 541 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 542 |
+
LABELSMOOTHING: 0.1
|
| 543 |
+
LOSS_WEIGHT: 0.5
|
| 544 |
+
REDUCTION: 'mean'
|
| 545 |
+
INFERENCE:
|
| 546 |
+
VOCAB: 'CLIP'
|
| 547 |
+
GENERATION_MODE: False
|
| 548 |
+
|
| 549 |
+
-
|
| 550 |
+
NAME: mscoco_retrieve
|
| 551 |
+
DATASETS:
|
| 552 |
+
TRAIN: 'ImageTextPairDataset'
|
| 553 |
+
# TEST: 'ImageTextPairDataset'
|
| 554 |
+
TASK_TYPE: 'image_retrieval'
|
| 555 |
+
DATASET_NAME: 'MSCOCO'
|
| 556 |
+
DATALOADER:
|
| 557 |
+
TRAIN_BATCH_SIZE: 320
|
| 558 |
+
TEST_BATCH_SIZE: 32
|
| 559 |
+
NUM_WORKERS: 1
|
| 560 |
+
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 561 |
+
ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 562 |
+
S3_PATH: 's3://coco/'
|
| 563 |
+
SEQ_PER_SAMPLE: 1
|
| 564 |
+
CACHE_MODE: True
|
| 565 |
+
CIRCULAR_CACHE_MODE: False
|
| 566 |
+
ZIP_MODE: False
|
| 567 |
+
CACHE_ORIGIN_IMAGE: False
|
| 568 |
+
RANDOM_CAPTION: False
|
| 569 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 570 |
+
SAMPLING_WEIGHT: 0.1144
|
| 571 |
+
TRANSFORM: 'clip_transforms'
|
| 572 |
+
MODEL:
|
| 573 |
+
MAX_SEQ_LEN: 50
|
| 574 |
+
TEMP_NAME: logit_scale_retrieve
|
| 575 |
+
LOSSES:
|
| 576 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 577 |
+
LABELSMOOTHING: 0.1
|
| 578 |
+
LOSS_WEIGHT: 0.5
|
| 579 |
+
REDUCTION: 'mean'
|
| 580 |
+
INFERENCE:
|
| 581 |
+
VOCAB: 'CLIP'
|
| 582 |
+
ID_KEY: 'image_id'
|
| 583 |
+
VALUE: 'caption'
|
| 584 |
+
NAME: 'RetrievalEvaler'
|
| 585 |
+
VAL_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_val_set0_2014.jsonline'
|
| 586 |
+
TEST_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_test_set0_2014.jsonline'
|
| 587 |
+
GENERATION_MODE: False
|
| 588 |
+
|
| 589 |
+
-
|
| 590 |
+
NAME: sbu_retrieve
|
| 591 |
+
DATASETS:
|
| 592 |
+
TRAIN: 'ImageTextPairDataset'
|
| 593 |
+
TASK_TYPE: 'image_retrieval'
|
| 594 |
+
DATASET_NAME: 'SBU'
|
| 595 |
+
DATALOADER:
|
| 596 |
+
TRAIN_BATCH_SIZE: 320
|
| 597 |
+
TEST_BATCH_SIZE: 32
|
| 598 |
+
NUM_WORKERS: 1
|
| 599 |
+
S3_ANNO_FOLDER: 's3://SBU/annotations'
|
| 600 |
+
ANNO_FOLDER: 'open_source_dataset/sbucaption/annotations'
|
| 601 |
+
ANNO_FILENAME: 'subcaption.json'
|
| 602 |
+
FEATS_FOLDER: 'open_source_dataset/sbucaption/'
|
| 603 |
+
S3_PATH: 's3://SBU/images'
|
| 604 |
+
SAMPLER: NodeDistributed
|
| 605 |
+
CACHE_MODE: True
|
| 606 |
+
CIRCULAR_CACHE_MODE: False
|
| 607 |
+
ZIP_MODE: False
|
| 608 |
+
CACHE_ORIGIN_IMAGE: False
|
| 609 |
+
RANDOM_CAPTION: False
|
| 610 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 611 |
+
SAMPLING_WEIGHT: 0.1383
|
| 612 |
+
TRANSFORM: 'clip_transforms'
|
| 613 |
+
MODEL:
|
| 614 |
+
MAX_SEQ_LEN: 50
|
| 615 |
+
TEMP_NAME: logit_scale_retrieve
|
| 616 |
+
LOSSES:
|
| 617 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 618 |
+
LABELSMOOTHING: 0.1
|
| 619 |
+
LOSS_WEIGHT: 0.5
|
| 620 |
+
REDUCTION: 'mean'
|
| 621 |
+
INFERENCE:
|
| 622 |
+
VOCAB: 'CLIP'
|
| 623 |
+
GENERATION_MODE: False
|
| 624 |
+
|
| 625 |
+
|
| 626 |
+
ENGINE:
|
| 627 |
+
NAME: 'UnifiedTrainer'
|
| 628 |
+
|
| 629 |
+
MODEL:
|
| 630 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 631 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 632 |
+
|
| 633 |
+
|
| 634 |
+
SHARE_LAYERNORM: True
|
| 635 |
+
BERT:
|
| 636 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 637 |
+
DROP_PATH_PROB: 0.1
|
| 638 |
+
DROP_PATH_PROB_FIXED: True
|
| 639 |
+
|
| 640 |
+
UNIFY_QKV: True
|
| 641 |
+
|
| 642 |
+
MODEL_EMA: False
|
| 643 |
+
MODEL_EMA_DECAY: 0.9999
|
| 644 |
+
|
| 645 |
+
MAEParamsInit: True
|
| 646 |
+
POSEMBEDFIX: True
|
| 647 |
+
|
| 648 |
+
|
| 649 |
+
IMG_INPUT_SIZE: 224
|
| 650 |
+
PATCH_SIZE: 16
|
| 651 |
+
POSEMBED_SCALE: !!python/object/apply:eval ["160/224"]
|
| 652 |
+
CHECKPOINT_FILETER: False
|
| 653 |
+
|
| 654 |
+
LAYER_SCALE: True
|
| 655 |
+
LAYER_SCALE_INIT: 1e-3
|
| 656 |
+
OLD_CHECKPONT: True
|
| 657 |
+
|
| 658 |
+
|
| 659 |
+
DATALOADER:
|
| 660 |
+
USE_WEIGHTED_SAMPLER: True
|
| 661 |
+
UNIFIED_DATASET: True
|
| 662 |
+
NUM_WORKERS: 32
|
| 663 |
+
|
| 664 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 665 |
+
|
| 666 |
+
|
| 667 |
+
|
| 668 |
+
####################################### Optimizer #######################################
|
| 669 |
+
SOLVER:
|
| 670 |
+
NAME: 'Adam'
|
| 671 |
+
TORCH_OPTIMIZER: True
|
| 672 |
+
PARAMS_SEPERATE: True
|
| 673 |
+
# PARAMS_GROUP: True
|
| 674 |
+
# EPOCH: 1
|
| 675 |
+
MAX_ITER: 45000
|
| 676 |
+
CHECKPOINT_PERIOD: 5000
|
| 677 |
+
EVAL_PERIOD: 10000000
|
| 678 |
+
BASE_LR: 0.00002
|
| 679 |
+
BIAS_LR_FACTOR: 1.0
|
| 680 |
+
WEIGHT_DECAY: 0.05
|
| 681 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 682 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 683 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 684 |
+
MOMENTUM: 0.9
|
| 685 |
+
DAMPENING: 0.0
|
| 686 |
+
NESTEROV: 0.0
|
| 687 |
+
BETAS: [0.9, 0.95]
|
| 688 |
+
EPS: 1e-6
|
| 689 |
+
GRAD_CLIP: 0.1
|
| 690 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 691 |
+
ACCUM_ITER: 0
|
| 692 |
+
AMP_FP16: True
|
| 693 |
+
APEX_FP16: False # dangerous
|
| 694 |
+
|
| 695 |
+
WRITE_PERIOD: 50
|
| 696 |
+
MIN_LOSS_SCLE: 2048.0
|
| 697 |
+
# BF16: False # True
|
| 698 |
+
# ZEROSTAGE: 2
|
| 699 |
+
|
| 700 |
+
LOSS_SCALE_WINDOW: 200
|
| 701 |
+
|
| 702 |
+
|
| 703 |
+
####################################### lr scheduler #######################################
|
| 704 |
+
LR_SCHEDULER:
|
| 705 |
+
NAME: 'WarmupCosine'
|
| 706 |
+
WARMUP: 5000
|
| 707 |
+
MIN_LR: 0.000001
|
| 708 |
+
|
| 709 |
+
####################################### evaluation #######################################
|
| 710 |
+
INFERENCE:
|
| 711 |
+
|
| 712 |
+
VOCAB: 'CLIP'
|
| 713 |
+
ITER_BASED: True
|
| 714 |
+
|
| 715 |
+
|
| 716 |
+
find_unused_parameters: true
|
| 717 |
+
|
| 718 |
+
# ENCODERS:
|
| 719 |
+
# -
|
| 720 |
+
# NAME: VisualEncoder
|
| 721 |
+
# TYPE: VisualEncoder
|
| 722 |
+
# DROP_PATH_PROB: 0.0
|
| 723 |
+
# HIDDEN_SIZE: 192
|
| 724 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 725 |
+
# HIDDEN_ACT: "gelu"
|
| 726 |
+
# NUM_ATTENTION_HEADS: 3
|
| 727 |
+
# INTERMEDIATE_SIZE: 768
|
| 728 |
+
# INTERMEDIATE_DROP: 0.
|
| 729 |
+
# FFN_DROPOUT_PROB: 0.
|
| 730 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 731 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 732 |
+
# NUM_GENERATION_LAYERS: 0
|
| 733 |
+
# DROP_PATH_PROB_FIXED: True
|
| 734 |
+
|
| 735 |
+
# -
|
| 736 |
+
# NAME: TextEncoder
|
| 737 |
+
# TYPE: TextEncoder
|
| 738 |
+
# DROP_PATH_PROB: 0.0
|
| 739 |
+
# HIDDEN_SIZE: 192
|
| 740 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 741 |
+
# HIDDEN_ACT: "gelu"
|
| 742 |
+
# NUM_ATTENTION_HEADS: 3
|
| 743 |
+
# INTERMEDIATE_SIZE: 768
|
| 744 |
+
# INTERMEDIATE_DROP: 0.
|
| 745 |
+
# FFN_DROPOUT_PROB: 0.
|
| 746 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 747 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 748 |
+
# NUM_GENERATION_LAYERS: 0
|
| 749 |
+
# DROP_PATH_PROB_FIXED: True
|
| 750 |
+
|
configs/BERT_L12_H768_experiments/base_model_bert_l12_h768.yaml
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
######################################### MODEL #########################################
|
| 3 |
+
MODEL:
|
| 4 |
+
VOCAB_SIZE: 49411 # include <BOS>/<EOS>
|
| 5 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 6 |
+
ENCODER: 'UnifiedBertEncoder_v3'
|
| 7 |
+
ENCODER_DIM: 768
|
| 8 |
+
DECODER: ''
|
| 9 |
+
DECODER_DIM: 768
|
| 10 |
+
|
| 11 |
+
PREDICTOR: 'EmbedClsAsRetrievalPredictor'
|
| 12 |
+
FEATURE_GATHER: True
|
| 13 |
+
LEARN_TEMP: True
|
| 14 |
+
PRED_USE_NORM: True
|
| 15 |
+
PRED_TEMPERATURE: 0.07
|
| 16 |
+
|
| 17 |
+
BertParamsInit: True
|
| 18 |
+
|
| 19 |
+
CLS_TOKEN: False
|
| 20 |
+
|
| 21 |
+
QUEUE_LEN: 1024
|
| 22 |
+
MAX_LABEL_LEN: 12
|
| 23 |
+
|
| 24 |
+
OUTPUT_PROJ: True # output projection
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# #################################### Token embedding ####################################
|
| 28 |
+
TOKEN_EMBED:
|
| 29 |
+
NAME: 'TokenBaseEmbedding'
|
| 30 |
+
DIM: 768
|
| 31 |
+
ACTIVATION: 'none'
|
| 32 |
+
USE_NORM: True
|
| 33 |
+
DROPOUT: 0.0
|
| 34 |
+
POSITION: 'NNEmbeddingEncoding'
|
| 35 |
+
POSITION_MAX_LEN: 512
|
| 36 |
+
TYPE_VOCAB_SIZE: 2
|
| 37 |
+
|
| 38 |
+
# #################################### Visual embedding ####################################
|
| 39 |
+
VISUAL_EMBED:
|
| 40 |
+
NAME: 'none'
|
| 41 |
+
|
| 42 |
+
# #################################### video embedding ####################################
|
| 43 |
+
VIDEO_EMBED:
|
| 44 |
+
NAME: 'VideoBaseEmbedding'
|
| 45 |
+
IN_DIM: 768
|
| 46 |
+
OUT_DIM: 768
|
| 47 |
+
ACTIVATION: 'none'
|
| 48 |
+
USE_NORM: True
|
| 49 |
+
DROPOUT: 0.0
|
| 50 |
+
TYPE_SIZE: 1 # video to encoder
|
| 51 |
+
POSITION: 'NNEmbeddingEncoding'
|
| 52 |
+
MAX_LENGTH: 1600
|
| 53 |
+
PATCH_SIZE_S: 16
|
| 54 |
+
PATCH_SIZE_T: 1
|
| 55 |
+
DIVIDE_ST_POS: True
|
| 56 |
+
USE_VISUAL_TOKENIZER: True
|
| 57 |
+
USE_VISUAL_POS: True
|
| 58 |
+
MAX_FRAMES: 8
|
| 59 |
+
|
| 60 |
+
####################################### BERT ############################################
|
| 61 |
+
BERT:
|
| 62 |
+
DROP_PATH_PROB: 0.1
|
| 63 |
+
HIDDEN_SIZE: 768
|
| 64 |
+
HIDDEN_DROPOUT_PROB: 0.
|
| 65 |
+
HIDDEN_ACT: "gelu"
|
| 66 |
+
NUM_ATTENTION_HEADS: 12
|
| 67 |
+
INTERMEDIATE_SIZE: 3072
|
| 68 |
+
INTERMEDIATE_DROP: 0.
|
| 69 |
+
FFN_DROPOUT_PROB: 0.
|
| 70 |
+
ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 71 |
+
NUM_HIDDEN_LAYERS: 12
|
| 72 |
+
NUM_GENERATION_LAYERS: 0
|
| 73 |
+
|
configs/BERT_L12_H768_experiments/bw_mlm_training.yaml
ADDED
|
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base_model_bert_l12_h768.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
# -
|
| 6 |
+
# NAME: 'ImageNet1k'
|
| 7 |
+
# SHARED_TARGETS_CFG:
|
| 8 |
+
# FILE_PATH: 'open_source_dataset/imagenet_class_name_CLIP_with_endoftext.pkl'
|
| 9 |
+
# DISTRIBUTED: False
|
| 10 |
+
|
| 11 |
+
-
|
| 12 |
+
NAME: 'Vocab_Word'
|
| 13 |
+
SHARED_TARGETS_CFG:
|
| 14 |
+
FILE_PATH: 'open_source_dataset/vocabulary_CLIP_with_endoftext.pkl'
|
| 15 |
+
DISTRIBUTED: True
|
| 16 |
+
|
| 17 |
+
TASKS:
|
| 18 |
+
|
| 19 |
+
# -
|
| 20 |
+
# NAME: imagenet
|
| 21 |
+
# DATASETS:
|
| 22 |
+
# TRAIN: 'ImageNetDataset'
|
| 23 |
+
# # VAL: 'ImageNetDataset'
|
| 24 |
+
# TASK_TYPE: 'image_classification'
|
| 25 |
+
# DATASET_NAME: 'ImageNet1k'
|
| 26 |
+
# TARGET_SET: ['ImageNet1k']
|
| 27 |
+
|
| 28 |
+
# DATALOADER:
|
| 29 |
+
# TRAIN_BATCH_SIZE: 256
|
| 30 |
+
# # TEST_BATCH_SIZE: 2
|
| 31 |
+
# NUM_WORKERS: 4
|
| 32 |
+
# FEATS_FOLDER: 'cluster2:s3://imagenet'
|
| 33 |
+
# ANNO_FOLDER: 'open_source_dataset/imagenet/meta'
|
| 34 |
+
# SAMPLING_WEIGHT: 1.0
|
| 35 |
+
# CLASS_NAME_FILE: 'open_source_dataset/imagenet_class_name.pkl'
|
| 36 |
+
# MIXUP: 0.8
|
| 37 |
+
# CUTMIX: 1.0
|
| 38 |
+
# MIXUP_PROB: 1.0
|
| 39 |
+
# MIXUP_SWITCH_PROB: 0.5
|
| 40 |
+
# MIXUP_MODE: 'batch'
|
| 41 |
+
# MIXUP_LABEL_SMOOTHING: 0.1
|
| 42 |
+
# MODEL:
|
| 43 |
+
# MAX_SEQ_LEN: -1
|
| 44 |
+
# LABELS_NUM: 1000
|
| 45 |
+
# TEMP_NAME: logit_scale_img_cls
|
| 46 |
+
# LOSSES:
|
| 47 |
+
# NAMES: ['SoftTargetCrossEntropy', 'Accuracy']
|
| 48 |
+
# LOSS_WEIGHT: 1.0
|
| 49 |
+
# REDUCTION: 'mean'
|
| 50 |
+
# # LOSS_FP32: True
|
| 51 |
+
# INFERENCE:
|
| 52 |
+
# NAME: 'ImageNetEvaler'
|
| 53 |
+
# ID_KEY: 'image_id'
|
| 54 |
+
# VALUE: 'cls_logits'
|
| 55 |
+
# VAL_ANNFILE: 'open_source_dataset/imagenet/meta/val.txt'
|
| 56 |
+
# TEST_ANNFILE: ''
|
| 57 |
+
# GENERATION_MODE: False
|
| 58 |
+
|
| 59 |
+
-
|
| 60 |
+
NAME: bookswiki_pretrain
|
| 61 |
+
DATASETS:
|
| 62 |
+
TRAIN: 'GeneralCorpusDataset'
|
| 63 |
+
TASK_TYPE: 'text_mlm'
|
| 64 |
+
DATASET_NAME: 'BooksWiki'
|
| 65 |
+
TARGET_SET: ['Vocab_Word']
|
| 66 |
+
DATALOADER:
|
| 67 |
+
TRAIN_BATCH_SIZE: 256
|
| 68 |
+
TEST_BATCH_SIZE: 32
|
| 69 |
+
NUM_WORKERS: 2
|
| 70 |
+
ANNO_FOLDER: 'open_source_dataset/bert_pretrain_data/bookswiki'
|
| 71 |
+
# ANNO_FOLDER: 'open_source_dataset/bert_pretrain_data/bookswiki'
|
| 72 |
+
SEQ_PER_SAMPLE: 1
|
| 73 |
+
SAMPLER: NodeDistributed
|
| 74 |
+
CACHE_MODE: True
|
| 75 |
+
SEQ_PER_SAMPLE: 128
|
| 76 |
+
MIN_SEQ_PER_SAMPLE: 128
|
| 77 |
+
APPEND_EOS: True
|
| 78 |
+
ONE_STREAM: False
|
| 79 |
+
SAMPLING_WEIGHT: 1.0
|
| 80 |
+
RANDOM_MASK: True
|
| 81 |
+
MODEL:
|
| 82 |
+
MAX_SEQ_LEN: 128
|
| 83 |
+
TEMP_NAME: logit_scale_text_mlm
|
| 84 |
+
LOSSES:
|
| 85 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 86 |
+
LOSS_WEIGHT: 0.5
|
| 87 |
+
REDUCTION: 'mean'
|
| 88 |
+
INFERENCE:
|
| 89 |
+
VOCAB: 'CLIP'
|
| 90 |
+
GENERATION_MODE: False
|
| 91 |
+
|
| 92 |
+
# -
|
| 93 |
+
# NAME: mscoco_caption
|
| 94 |
+
# DATASETS:
|
| 95 |
+
# TRAIN: 'ImageTextPairDataset'
|
| 96 |
+
# # VAL: 'ImageTextPairDataset'
|
| 97 |
+
# # TEST: 'ImageTextPairDataset'
|
| 98 |
+
# TASK_TYPE: 'image_caption'
|
| 99 |
+
# DATASET_NAME: 'MSCOCO'
|
| 100 |
+
# TARGET_SET: ['Vocab_Word']
|
| 101 |
+
# DATALOADER:
|
| 102 |
+
# TRAIN_BATCH_SIZE: 200
|
| 103 |
+
# TEST_BATCH_SIZE: 32
|
| 104 |
+
# NUM_WORKERS: 4
|
| 105 |
+
# FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 106 |
+
# ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 107 |
+
# S3_PATH: 's3://coco/'
|
| 108 |
+
# SEQ_PER_SAMPLE: 1
|
| 109 |
+
# CACHE_MODE: True
|
| 110 |
+
# CIRCULAR_CACHE_MODE: False
|
| 111 |
+
# ZIP_MODE: False
|
| 112 |
+
# CACHE_ORIGIN_IMAGE: False
|
| 113 |
+
# RANDOM_CAPTION: False
|
| 114 |
+
# AS_NUMPY_AS_POSSIBLE: False
|
| 115 |
+
# SAMPLING_WEIGHT: 0.5
|
| 116 |
+
# TRANSFORM: 'clip_transforms'
|
| 117 |
+
# RANDOM_MASK: True
|
| 118 |
+
# MODEL:
|
| 119 |
+
# MAX_SEQ_LEN: 30
|
| 120 |
+
# EVAL_MAX_SEQ_LEN: 21
|
| 121 |
+
# TEMP_NAME: logit_scale_caption
|
| 122 |
+
# LOSSES:
|
| 123 |
+
# NAMES: ['CrossEntropy', 'Accuracy']
|
| 124 |
+
# LOSS_WEIGHT: 0.5
|
| 125 |
+
# REDUCTION: 'mean'
|
| 126 |
+
# DECODE_STRATEGY:
|
| 127 |
+
# NAME: 'CaptionBeamSearcherV3'
|
| 128 |
+
# BEAM_SIZE: 2
|
| 129 |
+
# # LEN_PENALTY: 1.0
|
| 130 |
+
# INFERENCE:
|
| 131 |
+
# NAME: 'COCOEvaler'
|
| 132 |
+
# VOCAB: 'CLIP'
|
| 133 |
+
# ID_KEY: 'image_id'
|
| 134 |
+
# VALUE: 'caption'
|
| 135 |
+
# VAL_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_val5k.json'
|
| 136 |
+
# TEST_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_test5k.json'
|
| 137 |
+
# GENERATION_MODE: True
|
| 138 |
+
|
| 139 |
+
# -
|
| 140 |
+
# NAME: mscoco_retrieve
|
| 141 |
+
# DATASETS:
|
| 142 |
+
# TRAIN: 'ImageTextPairDataset'
|
| 143 |
+
# # TEST: 'ImageTextPairDataset'
|
| 144 |
+
# TASK_TYPE: 'image_retrieval'
|
| 145 |
+
# DATASET_NAME: 'MSCOCO'
|
| 146 |
+
# DATALOADER:
|
| 147 |
+
# TRAIN_BATCH_SIZE: 256
|
| 148 |
+
# TEST_BATCH_SIZE: 32
|
| 149 |
+
# NUM_WORKERS: 1
|
| 150 |
+
# FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 151 |
+
# ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 152 |
+
# S3_PATH: 's3://coco/'
|
| 153 |
+
# CACHE_MODE: True
|
| 154 |
+
# CIRCULAR_CACHE_MODE: False
|
| 155 |
+
# ZIP_MODE: False
|
| 156 |
+
# CACHE_ORIGIN_IMAGE: False
|
| 157 |
+
# RANDOM_CAPTION: False
|
| 158 |
+
# AS_NUMPY_AS_POSSIBLE: False
|
| 159 |
+
# SEQ_PER_SAMPLE: 1
|
| 160 |
+
# SAMPLING_WEIGHT: 0.5
|
| 161 |
+
# TRANSFORM: 'clip_transforms'
|
| 162 |
+
# MODEL:
|
| 163 |
+
# MAX_SEQ_LEN: 30
|
| 164 |
+
# TEMP_NAME: logit_scale_retrieve
|
| 165 |
+
# LOSSES:
|
| 166 |
+
# NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 167 |
+
# LABELSMOOTHING: 0.1
|
| 168 |
+
# LOSS_WEIGHT: 0.5
|
| 169 |
+
# REDUCTION: 'mean'
|
| 170 |
+
# INFERENCE:
|
| 171 |
+
# VOCAB: 'CLIP'
|
| 172 |
+
# ID_KEY: 'image_id'
|
| 173 |
+
# VALUE: 'caption'
|
| 174 |
+
# NAME: 'RetrievalEvaler'
|
| 175 |
+
# VAL_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_val_set0_2014.jsonline'
|
| 176 |
+
# TEST_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_test_set0_2014.jsonline'
|
| 177 |
+
# GENERATION_MODE: False
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
ENGINE:
|
| 182 |
+
NAME: 'UnifiedTrainer'
|
| 183 |
+
|
| 184 |
+
MODEL:
|
| 185 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 186 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 187 |
+
|
| 188 |
+
IN_TUNING: True # use IN1k instead of 22k
|
| 189 |
+
SHARE_LAYERNORM: True
|
| 190 |
+
BERT:
|
| 191 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 192 |
+
DROP_PATH_PROB: 0.1
|
| 193 |
+
DROP_PATH_PROB_FIXED: True
|
| 194 |
+
|
| 195 |
+
UNIFY_QKV: True
|
| 196 |
+
|
| 197 |
+
MODEL_EMA: False
|
| 198 |
+
MODEL_EMA_DECAY: 0.9999
|
| 199 |
+
|
| 200 |
+
MAEParamsInit: True
|
| 201 |
+
POSEMBEDFIX: True
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
IMG_INPUT_SIZE: 224
|
| 205 |
+
PATCH_SIZE: 16
|
| 206 |
+
|
| 207 |
+
LAYER_SCALE: True
|
| 208 |
+
LAYER_SCALE_INIT: 1e-3
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
DATALOADER:
|
| 212 |
+
USE_WEIGHTED_SAMPLER: True
|
| 213 |
+
UNIFIED_DATASET: True
|
| 214 |
+
NUM_WORKERS: 16
|
| 215 |
+
|
| 216 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
####################################### Optimizer #######################################
|
| 221 |
+
SOLVER:
|
| 222 |
+
NAME: 'Adam'
|
| 223 |
+
TORCH_OPTIMIZER: True
|
| 224 |
+
PARAMS_SEPERATE: True
|
| 225 |
+
# PARAMS_GROUP: True
|
| 226 |
+
# EPOCH: 1
|
| 227 |
+
MAX_ITER: 450000
|
| 228 |
+
CHECKPOINT_PERIOD: 50000
|
| 229 |
+
EVAL_PERIOD: 500000
|
| 230 |
+
BASE_LR: 0.001
|
| 231 |
+
BIAS_LR_FACTOR: 1.0
|
| 232 |
+
WEIGHT_DECAY: 0.05
|
| 233 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 234 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 235 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 236 |
+
MOMENTUM: 0.9
|
| 237 |
+
DAMPENING: 0.0
|
| 238 |
+
NESTEROV: 0.0
|
| 239 |
+
BETAS: [0.9, 0.95]
|
| 240 |
+
EPS: 1e-6
|
| 241 |
+
GRAD_CLIP: 0.1
|
| 242 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 243 |
+
ACCUM_ITER: 0
|
| 244 |
+
AMP_FP16: True
|
| 245 |
+
APEX_FP16: False # dangerous
|
| 246 |
+
|
| 247 |
+
WRITE_PERIOD: 50
|
| 248 |
+
MIN_LOSS_SCLE: 2048.0
|
| 249 |
+
# BF16: False # True
|
| 250 |
+
# ZEROSTAGE: 2
|
| 251 |
+
|
| 252 |
+
LOSS_SCALE_WINDOW: 200
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
####################################### lr scheduler #######################################
|
| 260 |
+
LR_SCHEDULER:
|
| 261 |
+
NAME: 'WarmupCosine'
|
| 262 |
+
WARMUP: 20000
|
| 263 |
+
MIN_LR: 0.000001
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
####################################### evaluation #######################################
|
| 269 |
+
INFERENCE:
|
| 270 |
+
|
| 271 |
+
VOCAB: 'CLIP'
|
| 272 |
+
ITER_BASED: True
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
find_unused_parameters: true
|
| 276 |
+
|
| 277 |
+
# ENCODERS:
|
| 278 |
+
# -
|
| 279 |
+
# NAME: VisualEncoder
|
| 280 |
+
# TYPE: VisualEncoder
|
| 281 |
+
# DROP_PATH_PROB: 0.0
|
| 282 |
+
# HIDDEN_SIZE: 192
|
| 283 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 284 |
+
# HIDDEN_ACT: "gelu"
|
| 285 |
+
# NUM_ATTENTION_HEADS: 3
|
| 286 |
+
# INTERMEDIATE_SIZE: 768
|
| 287 |
+
# INTERMEDIATE_DROP: 0.
|
| 288 |
+
# FFN_DROPOUT_PROB: 0.
|
| 289 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 290 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 291 |
+
# NUM_GENERATION_LAYERS: 0
|
| 292 |
+
# DROP_PATH_PROB_FIXED: True
|
| 293 |
+
|
| 294 |
+
# -
|
| 295 |
+
# NAME: TextEncoder
|
| 296 |
+
# TYPE: TextEncoder
|
| 297 |
+
# DROP_PATH_PROB: 0.0
|
| 298 |
+
# HIDDEN_SIZE: 192
|
| 299 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 300 |
+
# HIDDEN_ACT: "gelu"
|
| 301 |
+
# NUM_ATTENTION_HEADS: 3
|
| 302 |
+
# INTERMEDIATE_SIZE: 768
|
| 303 |
+
# INTERMEDIATE_DROP: 0.
|
| 304 |
+
# FFN_DROPOUT_PROB: 0.
|
| 305 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 306 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 307 |
+
# NUM_GENERATION_LAYERS: 0
|
| 308 |
+
# DROP_PATH_PROB_FIXED: True
|
| 309 |
+
|
configs/BERT_L12_H768_experiments/finetuning/GLUE_finetuning_experiments/GLUE_CoLA_mlm_finetune.yaml
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
-
|
| 5 |
+
NAME: 'CoLA'
|
| 6 |
+
SHARED_TARGETS_CFG:
|
| 7 |
+
FILE_PATH: 'open_source_dataset/GLUE_classnames/CoLA_class_name_CLIP_with_endoftext.pkl'
|
| 8 |
+
DISTRIBUTED: False
|
| 9 |
+
TASKS:
|
| 10 |
+
-
|
| 11 |
+
NAME: CoLA
|
| 12 |
+
DATASETS:
|
| 13 |
+
TRAIN: 'GLUEDataset'
|
| 14 |
+
# TEST: 'GLUEDataset'
|
| 15 |
+
VAL: 'GLUEDataset'
|
| 16 |
+
TASK_TYPE: 'text_classification'
|
| 17 |
+
DATASET_NAME: 'CoLA'
|
| 18 |
+
TARGET_SET: ['CoLA']
|
| 19 |
+
DATALOADER:
|
| 20 |
+
TRAIN_BATCH_SIZE: 16
|
| 21 |
+
TEST_BATCH_SIZE: 64
|
| 22 |
+
NUM_WORKERS: 4
|
| 23 |
+
ANNO_FOLDER: 'open_source_dataset/bert_pretrain_data/glue_data/'
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
MODEL:
|
| 27 |
+
MAX_SEQ_LEN: 256
|
| 28 |
+
TEMP_NAME: logit_scale_text_mlm
|
| 29 |
+
LOSSES:
|
| 30 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 31 |
+
LABELSMOOTHING: 0.1
|
| 32 |
+
# LOSS_WEIGHT: 1
|
| 33 |
+
REDUCTION: 'mean'
|
| 34 |
+
LOSS_FP32: False
|
| 35 |
+
INFERENCE:
|
| 36 |
+
NAME: 'GLUEEvaler'
|
| 37 |
+
VOCAB: 'CLIP'
|
| 38 |
+
GENERATION_MODE: False
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
ENGINE:
|
| 44 |
+
NAME: 'UnifiedTrainer'
|
| 45 |
+
|
| 46 |
+
DATALOADER:
|
| 47 |
+
USE_WEIGHTED_SAMPLER: True
|
| 48 |
+
UNIFIED_DATASET: True
|
| 49 |
+
NUM_WORKERS: 16
|
| 50 |
+
|
| 51 |
+
######################################### MODEL #########################################
|
| 52 |
+
MODEL:
|
| 53 |
+
MODEL_EMA: False
|
| 54 |
+
MODEL_EMA_DECAY: 0.9999
|
| 55 |
+
|
| 56 |
+
####################################### Optimizer #######################################
|
| 57 |
+
SOLVER:
|
| 58 |
+
NAME: 'Adam'
|
| 59 |
+
# EPOCH: 1
|
| 60 |
+
MAX_ITER: 5600
|
| 61 |
+
CHECKPOINT_PERIOD: 1000000
|
| 62 |
+
EVAL_PERIOD: 200
|
| 63 |
+
CHECKPOINT_MAX_SAVE: 1
|
| 64 |
+
BASE_LR: 0.00001
|
| 65 |
+
BIAS_LR_FACTOR: 1.0
|
| 66 |
+
WEIGHT_DECAY: 0.1
|
| 67 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 68 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 69 |
+
MOMENTUM: 0.9
|
| 70 |
+
DAMPENING: 0.0
|
| 71 |
+
NESTEROV: 0.0
|
| 72 |
+
BETAS: [0.9, 0.98]
|
| 73 |
+
EPS: 1e-8
|
| 74 |
+
GRAD_CLIP: 0.5
|
| 75 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 76 |
+
ACCUM_ITER: 0
|
| 77 |
+
AMP_FP16: True
|
| 78 |
+
APEX_FP16: False # dangerous
|
| 79 |
+
WRITE_PERIOD: 20
|
| 80 |
+
|
| 81 |
+
####################################### lr scheduler #######################################
|
| 82 |
+
LR_SCHEDULER:
|
| 83 |
+
NAME: 'WarmupCosine'
|
| 84 |
+
WARMUP: 400
|
| 85 |
+
MIN_LR: 0.00000001
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
find_unused_parameters: true
|
configs/BERT_L12_H768_experiments/finetuning/GLUE_finetuning_experiments/GLUE_MNLI_mlm_finetune.yaml
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
-
|
| 5 |
+
NAME: 'MNLI'
|
| 6 |
+
SHARED_TARGETS_CFG:
|
| 7 |
+
FILE_PATH: 'open_source_dataset/GLUE_classnames/MNLI_class_name_CLIP_with_endoftext.pkl'
|
| 8 |
+
DISTRIBUTED: False
|
| 9 |
+
|
| 10 |
+
TASKS:
|
| 11 |
+
-
|
| 12 |
+
NAME: MNLI
|
| 13 |
+
DATASETS:
|
| 14 |
+
TRAIN: 'GLUEDataset'
|
| 15 |
+
# TEST: 'GLUEDataset'
|
| 16 |
+
VAL: 'GLUEDataset'
|
| 17 |
+
TASK_TYPE: 'text_classification'
|
| 18 |
+
DATASET_NAME: 'MNLI_Match'
|
| 19 |
+
TARGET_SET: ['MNLI']
|
| 20 |
+
DATALOADER:
|
| 21 |
+
TRAIN_BATCH_SIZE: 32
|
| 22 |
+
TEST_BATCH_SIZE: 32
|
| 23 |
+
NUM_WORKERS: 4
|
| 24 |
+
ANNO_FOLDER: 'open_source_dataset/bert_pretrain_data/glue_data/'
|
| 25 |
+
|
| 26 |
+
MODEL:
|
| 27 |
+
MAX_SEQ_LEN: 256
|
| 28 |
+
TEMP_NAME: logit_scale_text_mlm
|
| 29 |
+
LOSSES:
|
| 30 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 31 |
+
LABELSMOOTHING: 0.1
|
| 32 |
+
# LOSS_WEIGHT: 1
|
| 33 |
+
REDUCTION: 'mean'
|
| 34 |
+
LOSS_FP32: False
|
| 35 |
+
INFERENCE:
|
| 36 |
+
NAME: 'GLUEEvaler'
|
| 37 |
+
VOCAB: 'CLIP'
|
| 38 |
+
GENERATION_MODE: False
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
ENGINE:
|
| 44 |
+
NAME: 'UnifiedTrainer'
|
| 45 |
+
|
| 46 |
+
DATALOADER:
|
| 47 |
+
USE_WEIGHTED_SAMPLER: True
|
| 48 |
+
UNIFIED_DATASET: True
|
| 49 |
+
NUM_WORKERS: 16
|
| 50 |
+
|
| 51 |
+
######################################### MODEL #########################################
|
| 52 |
+
MODEL:
|
| 53 |
+
MODEL_EMA: False
|
| 54 |
+
MODEL_EMA_DECAY: 0.9999
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
####################################### Optimizer #######################################
|
| 58 |
+
SOLVER:
|
| 59 |
+
NAME: 'Adam'
|
| 60 |
+
MAX_ITER: 125000
|
| 61 |
+
CHECKPOINT_PERIOD: 125000
|
| 62 |
+
EVAL_PERIOD: 5000
|
| 63 |
+
CHECKPOINT_MAX_SAVE: 1
|
| 64 |
+
BASE_LR: 0.00001
|
| 65 |
+
BIAS_LR_FACTOR: 1.0
|
| 66 |
+
WEIGHT_DECAY: 0.1
|
| 67 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 68 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 69 |
+
MOMENTUM: 0.9
|
| 70 |
+
DAMPENING: 0.0
|
| 71 |
+
NESTEROV: 0.0
|
| 72 |
+
BETAS: [0.9, 0.98]
|
| 73 |
+
EPS: 1e-8
|
| 74 |
+
GRAD_CLIP: 0.5
|
| 75 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 76 |
+
ACCUM_ITER: 0
|
| 77 |
+
AMP_FP16: True
|
| 78 |
+
APEX_FP16: False # dangerous
|
| 79 |
+
WRITE_PERIOD: 20
|
| 80 |
+
|
| 81 |
+
####################################### lr scheduler #######################################
|
| 82 |
+
LR_SCHEDULER:
|
| 83 |
+
NAME: 'WarmupCosine'
|
| 84 |
+
WARMUP: 7500
|
| 85 |
+
MIN_LR: 0.00000001
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
find_unused_parameters: true
|
configs/BERT_L12_H768_experiments/finetuning/GLUE_finetuning_experiments/GLUE_MRPC_mlm_finetune.yaml
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
-
|
| 5 |
+
NAME: 'MRPC'
|
| 6 |
+
SHARED_TARGETS_CFG:
|
| 7 |
+
FILE_PATH: 'open_source_dataset/GLUE_classnames/MRPC_class_name_CLIP_with_endoftext.pkl'
|
| 8 |
+
DISTRIBUTED: False
|
| 9 |
+
TASKS:
|
| 10 |
+
-
|
| 11 |
+
NAME: MRPC
|
| 12 |
+
DATASETS:
|
| 13 |
+
TRAIN: 'GLUEDataset'
|
| 14 |
+
# TEST: 'GLUEDataset'
|
| 15 |
+
VAL: 'GLUEDataset'
|
| 16 |
+
TASK_TYPE: 'text_classification'
|
| 17 |
+
DATASET_NAME: 'MRPC'
|
| 18 |
+
TARGET_SET: ['MRPC']
|
| 19 |
+
DATALOADER:
|
| 20 |
+
TRAIN_BATCH_SIZE: 16
|
| 21 |
+
TEST_BATCH_SIZE: 64
|
| 22 |
+
NUM_WORKERS: 4
|
| 23 |
+
ANNO_FOLDER: 'open_source_dataset/bert_pretrain_data/glue_data/'
|
| 24 |
+
|
| 25 |
+
MODEL:
|
| 26 |
+
MAX_SEQ_LEN: 256
|
| 27 |
+
TEMP_NAME: logit_scale_text_mlm
|
| 28 |
+
LOSSES:
|
| 29 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 30 |
+
LABELSMOOTHING: 0.1
|
| 31 |
+
# LOSS_WEIGHT: 1
|
| 32 |
+
REDUCTION: 'mean'
|
| 33 |
+
LOSS_FP32: False
|
| 34 |
+
INFERENCE:
|
| 35 |
+
NAME: 'GLUEEvaler'
|
| 36 |
+
VOCAB: 'CLIP'
|
| 37 |
+
GENERATION_MODE: False
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
ENGINE:
|
| 43 |
+
NAME: 'UnifiedTrainer'
|
| 44 |
+
|
| 45 |
+
DATALOADER:
|
| 46 |
+
USE_WEIGHTED_SAMPLER: True
|
| 47 |
+
UNIFIED_DATASET: True
|
| 48 |
+
NUM_WORKERS: 16
|
| 49 |
+
|
| 50 |
+
######################################### MODEL #########################################
|
| 51 |
+
MODEL:
|
| 52 |
+
MODEL_EMA: False
|
| 53 |
+
MODEL_EMA_DECAY: 0.9999
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
####################################### Optimizer #######################################
|
| 57 |
+
SOLVER:
|
| 58 |
+
NAME: 'Adam'
|
| 59 |
+
MAX_ITER: 2500
|
| 60 |
+
CHECKPOINT_PERIOD: 10000
|
| 61 |
+
EVAL_PERIOD: 100
|
| 62 |
+
CHECKPOINT_MAX_SAVE: 2
|
| 63 |
+
BASE_LR: 0.00001
|
| 64 |
+
BIAS_LR_FACTOR: 1.0
|
| 65 |
+
WEIGHT_DECAY: 0.1
|
| 66 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 67 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 68 |
+
MOMENTUM: 0.9
|
| 69 |
+
DAMPENING: 0.0
|
| 70 |
+
NESTEROV: 0.0
|
| 71 |
+
BETAS: [0.9, 0.98]
|
| 72 |
+
EPS: 1e-8
|
| 73 |
+
GRAD_CLIP: 0.5
|
| 74 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 75 |
+
ACCUM_ITER: 0
|
| 76 |
+
AMP_FP16: True
|
| 77 |
+
APEX_FP16: False # dangerous
|
| 78 |
+
WRITE_PERIOD: 20
|
| 79 |
+
|
| 80 |
+
####################################### lr scheduler #######################################
|
| 81 |
+
LR_SCHEDULER:
|
| 82 |
+
NAME: 'WarmupCosine'
|
| 83 |
+
WARMUP: 150
|
| 84 |
+
MIN_LR: 0.00000001
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
find_unused_parameters: true
|
configs/BERT_L12_H768_experiments/finetuning/GLUE_finetuning_experiments/GLUE_QNLI_mlm_finetune.yaml
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
-
|
| 5 |
+
NAME: 'QNLI'
|
| 6 |
+
SHARED_TARGETS_CFG:
|
| 7 |
+
FILE_PATH: 'open_source_dataset/GLUE_classnames/QNLI_class_name_CLIP_with_endoftext.pkl'
|
| 8 |
+
DISTRIBUTED: False
|
| 9 |
+
TASKS:
|
| 10 |
+
-
|
| 11 |
+
NAME: QNLI
|
| 12 |
+
DATASETS:
|
| 13 |
+
TRAIN: 'GLUEDataset'
|
| 14 |
+
# TEST: 'GLUEDataset'
|
| 15 |
+
VAL: 'GLUEDataset'
|
| 16 |
+
TASK_TYPE: 'text_classification'
|
| 17 |
+
DATASET_NAME: 'QNLI'
|
| 18 |
+
TARGET_SET: ['QNLI']
|
| 19 |
+
DATALOADER:
|
| 20 |
+
TRAIN_BATCH_SIZE: 16
|
| 21 |
+
TEST_BATCH_SIZE: 64
|
| 22 |
+
NUM_WORKERS: 4
|
| 23 |
+
ANNO_FOLDER: 'open_source_dataset/bert_pretrain_data/glue_data/'
|
| 24 |
+
|
| 25 |
+
MODEL:
|
| 26 |
+
MAX_SEQ_LEN: 256
|
| 27 |
+
TEMP_NAME: logit_scale_text_mlm
|
| 28 |
+
LOSSES:
|
| 29 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 30 |
+
LABELSMOOTHING: 0.1
|
| 31 |
+
# LOSS_WEIGHT: 1
|
| 32 |
+
REDUCTION: 'mean'
|
| 33 |
+
LOSS_FP32: False
|
| 34 |
+
INFERENCE:
|
| 35 |
+
NAME: 'GLUEEvaler'
|
| 36 |
+
VOCAB: 'CLIP'
|
| 37 |
+
GENERATION_MODE: False
|
| 38 |
+
|
| 39 |
+
ENGINE:
|
| 40 |
+
NAME: 'UnifiedTrainer'
|
| 41 |
+
|
| 42 |
+
DATALOADER:
|
| 43 |
+
USE_WEIGHTED_SAMPLER: True
|
| 44 |
+
UNIFIED_DATASET: True
|
| 45 |
+
NUM_WORKERS: 16
|
| 46 |
+
|
| 47 |
+
######################################### MODEL #########################################
|
| 48 |
+
MODEL:
|
| 49 |
+
MODEL_EMA: False
|
| 50 |
+
MODEL_EMA_DECAY: 0.9999
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
####################################### Optimizer #######################################
|
| 54 |
+
SOLVER:
|
| 55 |
+
NAME: 'Adam'
|
| 56 |
+
MAX_ITER: 34000
|
| 57 |
+
CHECKPOINT_PERIOD: 200000
|
| 58 |
+
EVAL_PERIOD: 2000
|
| 59 |
+
CHECKPOINT_MAX_SAVE: 2
|
| 60 |
+
BASE_LR: 0.00001
|
| 61 |
+
BIAS_LR_FACTOR: 1.0
|
| 62 |
+
WEIGHT_DECAY: 0.1
|
| 63 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 64 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 65 |
+
MOMENTUM: 0.9
|
| 66 |
+
DAMPENING: 0.0
|
| 67 |
+
NESTEROV: 0.0
|
| 68 |
+
BETAS: [0.9, 0.98]
|
| 69 |
+
EPS: 1e-8
|
| 70 |
+
GRAD_CLIP: 0.5
|
| 71 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 72 |
+
ACCUM_ITER: 0
|
| 73 |
+
AMP_FP16: True
|
| 74 |
+
APEX_FP16: False # dangerous
|
| 75 |
+
WRITE_PERIOD: 20
|
| 76 |
+
|
| 77 |
+
####################################### lr scheduler #######################################
|
| 78 |
+
LR_SCHEDULER:
|
| 79 |
+
NAME: 'WarmupCosine'
|
| 80 |
+
WARMUP: 2000
|
| 81 |
+
MIN_LR: 0.00000001
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
find_unused_parameters: true
|
configs/BERT_L12_H768_experiments/finetuning/GLUE_finetuning_experiments/GLUE_QQP_mlm_finetune.yaml
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
-
|
| 5 |
+
NAME: 'QQP'
|
| 6 |
+
SHARED_TARGETS_CFG:
|
| 7 |
+
FILE_PATH: 'open_source_dataset/GLUE_classnames/QQP_class_name_CLIP_with_endoftext.pkl'
|
| 8 |
+
DISTRIBUTED: False
|
| 9 |
+
TASKS:
|
| 10 |
+
-
|
| 11 |
+
NAME: QQP
|
| 12 |
+
DATASETS:
|
| 13 |
+
TRAIN: 'GLUEDataset'
|
| 14 |
+
# TEST: 'GLUEDataset'
|
| 15 |
+
VAL: 'GLUEDataset'
|
| 16 |
+
TASK_TYPE: 'text_classification'
|
| 17 |
+
DATASET_NAME: 'QQP'
|
| 18 |
+
TARGET_SET: ['QQP']
|
| 19 |
+
DATALOADER:
|
| 20 |
+
TRAIN_BATCH_SIZE: 32
|
| 21 |
+
TEST_BATCH_SIZE: 64
|
| 22 |
+
NUM_WORKERS: 4
|
| 23 |
+
ANNO_FOLDER: 'open_source_dataset/bert_pretrain_data/glue_data/'
|
| 24 |
+
|
| 25 |
+
MODEL:
|
| 26 |
+
MAX_SEQ_LEN: 256
|
| 27 |
+
TEMP_NAME: logit_scale_text_mlm
|
| 28 |
+
LOSSES:
|
| 29 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 30 |
+
LABELSMOOTHING: 0.1
|
| 31 |
+
# LOSS_WEIGHT: 1
|
| 32 |
+
REDUCTION: 'mean'
|
| 33 |
+
LOSS_FP32: False
|
| 34 |
+
INFERENCE:
|
| 35 |
+
NAME: 'GLUEEvaler'
|
| 36 |
+
VOCAB: 'CLIP'
|
| 37 |
+
GENERATION_MODE: False
|
| 38 |
+
|
| 39 |
+
ENGINE:
|
| 40 |
+
NAME: 'UnifiedTrainer'
|
| 41 |
+
|
| 42 |
+
DATALOADER:
|
| 43 |
+
USE_WEIGHTED_SAMPLER: True
|
| 44 |
+
UNIFIED_DATASET: True
|
| 45 |
+
NUM_WORKERS: 16
|
| 46 |
+
|
| 47 |
+
######################################### MODEL #########################################
|
| 48 |
+
MODEL:
|
| 49 |
+
MODEL_EMA: False
|
| 50 |
+
MODEL_EMA_DECAY: 0.9999
|
| 51 |
+
|
| 52 |
+
####################################### Optimizer #######################################
|
| 53 |
+
SOLVER:
|
| 54 |
+
NAME: 'Adam'
|
| 55 |
+
MAX_ITER: 115000
|
| 56 |
+
CHECKPOINT_PERIOD: 200000
|
| 57 |
+
EVAL_PERIOD: 5000
|
| 58 |
+
CHECKPOINT_MAX_SAVE: 2
|
| 59 |
+
BASE_LR: 0.00001
|
| 60 |
+
BIAS_LR_FACTOR: 1.0
|
| 61 |
+
WEIGHT_DECAY: 0.1
|
| 62 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 63 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 64 |
+
MOMENTUM: 0.9
|
| 65 |
+
DAMPENING: 0.0
|
| 66 |
+
NESTEROV: 0.0
|
| 67 |
+
BETAS: [0.9, 0.98]
|
| 68 |
+
EPS: 1e-8
|
| 69 |
+
GRAD_CLIP: 0.5
|
| 70 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 71 |
+
ACCUM_ITER: 0
|
| 72 |
+
AMP_FP16: True
|
| 73 |
+
APEX_FP16: False # dangerous
|
| 74 |
+
WRITE_PERIOD: 20
|
| 75 |
+
|
| 76 |
+
####################################### lr scheduler #######################################
|
| 77 |
+
LR_SCHEDULER:
|
| 78 |
+
NAME: 'WarmupCosine'
|
| 79 |
+
WARMUP: 28000
|
| 80 |
+
MIN_LR: 0.00000001
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
find_unused_parameters: true
|
configs/BERT_L12_H768_experiments/finetuning/GLUE_finetuning_experiments/GLUE_RTE_mlm_finetune.yaml
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
-
|
| 5 |
+
NAME: 'RTE'
|
| 6 |
+
SHARED_TARGETS_CFG:
|
| 7 |
+
FILE_PATH: 'open_source_dataset/GLUE_classnames/RTE_class_name_CLIP_with_endoftext.pkl'
|
| 8 |
+
DISTRIBUTED: False
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
TASKS:
|
| 12 |
+
-
|
| 13 |
+
NAME: RTE
|
| 14 |
+
DATASETS:
|
| 15 |
+
TRAIN: 'GLUEDataset'
|
| 16 |
+
# TEST: 'GLUEDataset'
|
| 17 |
+
VAL: 'GLUEDataset'
|
| 18 |
+
TASK_TYPE: 'text_classification'
|
| 19 |
+
DATASET_NAME: 'RTE'
|
| 20 |
+
TARGET_SET: ['RTE']
|
| 21 |
+
DATALOADER:
|
| 22 |
+
TRAIN_BATCH_SIZE: 16
|
| 23 |
+
TEST_BATCH_SIZE: 64
|
| 24 |
+
NUM_WORKERS: 4
|
| 25 |
+
ANNO_FOLDER: 'open_source_dataset/bert_pretrain_data/glue_data/'
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
MODEL:
|
| 29 |
+
MAX_SEQ_LEN: 256
|
| 30 |
+
TEMP_NAME: logit_scale_text_mlm
|
| 31 |
+
LOSSES:
|
| 32 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 33 |
+
LABELSMOOTHING: 0.1
|
| 34 |
+
# LOSS_WEIGHT: 1
|
| 35 |
+
REDUCTION: 'mean'
|
| 36 |
+
LOSS_FP32: False
|
| 37 |
+
INFERENCE:
|
| 38 |
+
NAME: 'GLUEEvaler'
|
| 39 |
+
VOCAB: 'CLIP'
|
| 40 |
+
GENERATION_MODE: False
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
ENGINE:
|
| 46 |
+
NAME: 'UnifiedTrainer'
|
| 47 |
+
|
| 48 |
+
DATALOADER:
|
| 49 |
+
USE_WEIGHTED_SAMPLER: True
|
| 50 |
+
UNIFIED_DATASET: True
|
| 51 |
+
NUM_WORKERS: 16
|
| 52 |
+
|
| 53 |
+
######################################### MODEL #########################################
|
| 54 |
+
MODEL:
|
| 55 |
+
MODEL_EMA: False
|
| 56 |
+
MODEL_EMA_DECAY: 0.9999
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
####################################### Optimizer #######################################
|
| 61 |
+
SOLVER:
|
| 62 |
+
NAME: 'Adam'
|
| 63 |
+
MAX_ITER: 2500
|
| 64 |
+
CHECKPOINT_PERIOD: 10000
|
| 65 |
+
EVAL_PERIOD: 100
|
| 66 |
+
CHECKPOINT_MAX_SAVE: 2
|
| 67 |
+
BASE_LR: 0.00002
|
| 68 |
+
BIAS_LR_FACTOR: 1.0
|
| 69 |
+
WEIGHT_DECAY: 0.1
|
| 70 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 71 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 72 |
+
MOMENTUM: 0.9
|
| 73 |
+
DAMPENING: 0.0
|
| 74 |
+
NESTEROV: 0.0
|
| 75 |
+
BETAS: [0.9, 0.98]
|
| 76 |
+
EPS: 1e-8
|
| 77 |
+
GRAD_CLIP: 0.5
|
| 78 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 79 |
+
ACCUM_ITER: 0
|
| 80 |
+
AMP_FP16: True
|
| 81 |
+
APEX_FP16: False # dangerous
|
| 82 |
+
WRITE_PERIOD: 20
|
| 83 |
+
|
| 84 |
+
####################################### lr scheduler #######################################
|
| 85 |
+
LR_SCHEDULER:
|
| 86 |
+
NAME: 'WarmupCosine'
|
| 87 |
+
WARMUP: 150
|
| 88 |
+
MIN_LR: 0.00000001
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
find_unused_parameters: true
|
configs/BERT_L12_H768_experiments/finetuning/GLUE_finetuning_experiments/GLUE_SST2_mlm_finetune.yaml
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
-
|
| 5 |
+
NAME: 'SST-2'
|
| 6 |
+
SHARED_TARGETS_CFG:
|
| 7 |
+
FILE_PATH: 'open_source_dataset/GLUE_classnames/SST-2_class_name_CLIP_with_endoftext.pkl'
|
| 8 |
+
DISTRIBUTED: False
|
| 9 |
+
|
| 10 |
+
TASKS:
|
| 11 |
+
-
|
| 12 |
+
NAME: SST-2
|
| 13 |
+
DATASETS:
|
| 14 |
+
TRAIN: 'GLUEDataset'
|
| 15 |
+
# TEST: 'GLUEDataset'
|
| 16 |
+
VAL: 'GLUEDataset'
|
| 17 |
+
TASK_TYPE: 'text_classification'
|
| 18 |
+
DATASET_NAME: 'SST-2'
|
| 19 |
+
TARGET_SET: ['SST-2']
|
| 20 |
+
DATALOADER:
|
| 21 |
+
TRAIN_BATCH_SIZE: 32
|
| 22 |
+
TEST_BATCH_SIZE: 64
|
| 23 |
+
NUM_WORKERS: 4
|
| 24 |
+
ANNO_FOLDER: 'open_source_dataset/bert_pretrain_data/glue_data/'
|
| 25 |
+
|
| 26 |
+
MODEL:
|
| 27 |
+
MAX_SEQ_LEN: 256
|
| 28 |
+
TEMP_NAME: logit_scale_text_mlm
|
| 29 |
+
LOSSES:
|
| 30 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 31 |
+
LABELSMOOTHING: 0.1
|
| 32 |
+
# LOSS_WEIGHT: 1
|
| 33 |
+
REDUCTION: 'mean'
|
| 34 |
+
LOSS_FP32: False
|
| 35 |
+
INFERENCE:
|
| 36 |
+
NAME: 'GLUEEvaler'
|
| 37 |
+
VOCAB: 'CLIP'
|
| 38 |
+
GENERATION_MODE: False
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
ENGINE:
|
| 44 |
+
NAME: 'UnifiedTrainer'
|
| 45 |
+
|
| 46 |
+
DATALOADER:
|
| 47 |
+
USE_WEIGHTED_SAMPLER: True
|
| 48 |
+
UNIFIED_DATASET: True
|
| 49 |
+
NUM_WORKERS: 16
|
| 50 |
+
|
| 51 |
+
######################################### MODEL #########################################
|
| 52 |
+
MODEL:
|
| 53 |
+
MODEL_EMA: False
|
| 54 |
+
MODEL_EMA_DECAY: 0.9999
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
####################################### Optimizer #######################################
|
| 58 |
+
SOLVER:
|
| 59 |
+
NAME: 'Adam'
|
| 60 |
+
MAX_ITER: 22000
|
| 61 |
+
CHECKPOINT_PERIOD: 100000
|
| 62 |
+
EVAL_PERIOD: 1000
|
| 63 |
+
CHECKPOINT_MAX_SAVE: 2
|
| 64 |
+
BASE_LR: 0.00001
|
| 65 |
+
BIAS_LR_FACTOR: 1.0
|
| 66 |
+
WEIGHT_DECAY: 0.1
|
| 67 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 68 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 69 |
+
MOMENTUM: 0.9
|
| 70 |
+
DAMPENING: 0.0
|
| 71 |
+
NESTEROV: 0.0
|
| 72 |
+
BETAS: [0.9, 0.98]
|
| 73 |
+
EPS: 1e-8
|
| 74 |
+
GRAD_CLIP: 0.5
|
| 75 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 76 |
+
ACCUM_ITER: 0
|
| 77 |
+
AMP_FP16: True
|
| 78 |
+
APEX_FP16: False # dangerous
|
| 79 |
+
WRITE_PERIOD: 20
|
| 80 |
+
|
| 81 |
+
####################################### lr scheduler #######################################
|
| 82 |
+
LR_SCHEDULER:
|
| 83 |
+
NAME: 'WarmupCosine'
|
| 84 |
+
WARMUP: 1500
|
| 85 |
+
MIN_LR: 0.00000001
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
find_unused_parameters: true
|
configs/BERT_L12_H768_experiments/finetuning/GLUE_finetuning_experiments/base.yaml
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "../../base_model_bert_l12_h768.yaml"
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
MODEL:
|
| 5 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 6 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 7 |
+
|
| 8 |
+
SHARE_LAYERNORM: True
|
| 9 |
+
BERT:
|
| 10 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 11 |
+
DROP_PATH_PROB: 0.1
|
| 12 |
+
DROP_PATH_PROB_FIXED: True
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
MODEL_EMA: False
|
| 16 |
+
MODEL_EMA_DECAY: 0.9999
|
| 17 |
+
|
| 18 |
+
MAEParamsInit: True
|
| 19 |
+
POSEMBEDFIX: True
|
| 20 |
+
|
| 21 |
+
LAYER_SCALE: True
|
| 22 |
+
LAYER_SCALE_INIT: 1e-3
|
configs/BERT_L12_H768_experiments/finetuning/flickr30k_caption_finetuning.yaml
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "../base_model_bert_l12_h768.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
-
|
| 6 |
+
NAME: 'Vocab_Word'
|
| 7 |
+
SHARED_TARGETS_CFG:
|
| 8 |
+
FILE_PATH: 'open_source_dataset/vocabulary_CLIP_with_endoftext.pkl'
|
| 9 |
+
DISTRIBUTED: True
|
| 10 |
+
|
| 11 |
+
TASKS:
|
| 12 |
+
-
|
| 13 |
+
NAME: flickr30k_caption
|
| 14 |
+
DATASETS:
|
| 15 |
+
TRAIN: 'ImageTextPairDataset'
|
| 16 |
+
# VAL: 'ImageTextPairDataset'
|
| 17 |
+
TEST: 'ImageTextPairDataset'
|
| 18 |
+
TASK_TYPE: 'image_caption'
|
| 19 |
+
DATASET_NAME: 'FLICKR'
|
| 20 |
+
TARGET_SET: ['Vocab_Word']
|
| 21 |
+
DATALOADER:
|
| 22 |
+
TRAIN_BATCH_SIZE: 32
|
| 23 |
+
TEST_BATCH_SIZE: 8
|
| 24 |
+
NUM_WORKERS: 4
|
| 25 |
+
FEATS_FOLDER: 'open_source_dataset/flickr30k_images/flickr30k_images/flickr30k_images'
|
| 26 |
+
ANNO_FOLDER: 'open_source_dataset/flickr30k'
|
| 27 |
+
S3_PATH: "s3://open_dataset/flickr30k/flickr30k_images"
|
| 28 |
+
SEQ_PER_SAMPLE: 1
|
| 29 |
+
CACHE_MODE: True
|
| 30 |
+
CIRCULAR_CACHE_MODE: False
|
| 31 |
+
ZIP_MODE: False
|
| 32 |
+
CACHE_ORIGIN_IMAGE: False
|
| 33 |
+
RANDOM_CAPTION: False
|
| 34 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 35 |
+
SAMPLING_WEIGHT: 1.0
|
| 36 |
+
TRANSFORM: 'clip_transforms'
|
| 37 |
+
RANDOM_MASK: True
|
| 38 |
+
MODEL:
|
| 39 |
+
MAX_SEQ_LEN: 30
|
| 40 |
+
EVAL_MAX_SEQ_LEN: 21
|
| 41 |
+
TEMP_NAME: logit_scale_caption
|
| 42 |
+
LOSSES:
|
| 43 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 44 |
+
# NAMES: ['CrossEntropy', 'Accuracy']
|
| 45 |
+
LABELSMOOTHING: 0.1
|
| 46 |
+
LOSS_WEIGHT: 1.0
|
| 47 |
+
REDUCTION: 'mean'
|
| 48 |
+
DECODE_STRATEGY:
|
| 49 |
+
NAME: 'CaptionBeamSearcherV3'
|
| 50 |
+
BEAM_SIZE: 2
|
| 51 |
+
# LEN_PENALTY: 2.0
|
| 52 |
+
INFERENCE:
|
| 53 |
+
NAME: 'COCOEvaler'
|
| 54 |
+
VOCAB: 'CLIP'
|
| 55 |
+
ID_KEY: 'image_id'
|
| 56 |
+
VALUE: 'caption'
|
| 57 |
+
VAL_ANNFILE: 'open_source_dataset/flickr30k/captions_val.json'
|
| 58 |
+
TEST_ANNFILE: 'open_source_dataset/flickr30k/captions_test.json'
|
| 59 |
+
GENERATION_MODE: True
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
ENGINE:
|
| 65 |
+
NAME: 'UnifiedTrainer'
|
| 66 |
+
|
| 67 |
+
MODEL:
|
| 68 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 69 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 70 |
+
|
| 71 |
+
SHARE_LAYERNORM: True
|
| 72 |
+
BERT:
|
| 73 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 74 |
+
DROP_PATH_PROB: 0.1
|
| 75 |
+
DROP_PATH_PROB_FIXED: True
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
MODEL_EMA: False
|
| 79 |
+
MODEL_EMA_DECAY: 0.9999
|
| 80 |
+
|
| 81 |
+
MAEParamsInit: True
|
| 82 |
+
POSEMBEDFIX: True
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
IMG_INPUT_SIZE: 224
|
| 86 |
+
PATCH_SIZE: 16
|
| 87 |
+
|
| 88 |
+
POSEMBED_SCALE: !!python/object/apply:eval ["160/224"]
|
| 89 |
+
CHECKPOINT_FILETER: False
|
| 90 |
+
OLD_CHECKPONT: True
|
| 91 |
+
|
| 92 |
+
LAYER_SCALE: True
|
| 93 |
+
LAYER_SCALE_INIT: 1e-3
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
DATALOADER:
|
| 97 |
+
USE_WEIGHTED_SAMPLER: True
|
| 98 |
+
UNIFIED_DATASET: True
|
| 99 |
+
NUM_WORKERS: 16
|
| 100 |
+
|
| 101 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
####################################### Optimizer #######################################
|
| 106 |
+
SOLVER:
|
| 107 |
+
NAME: 'Adam'
|
| 108 |
+
TORCH_OPTIMIZER: True
|
| 109 |
+
PARAMS_SEPERATE: True
|
| 110 |
+
# PARAMS_GROUP: True
|
| 111 |
+
# EPOCH: 1
|
| 112 |
+
MAX_ITER: 4000
|
| 113 |
+
CHECKPOINT_PERIOD: 50000
|
| 114 |
+
EVAL_PERIOD: 500
|
| 115 |
+
BASE_LR: 0.000002
|
| 116 |
+
BIAS_LR_FACTOR: 1.0
|
| 117 |
+
WEIGHT_DECAY: 0.0001
|
| 118 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 119 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 120 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 121 |
+
MOMENTUM: 0.9
|
| 122 |
+
DAMPENING: 0.0
|
| 123 |
+
NESTEROV: 0.0
|
| 124 |
+
BETAS: [0.9, 0.95]
|
| 125 |
+
EPS: 1e-6
|
| 126 |
+
GRAD_CLIP: 0.1
|
| 127 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 128 |
+
ACCUM_ITER: 0
|
| 129 |
+
AMP_FP16: True
|
| 130 |
+
APEX_FP16: False # dangerous
|
| 131 |
+
|
| 132 |
+
WRITE_PERIOD: 50
|
| 133 |
+
MIN_LOSS_SCLE: 2048.0
|
| 134 |
+
# BF16: False # True
|
| 135 |
+
# ZEROSTAGE: 2
|
| 136 |
+
|
| 137 |
+
LOSS_SCALE_WINDOW: 200
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
####################################### lr scheduler #######################################
|
| 145 |
+
LR_SCHEDULER:
|
| 146 |
+
NAME: 'WarmupCosine'
|
| 147 |
+
WARMUP: 500
|
| 148 |
+
MIN_LR: 0.000001
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
find_unused_parameters: true
|
configs/BERT_L12_H768_experiments/finetuning/flickr30k_retrieval_finetuning.yaml
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "../base_model_bert_l12_h768.yaml"
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
TASKS:
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
-
|
| 9 |
+
NAME: flickr30k_retrieve
|
| 10 |
+
DATASETS:
|
| 11 |
+
TRAIN: 'ImageTextPairDataset'
|
| 12 |
+
TEST: 'ImageTextPairDataset'
|
| 13 |
+
TASK_TYPE: 'image_retrieval'
|
| 14 |
+
DATASET_NAME: 'FLICKR'
|
| 15 |
+
DATALOADER:
|
| 16 |
+
TRAIN_BATCH_SIZE: 256
|
| 17 |
+
TEST_BATCH_SIZE: 128
|
| 18 |
+
NUM_WORKERS: 2
|
| 19 |
+
FEATS_FOLDER: 'open_source_dataset/flickr30k_images/flickr30k_images/flickr30k_images'
|
| 20 |
+
ANNO_FOLDER: 'open_source_dataset/flickr30k'
|
| 21 |
+
S3_PATH: 's3://open_dataset/flickr30k/flickr30k_images'
|
| 22 |
+
SEQ_PER_SAMPLE: 1
|
| 23 |
+
CACHE_MODE: True
|
| 24 |
+
CIRCULAR_CACHE_MODE: False
|
| 25 |
+
ZIP_MODE: False
|
| 26 |
+
CACHE_ORIGIN_IMAGE: False
|
| 27 |
+
RANDOM_CAPTION: False
|
| 28 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 29 |
+
SAMPLING_WEIGHT: 1.0
|
| 30 |
+
TRANSFORM: 'clip_transforms'
|
| 31 |
+
MODEL:
|
| 32 |
+
MAX_SEQ_LEN: 30
|
| 33 |
+
TEMP_NAME: logit_scale_retrieve
|
| 34 |
+
LOSSES:
|
| 35 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 36 |
+
LABELSMOOTHING: 0.1
|
| 37 |
+
LOSS_WEIGHT: 1.0
|
| 38 |
+
REDUCTION: 'mean'
|
| 39 |
+
INFERENCE:
|
| 40 |
+
NAME: 'RetrievalEvaler'
|
| 41 |
+
GENERATION_MODE: False
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
ENGINE:
|
| 47 |
+
NAME: 'UnifiedTrainer'
|
| 48 |
+
|
| 49 |
+
MODEL:
|
| 50 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 51 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 52 |
+
|
| 53 |
+
SHARE_LAYERNORM: True
|
| 54 |
+
BERT:
|
| 55 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 56 |
+
DROP_PATH_PROB: 0.1
|
| 57 |
+
DROP_PATH_PROB_FIXED: True
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
MODEL_EMA: False
|
| 61 |
+
MODEL_EMA_DECAY: 0.9999
|
| 62 |
+
|
| 63 |
+
MAEParamsInit: True
|
| 64 |
+
POSEMBEDFIX: True
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
IMG_INPUT_SIZE: 224
|
| 68 |
+
PATCH_SIZE: 16
|
| 69 |
+
|
| 70 |
+
POSEMBED_SCALE: !!python/object/apply:eval ["160/224"]
|
| 71 |
+
CHECKPOINT_FILETER: False
|
| 72 |
+
OLD_CHECKPONT: True
|
| 73 |
+
|
| 74 |
+
LAYER_SCALE: True
|
| 75 |
+
LAYER_SCALE_INIT: 1e-3
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
DATALOADER:
|
| 79 |
+
USE_WEIGHTED_SAMPLER: True
|
| 80 |
+
UNIFIED_DATASET: True
|
| 81 |
+
NUM_WORKERS: 16
|
| 82 |
+
|
| 83 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
####################################### Optimizer #######################################
|
| 88 |
+
SOLVER:
|
| 89 |
+
NAME: 'Adam'
|
| 90 |
+
TORCH_OPTIMIZER: True
|
| 91 |
+
PARAMS_SEPERATE: True
|
| 92 |
+
# PARAMS_GROUP: True
|
| 93 |
+
# EPOCH: 1
|
| 94 |
+
MAX_ITER: 5000
|
| 95 |
+
CHECKPOINT_PERIOD: 50000
|
| 96 |
+
EVAL_PERIOD: 500
|
| 97 |
+
BASE_LR: 0.000005
|
| 98 |
+
BIAS_LR_FACTOR: 1.0
|
| 99 |
+
WEIGHT_DECAY: 0.0001
|
| 100 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 101 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 102 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 103 |
+
MOMENTUM: 0.9
|
| 104 |
+
DAMPENING: 0.0
|
| 105 |
+
NESTEROV: 0.0
|
| 106 |
+
BETAS: [0.9, 0.95]
|
| 107 |
+
EPS: 1e-6
|
| 108 |
+
GRAD_CLIP: 0.1
|
| 109 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 110 |
+
ACCUM_ITER: 0
|
| 111 |
+
AMP_FP16: True
|
| 112 |
+
APEX_FP16: False # dangerous
|
| 113 |
+
WRITE_PERIOD: 50
|
| 114 |
+
MIN_LOSS_SCLE: 2048.0
|
| 115 |
+
# BF16: False # True
|
| 116 |
+
# ZEROSTAGE: 2
|
| 117 |
+
|
| 118 |
+
LOSS_SCALE_WINDOW: 200
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
####################################### lr scheduler #######################################
|
| 126 |
+
LR_SCHEDULER:
|
| 127 |
+
NAME: 'WarmupCosine'
|
| 128 |
+
WARMUP: 200
|
| 129 |
+
MIN_LR: 0.000001
|
| 130 |
+
|
| 131 |
+
find_unused_parameters: true
|
| 132 |
+
|
configs/BERT_L12_H768_experiments/finetuning/in1k_training.yaml
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "../base_model_bert_l12_h768.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
-
|
| 6 |
+
NAME: 'ImageNet1k'
|
| 7 |
+
SHARED_TARGETS_CFG:
|
| 8 |
+
FILE_PATH: 'open_source_dataset/imagenet_class_name_CLIP_with_endoftext.pkl'
|
| 9 |
+
DISTRIBUTED: False
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
TASKS:
|
| 14 |
+
|
| 15 |
+
-
|
| 16 |
+
NAME: imagenet
|
| 17 |
+
DATASETS:
|
| 18 |
+
TRAIN: 'ImageNetDataset'
|
| 19 |
+
VAL: 'ImageNetDataset'
|
| 20 |
+
TASK_TYPE: 'image_classification'
|
| 21 |
+
DATASET_NAME: 'ImageNet1k'
|
| 22 |
+
TARGET_SET: ['ImageNet1k']
|
| 23 |
+
|
| 24 |
+
DATALOADER:
|
| 25 |
+
TRAIN_BATCH_SIZE: 128
|
| 26 |
+
TEST_BATCH_SIZE: 256
|
| 27 |
+
NUM_WORKERS: 4 # will be used as numworker for testing loader
|
| 28 |
+
FEATS_FOLDER: 'open_source_dataset/imagenet'
|
| 29 |
+
S3_PATH: 'cluster2:s3://imagenet'
|
| 30 |
+
ANNO_FOLDER: 'open_source_dataset/imagenet/meta'
|
| 31 |
+
SAMPLING_WEIGHT: 1.0
|
| 32 |
+
CLASS_NAME_FILE: 'open_source_dataset/imagenet_class_name.pkl'
|
| 33 |
+
MIXUP: 0.0
|
| 34 |
+
CUTMIX: 0.0
|
| 35 |
+
MIXUP_PROB: 1.0
|
| 36 |
+
MIXUP_SWITCH_PROB: 0.5
|
| 37 |
+
MIXUP_MODE: 'batch'
|
| 38 |
+
MIXUP_LABEL_SMOOTHING: 0.1
|
| 39 |
+
MODEL:
|
| 40 |
+
MAX_SEQ_LEN: -1
|
| 41 |
+
LABELS_NUM: 1000
|
| 42 |
+
TEMP_NAME: logit_scale_img_cls
|
| 43 |
+
LOSSES:
|
| 44 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 45 |
+
LOSS_WEIGHT: 1.0
|
| 46 |
+
REDUCTION: 'mean'
|
| 47 |
+
LABELSMOOTHING: 0.1
|
| 48 |
+
INFERENCE:
|
| 49 |
+
NAME: 'ImageNetEvaler'
|
| 50 |
+
ID_KEY: 'image_id'
|
| 51 |
+
VALUE: 'cls_logits'
|
| 52 |
+
VAL_ANNFILE: 'open_source_dataset/imagenet/meta/val.txt'
|
| 53 |
+
TEST_ANNFILE: ''
|
| 54 |
+
GENERATION_MODE: False
|
| 55 |
+
|
| 56 |
+
ENGINE:
|
| 57 |
+
NAME: 'UnifiedTrainer'
|
| 58 |
+
|
| 59 |
+
MODEL:
|
| 60 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 61 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 62 |
+
|
| 63 |
+
SHARE_LAYERNORM: True
|
| 64 |
+
BERT:
|
| 65 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 66 |
+
DROP_PATH_PROB: 0.1
|
| 67 |
+
DROP_PATH_PROB_FIXED: True
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
MODEL_EMA: False
|
| 71 |
+
MODEL_EMA_DECAY: 0.9999
|
| 72 |
+
|
| 73 |
+
MAEParamsInit: True
|
| 74 |
+
POSEMBEDFIX: True
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
IMG_INPUT_SIZE: 224
|
| 78 |
+
PATCH_SIZE: 16
|
| 79 |
+
|
| 80 |
+
POSEMBED_SCALE: !!python/object/apply:eval ["160/224"]
|
| 81 |
+
CHECKPOINT_FILETER: False
|
| 82 |
+
OLD_CHECKPONT: True
|
| 83 |
+
|
| 84 |
+
LAYER_SCALE: True
|
| 85 |
+
LAYER_SCALE_INIT: 1e-3
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
DATALOADER:
|
| 89 |
+
USE_WEIGHTED_SAMPLER: True
|
| 90 |
+
UNIFIED_DATASET: True
|
| 91 |
+
NUM_WORKERS: 16
|
| 92 |
+
|
| 93 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
####################################### Optimizer #######################################
|
| 98 |
+
SOLVER:
|
| 99 |
+
NAME: 'Adam'
|
| 100 |
+
TORCH_OPTIMIZER: True
|
| 101 |
+
PARAMS_SEPERATE: True
|
| 102 |
+
# PARAMS_GROUP: True
|
| 103 |
+
# EPOCH: 1
|
| 104 |
+
MAX_ITER: 20000
|
| 105 |
+
CHECKPOINT_PERIOD: 20000
|
| 106 |
+
EVAL_PERIOD: 2000
|
| 107 |
+
BASE_LR: 0.00002
|
| 108 |
+
BIAS_LR_FACTOR: 1.0
|
| 109 |
+
WEIGHT_DECAY: 0.00000001
|
| 110 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 111 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 112 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 113 |
+
MOMENTUM: 0.9
|
| 114 |
+
DAMPENING: 0.0
|
| 115 |
+
NESTEROV: 0.0
|
| 116 |
+
BETAS: [0.9, 0.999]
|
| 117 |
+
EPS: 1e-6
|
| 118 |
+
GRAD_CLIP: 0.1
|
| 119 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 120 |
+
ACCUM_ITER: 0
|
| 121 |
+
AMP_FP16: True
|
| 122 |
+
APEX_FP16: False # dangerous
|
| 123 |
+
WRITE_PERIOD: 50
|
| 124 |
+
MIN_LOSS_SCLE: 2048.0
|
| 125 |
+
LOSS_SCALE_WINDOW: 200
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
####################################### lr scheduler #######################################
|
| 129 |
+
LR_SCHEDULER:
|
| 130 |
+
NAME: 'WarmupCosine'
|
| 131 |
+
WARMUP: 2000
|
| 132 |
+
MIN_LR: 0.00000001
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
find_unused_parameters: true
|
configs/BERT_L12_H768_experiments/finetuning/in1k_training_384inputsize.yaml
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "../base_model_bert_l12_h768.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
-
|
| 6 |
+
NAME: 'ImageNet1k'
|
| 7 |
+
SHARED_TARGETS_CFG:
|
| 8 |
+
FILE_PATH: 'open_source_dataset/imagenet_class_name_CLIP_with_endoftext.pkl'
|
| 9 |
+
DISTRIBUTED: False
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
TASKS:
|
| 14 |
+
|
| 15 |
+
-
|
| 16 |
+
NAME: imagenet
|
| 17 |
+
DATASETS:
|
| 18 |
+
TRAIN: 'ImageNetDataset'
|
| 19 |
+
VAL: 'ImageNetDataset'
|
| 20 |
+
TASK_TYPE: 'image_classification'
|
| 21 |
+
DATASET_NAME: 'ImageNet1k'
|
| 22 |
+
TARGET_SET: ['ImageNet1k']
|
| 23 |
+
|
| 24 |
+
DATALOADER:
|
| 25 |
+
TRAIN_BATCH_SIZE: 64
|
| 26 |
+
TEST_BATCH_SIZE: 256
|
| 27 |
+
NUM_WORKERS: 4 # will be used as numworker for testing loader
|
| 28 |
+
FEATS_FOLDER: 'open_source_dataset/imagenet'
|
| 29 |
+
S3_PATH: 'cluster2:s3://imagenet'
|
| 30 |
+
ANNO_FOLDER: 'open_source_dataset/imagenet/meta'
|
| 31 |
+
SAMPLING_WEIGHT: 1.0
|
| 32 |
+
CLASS_NAME_FILE: 'open_source_dataset/imagenet_class_name.pkl'
|
| 33 |
+
MIXUP: 0.0
|
| 34 |
+
CUTMIX: 0.0
|
| 35 |
+
MIXUP_PROB: 1.0
|
| 36 |
+
MIXUP_SWITCH_PROB: 0.5
|
| 37 |
+
MIXUP_MODE: 'batch'
|
| 38 |
+
MIXUP_LABEL_SMOOTHING: 0.1
|
| 39 |
+
MODEL:
|
| 40 |
+
MAX_SEQ_LEN: -1
|
| 41 |
+
LABELS_NUM: 1000
|
| 42 |
+
TEMP_NAME: logit_scale_img_cls
|
| 43 |
+
LOSSES:
|
| 44 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 45 |
+
LOSS_WEIGHT: 1.0
|
| 46 |
+
REDUCTION: 'mean'
|
| 47 |
+
LABELSMOOTHING: 0.1
|
| 48 |
+
INFERENCE:
|
| 49 |
+
NAME: 'ImageNetEvaler'
|
| 50 |
+
ID_KEY: 'image_id'
|
| 51 |
+
VALUE: 'cls_logits'
|
| 52 |
+
VAL_ANNFILE: 'open_source_dataset/imagenet/meta/val.txt'
|
| 53 |
+
TEST_ANNFILE: ''
|
| 54 |
+
GENERATION_MODE: False
|
| 55 |
+
|
| 56 |
+
ENGINE:
|
| 57 |
+
NAME: 'UnifiedTrainer'
|
| 58 |
+
|
| 59 |
+
MODEL:
|
| 60 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 61 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 62 |
+
|
| 63 |
+
SHARE_LAYERNORM: True
|
| 64 |
+
BERT:
|
| 65 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 66 |
+
DROP_PATH_PROB: 0.1
|
| 67 |
+
DROP_PATH_PROB_FIXED: True
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
MODEL_EMA: False
|
| 71 |
+
MODEL_EMA_DECAY: 0.9999
|
| 72 |
+
|
| 73 |
+
MAEParamsInit: True
|
| 74 |
+
POSEMBEDFIX: True
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
IMG_INPUT_SIZE: 384
|
| 78 |
+
PATCH_SIZE: 16
|
| 79 |
+
POSEMBED_SCALE: !!python/object/apply:eval ["160/384"]
|
| 80 |
+
CHECKPOINT_FILETER: False
|
| 81 |
+
OLD_CHECKPONT: True
|
| 82 |
+
|
| 83 |
+
LAYER_SCALE: True
|
| 84 |
+
LAYER_SCALE_INIT: 1e-3
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
DATALOADER:
|
| 88 |
+
USE_WEIGHTED_SAMPLER: True
|
| 89 |
+
UNIFIED_DATASET: True
|
| 90 |
+
NUM_WORKERS: 16
|
| 91 |
+
|
| 92 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
####################################### Optimizer #######################################
|
| 97 |
+
SOLVER:
|
| 98 |
+
NAME: 'Adam'
|
| 99 |
+
TORCH_OPTIMIZER: True
|
| 100 |
+
PARAMS_SEPERATE: True
|
| 101 |
+
# PARAMS_GROUP: True
|
| 102 |
+
# EPOCH: 1
|
| 103 |
+
MAX_ITER: 40000
|
| 104 |
+
CHECKPOINT_PERIOD: 40000
|
| 105 |
+
EVAL_PERIOD: 2000
|
| 106 |
+
BASE_LR: 0.00002
|
| 107 |
+
BIAS_LR_FACTOR: 1.0
|
| 108 |
+
WEIGHT_DECAY: 0.000001
|
| 109 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 110 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 111 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 112 |
+
MOMENTUM: 0.9
|
| 113 |
+
DAMPENING: 0.0
|
| 114 |
+
NESTEROV: 0.0
|
| 115 |
+
BETAS: [0.9, 0.999]
|
| 116 |
+
EPS: 1e-6
|
| 117 |
+
GRAD_CLIP: 0.0
|
| 118 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 119 |
+
ACCUM_ITER: 0
|
| 120 |
+
AMP_FP16: True
|
| 121 |
+
APEX_FP16: False # dangerous
|
| 122 |
+
WRITE_PERIOD: 50
|
| 123 |
+
MIN_LOSS_SCLE: 2048.0
|
| 124 |
+
LOSS_SCALE_WINDOW: 200
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
####################################### lr scheduler #######################################
|
| 128 |
+
LR_SCHEDULER:
|
| 129 |
+
NAME: 'WarmupCosine'
|
| 130 |
+
WARMUP: 4000
|
| 131 |
+
MIN_LR: 0.000001
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
find_unused_parameters: true
|
configs/BERT_L12_H768_experiments/finetuning/k400_training.yaml
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "../base_model_bert_l12_h768.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
-
|
| 6 |
+
NAME: 'Kinetics400'
|
| 7 |
+
SHARED_TARGETS_CFG:
|
| 8 |
+
FILE_PATH: 'open_source_dataset/k400_class_name_CLIP_with_endoftext.pkl'
|
| 9 |
+
DISTRIBUTED: False
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
TASKS:
|
| 14 |
+
|
| 15 |
+
-
|
| 16 |
+
NAME: K400_retrieve
|
| 17 |
+
DATASETS:
|
| 18 |
+
TRAIN: 'VideoDataSet'
|
| 19 |
+
VAL: 'VideoDataSet'
|
| 20 |
+
TASK_TYPE: 'video_classification'
|
| 21 |
+
DATASET_NAME: 'K400'
|
| 22 |
+
TARGET_SET: ['Kinetics400']
|
| 23 |
+
DATALOADER:
|
| 24 |
+
TRAIN_BATCH_SIZE: 8 # 256
|
| 25 |
+
TEST_BATCH_SIZE: 4 # debug
|
| 26 |
+
NUM_WORKERS: 4 # debug 4
|
| 27 |
+
FEATS_FOLDER: 'open_source_dataset/K400_official'
|
| 28 |
+
ANNO_FOLDER: 'open_source_dataset/K400_official'
|
| 29 |
+
S3_PATH: 's3://K400/'
|
| 30 |
+
FRAMES_PER_CLIP: 8
|
| 31 |
+
STRIDE: 32
|
| 32 |
+
FILE_EXTENSION: ''
|
| 33 |
+
ANNO_FILE: 'annotation.json'
|
| 34 |
+
TIMESFORMER_AUG: True
|
| 35 |
+
SAMPLING_WEIGHT: 1.0
|
| 36 |
+
MULTI_VEIW_NUM: 4
|
| 37 |
+
MULTI_VEIW: 'v2'
|
| 38 |
+
MODEL:
|
| 39 |
+
MAX_SEQ_LEN: -1
|
| 40 |
+
TEMP_NAME: logit_scale_video_cls
|
| 41 |
+
LOSSES:
|
| 42 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 43 |
+
LOSS_WEIGHT: 1.0
|
| 44 |
+
INFERENCE:
|
| 45 |
+
NAME: 'MiTEvaler'
|
| 46 |
+
ID_KEY: 'video_name'
|
| 47 |
+
VALUE: 'label'
|
| 48 |
+
VAL_ANNFILE: 'open_source_dataset/K400_official/annotation.json'
|
| 49 |
+
TEST_ANNFILE: ''
|
| 50 |
+
GENERATION_MODE: False
|
| 51 |
+
NUM_VIEWS: 1
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
ENGINE:
|
| 55 |
+
NAME: 'UnifiedTrainer'
|
| 56 |
+
|
| 57 |
+
MODEL:
|
| 58 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 59 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 60 |
+
|
| 61 |
+
SHARE_LAYERNORM: True
|
| 62 |
+
BERT:
|
| 63 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 64 |
+
DROP_PATH_PROB: 0.1
|
| 65 |
+
DROP_PATH_PROB_FIXED: True
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
MODEL_EMA: False
|
| 69 |
+
MODEL_EMA_DECAY: 0.9999
|
| 70 |
+
|
| 71 |
+
MAEParamsInit: True
|
| 72 |
+
POSEMBEDFIX: True
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
IMG_INPUT_SIZE: 224
|
| 76 |
+
PATCH_SIZE: 16
|
| 77 |
+
|
| 78 |
+
POSEMBED_SCALE: !!python/object/apply:eval ["160/224"]
|
| 79 |
+
CHECKPOINT_FILETER: False
|
| 80 |
+
OLD_CHECKPONT: True
|
| 81 |
+
|
| 82 |
+
LAYER_SCALE: True
|
| 83 |
+
LAYER_SCALE_INIT: 1e-3
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
DATALOADER:
|
| 87 |
+
USE_WEIGHTED_SAMPLER: True
|
| 88 |
+
UNIFIED_DATASET: True
|
| 89 |
+
NUM_WORKERS: 16
|
| 90 |
+
|
| 91 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
####################################### Optimizer #######################################
|
| 96 |
+
SOLVER:
|
| 97 |
+
NAME: 'Adam'
|
| 98 |
+
TORCH_OPTIMIZER: True
|
| 99 |
+
PARAMS_SEPERATE: True
|
| 100 |
+
# PARAMS_GROUP: True
|
| 101 |
+
# EPOCH: 1
|
| 102 |
+
MAX_ITER: 40000
|
| 103 |
+
CHECKPOINT_PERIOD: 50000
|
| 104 |
+
EVAL_PERIOD: 2000
|
| 105 |
+
BASE_LR: 0.000005
|
| 106 |
+
BIAS_LR_FACTOR: 1.0
|
| 107 |
+
WEIGHT_DECAY: 0.0001
|
| 108 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 109 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 110 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 111 |
+
MOMENTUM: 0.9
|
| 112 |
+
DAMPENING: 0.0
|
| 113 |
+
NESTEROV: 0.0
|
| 114 |
+
BETAS: [0.9, 0.95]
|
| 115 |
+
EPS: 1e-6
|
| 116 |
+
GRAD_CLIP: 0.1
|
| 117 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 118 |
+
ACCUM_ITER: 0
|
| 119 |
+
AMP_FP16: True
|
| 120 |
+
APEX_FP16: False # dangerous
|
| 121 |
+
WRITE_PERIOD: 50
|
| 122 |
+
MIN_LOSS_SCLE: 2048.0
|
| 123 |
+
LOSS_SCALE_WINDOW: 200
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
####################################### lr scheduler #######################################
|
| 127 |
+
LR_SCHEDULER:
|
| 128 |
+
NAME: 'WarmupCosine'
|
| 129 |
+
WARMUP: 2000
|
| 130 |
+
MIN_LR: 0.000001
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
find_unused_parameters: true
|
configs/BERT_L12_H768_experiments/finetuning/mscoco_caption_finetuning.yaml
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "../base_model_bert_l12_h768.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
-
|
| 6 |
+
NAME: 'Vocab_Word'
|
| 7 |
+
SHARED_TARGETS_CFG:
|
| 8 |
+
FILE_PATH: 'open_source_dataset/vocabulary_CLIP_with_endoftext.pkl'
|
| 9 |
+
DISTRIBUTED: True
|
| 10 |
+
|
| 11 |
+
TASKS:
|
| 12 |
+
-
|
| 13 |
+
NAME: mscoco_caption
|
| 14 |
+
DATASETS:
|
| 15 |
+
TRAIN: 'ImageTextPairDataset'
|
| 16 |
+
# VAL: 'ImageTextPairDataset'
|
| 17 |
+
TEST: 'ImageTextPairDataset'
|
| 18 |
+
TASK_TYPE: 'image_caption'
|
| 19 |
+
DATASET_NAME: 'MSCOCO'
|
| 20 |
+
TARGET_SET: ['Vocab_Word']
|
| 21 |
+
DATALOADER:
|
| 22 |
+
TRAIN_BATCH_SIZE: 32
|
| 23 |
+
TEST_BATCH_SIZE: 8
|
| 24 |
+
NUM_WORKERS: 4
|
| 25 |
+
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 26 |
+
ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 27 |
+
S3_PATH: 's3://coco/'
|
| 28 |
+
SEQ_PER_SAMPLE: 1
|
| 29 |
+
CACHE_MODE: True
|
| 30 |
+
CIRCULAR_CACHE_MODE: False
|
| 31 |
+
ZIP_MODE: False
|
| 32 |
+
CACHE_ORIGIN_IMAGE: False
|
| 33 |
+
RANDOM_CAPTION: False
|
| 34 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 35 |
+
SAMPLING_WEIGHT: 1.0
|
| 36 |
+
TRANSFORM: 'clip_transforms'
|
| 37 |
+
RANDOM_MASK: True
|
| 38 |
+
MODEL:
|
| 39 |
+
MAX_SEQ_LEN: 30
|
| 40 |
+
EVAL_MAX_SEQ_LEN: 21
|
| 41 |
+
TEMP_NAME: logit_scale_caption
|
| 42 |
+
LOSSES:
|
| 43 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 44 |
+
LABELSMOOTHING: 0.1
|
| 45 |
+
LOSS_WEIGHT: 2.0
|
| 46 |
+
REDUCTION: 'mean'
|
| 47 |
+
DECODE_STRATEGY:
|
| 48 |
+
NAME: 'CaptionBeamSearcherV3'
|
| 49 |
+
BEAM_SIZE: 2
|
| 50 |
+
# LEN_PENALTY: 2.0
|
| 51 |
+
INFERENCE:
|
| 52 |
+
NAME: 'COCOEvaler'
|
| 53 |
+
VOCAB: 'CLIP'
|
| 54 |
+
ID_KEY: 'image_id'
|
| 55 |
+
VALUE: 'caption'
|
| 56 |
+
VAL_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_val5k.json'
|
| 57 |
+
TEST_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_test5k.json'
|
| 58 |
+
GENERATION_MODE: True
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
ENGINE:
|
| 64 |
+
NAME: 'UnifiedTrainer'
|
| 65 |
+
|
| 66 |
+
MODEL:
|
| 67 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 68 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 69 |
+
|
| 70 |
+
SHARE_LAYERNORM: True
|
| 71 |
+
BERT:
|
| 72 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 73 |
+
DROP_PATH_PROB: 0.2
|
| 74 |
+
DROP_PATH_PROB_FIXED: True
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
MODEL_EMA: False
|
| 78 |
+
MODEL_EMA_DECAY: 0.9999
|
| 79 |
+
|
| 80 |
+
MAEParamsInit: True
|
| 81 |
+
POSEMBEDFIX: True
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
IMG_INPUT_SIZE: 224
|
| 85 |
+
PATCH_SIZE: 16
|
| 86 |
+
|
| 87 |
+
POSEMBED_SCALE: !!python/object/apply:eval ["160/224"]
|
| 88 |
+
CHECKPOINT_FILETER: False
|
| 89 |
+
OLD_CHECKPONT: True
|
| 90 |
+
|
| 91 |
+
LAYER_SCALE: True
|
| 92 |
+
LAYER_SCALE_INIT: 1e-3
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
DATALOADER:
|
| 96 |
+
USE_WEIGHTED_SAMPLER: True
|
| 97 |
+
UNIFIED_DATASET: True
|
| 98 |
+
NUM_WORKERS: 16
|
| 99 |
+
|
| 100 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
####################################### Optimizer #######################################
|
| 105 |
+
SOLVER:
|
| 106 |
+
NAME: 'Adam'
|
| 107 |
+
TORCH_OPTIMIZER: True
|
| 108 |
+
PARAMS_SEPERATE: True
|
| 109 |
+
# PARAMS_GROUP: True
|
| 110 |
+
# EPOCH: 1
|
| 111 |
+
MAX_ITER: 10000
|
| 112 |
+
CHECKPOINT_PERIOD: 50000
|
| 113 |
+
EVAL_PERIOD: 500
|
| 114 |
+
BASE_LR: 0.00002
|
| 115 |
+
BIAS_LR_FACTOR: 1.0
|
| 116 |
+
WEIGHT_DECAY: 0.0001
|
| 117 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 118 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 119 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 120 |
+
MOMENTUM: 0.9
|
| 121 |
+
DAMPENING: 0.0
|
| 122 |
+
NESTEROV: 0.0
|
| 123 |
+
BETAS: [0.9, 0.95]
|
| 124 |
+
EPS: 1e-6
|
| 125 |
+
GRAD_CLIP: 0.1
|
| 126 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 127 |
+
ACCUM_ITER: 0
|
| 128 |
+
AMP_FP16: True
|
| 129 |
+
APEX_FP16: False # dangerous
|
| 130 |
+
|
| 131 |
+
WRITE_PERIOD: 50
|
| 132 |
+
MIN_LOSS_SCLE: 2048.0
|
| 133 |
+
# BF16: False # True
|
| 134 |
+
# ZEROSTAGE: 2
|
| 135 |
+
|
| 136 |
+
LOSS_SCALE_WINDOW: 200
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
####################################### lr scheduler #######################################
|
| 144 |
+
LR_SCHEDULER:
|
| 145 |
+
NAME: 'WarmupCosine'
|
| 146 |
+
WARMUP: 500
|
| 147 |
+
MIN_LR: 0.000001
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
find_unused_parameters: true
|
configs/BERT_L12_H768_experiments/finetuning/mscoco_retrieval_finetuning.yaml
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "../base_model_bert_l12_h768.yaml"
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
TASKS:
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
-
|
| 9 |
+
NAME: mscoco_retrieve
|
| 10 |
+
DATASETS:
|
| 11 |
+
TRAIN: 'ImageTextPairDataset'
|
| 12 |
+
TEST: 'ImageTextPairDataset'
|
| 13 |
+
TASK_TYPE: 'image_retrieval'
|
| 14 |
+
DATASET_NAME: 'MSCOCO'
|
| 15 |
+
DATALOADER:
|
| 16 |
+
TRAIN_BATCH_SIZE: 256
|
| 17 |
+
TEST_BATCH_SIZE: 128
|
| 18 |
+
NUM_WORKERS: 2
|
| 19 |
+
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 20 |
+
ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 21 |
+
S3_PATH: 's3://coco/'
|
| 22 |
+
SEQ_PER_SAMPLE: 1
|
| 23 |
+
CACHE_MODE: True
|
| 24 |
+
CIRCULAR_CACHE_MODE: False
|
| 25 |
+
ZIP_MODE: False
|
| 26 |
+
CACHE_ORIGIN_IMAGE: False
|
| 27 |
+
RANDOM_CAPTION: False
|
| 28 |
+
AS_NUMPY_AS_POSSIBLE: False
|
| 29 |
+
SAMPLING_WEIGHT: 0.5
|
| 30 |
+
TRANSFORM: 'clip_transforms'
|
| 31 |
+
MODEL:
|
| 32 |
+
MAX_SEQ_LEN: 30
|
| 33 |
+
TEMP_NAME: logit_scale_retrieve
|
| 34 |
+
LOSSES:
|
| 35 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 36 |
+
LABELSMOOTHING: 0.1
|
| 37 |
+
LOSS_WEIGHT: 1.0
|
| 38 |
+
REDUCTION: 'mean'
|
| 39 |
+
INFERENCE:
|
| 40 |
+
NAME: 'RetrievalEvaler'
|
| 41 |
+
GENERATION_MODE: False
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
ENGINE:
|
| 47 |
+
NAME: 'UnifiedTrainer'
|
| 48 |
+
|
| 49 |
+
MODEL:
|
| 50 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 51 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 52 |
+
|
| 53 |
+
SHARE_LAYERNORM: True
|
| 54 |
+
BERT:
|
| 55 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 56 |
+
DROP_PATH_PROB: 0.2
|
| 57 |
+
DROP_PATH_PROB_FIXED: True
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
MODEL_EMA: False
|
| 61 |
+
MODEL_EMA_DECAY: 0.9999
|
| 62 |
+
|
| 63 |
+
MAEParamsInit: True
|
| 64 |
+
POSEMBEDFIX: True
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
IMG_INPUT_SIZE: 224
|
| 68 |
+
PATCH_SIZE: 16
|
| 69 |
+
|
| 70 |
+
POSEMBED_SCALE: !!python/object/apply:eval ["160/224"]
|
| 71 |
+
CHECKPOINT_FILETER: False
|
| 72 |
+
OLD_CHECKPONT: True
|
| 73 |
+
|
| 74 |
+
LAYER_SCALE: True
|
| 75 |
+
LAYER_SCALE_INIT: 1e-3
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
DATALOADER:
|
| 79 |
+
USE_WEIGHTED_SAMPLER: True
|
| 80 |
+
UNIFIED_DATASET: True
|
| 81 |
+
NUM_WORKERS: 16
|
| 82 |
+
|
| 83 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
####################################### Optimizer #######################################
|
| 88 |
+
SOLVER:
|
| 89 |
+
NAME: 'Adam'
|
| 90 |
+
TORCH_OPTIMIZER: True
|
| 91 |
+
PARAMS_SEPERATE: True
|
| 92 |
+
# PARAMS_GROUP: True
|
| 93 |
+
# EPOCH: 1
|
| 94 |
+
MAX_ITER: 10000
|
| 95 |
+
CHECKPOINT_PERIOD: 50000
|
| 96 |
+
EVAL_PERIOD: 500
|
| 97 |
+
BASE_LR: 0.000005
|
| 98 |
+
BIAS_LR_FACTOR: 1.0
|
| 99 |
+
WEIGHT_DECAY: 0.0001
|
| 100 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 101 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 102 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 103 |
+
MOMENTUM: 0.9
|
| 104 |
+
DAMPENING: 0.0
|
| 105 |
+
NESTEROV: 0.0
|
| 106 |
+
BETAS: [0.9, 0.95]
|
| 107 |
+
EPS: 1e-6
|
| 108 |
+
GRAD_CLIP: 0.1
|
| 109 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 110 |
+
ACCUM_ITER: 0
|
| 111 |
+
AMP_FP16: True
|
| 112 |
+
APEX_FP16: False # dangerous
|
| 113 |
+
WRITE_PERIOD: 50
|
| 114 |
+
MIN_LOSS_SCLE: 2048.0
|
| 115 |
+
# BF16: False # True
|
| 116 |
+
# ZEROSTAGE: 2
|
| 117 |
+
|
| 118 |
+
LOSS_SCALE_WINDOW: 200
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
####################################### lr scheduler #######################################
|
| 126 |
+
LR_SCHEDULER:
|
| 127 |
+
NAME: 'WarmupCosine'
|
| 128 |
+
WARMUP: 500
|
| 129 |
+
MIN_LR: 0.000001
|
| 130 |
+
|
| 131 |
+
find_unused_parameters: true
|
| 132 |
+
|
configs/BERT_L12_H768_experiments/finetuning/msvd_caption_finetuning.yaml
ADDED
|
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "../base_model_bert_l12_h768.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
-
|
| 6 |
+
NAME: 'Vocab_Word'
|
| 7 |
+
SHARED_TARGETS_CFG:
|
| 8 |
+
FILE_PATH: 'open_source_dataset/vocabulary_CLIP_with_endoftext.pkl'
|
| 9 |
+
DISTRIBUTED: True
|
| 10 |
+
|
| 11 |
+
TASKS:
|
| 12 |
+
-
|
| 13 |
+
NAME: msvd_caption
|
| 14 |
+
DATASETS:
|
| 15 |
+
TRAIN: 'MSVDDataset'
|
| 16 |
+
TEST: 'MSVDDataset'
|
| 17 |
+
TASK_TYPE: 'video_caption'
|
| 18 |
+
DATASET_NAME: 'MSVDDataset'
|
| 19 |
+
TARGET_SET: ['Vocab_Word']
|
| 20 |
+
DATALOADER:
|
| 21 |
+
TRAIN_BATCH_SIZE: 2 #6
|
| 22 |
+
TEST_BATCH_SIZE: 4
|
| 23 |
+
NUM_WORKERS: 4
|
| 24 |
+
FEATS_FOLDER: 'open_source_dataset/msvd_dataset/YouTubeClips'
|
| 25 |
+
ANNO_FOLDER: 'open_source_dataset/msvd_dataset/new_annotations'
|
| 26 |
+
STRIDE: 32
|
| 27 |
+
FRAMES_PER_CLIP: 4
|
| 28 |
+
S3_PATH: 's3://msvd/YouTubeClips/'
|
| 29 |
+
TIMESFORMER_AUG: True
|
| 30 |
+
SAMPLING_WEIGHT: 1.0
|
| 31 |
+
MODEL:
|
| 32 |
+
MAX_SEQ_LEN: 30
|
| 33 |
+
EVAL_MAX_SEQ_LEN: 21
|
| 34 |
+
TEMP_NAME: logit_scale_caption
|
| 35 |
+
LOSSES:
|
| 36 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 37 |
+
# NAMES: ['CrossEntropy', 'Accuracy']
|
| 38 |
+
LABELSMOOTHING: 0.1
|
| 39 |
+
LOSS_WEIGHT: 1.0
|
| 40 |
+
REDUCTION: 'mean'
|
| 41 |
+
DECODE_STRATEGY:
|
| 42 |
+
NAME: 'CaptionBeamSearcherV3'
|
| 43 |
+
BEAM_SIZE: 2
|
| 44 |
+
# LEN_PENALTY: 2.0
|
| 45 |
+
INFERENCE:
|
| 46 |
+
NAME: 'COCOEvaler'
|
| 47 |
+
VOCAB: 'CLIP'
|
| 48 |
+
ID_KEY: 'image_id'
|
| 49 |
+
VALUE: 'caption'
|
| 50 |
+
VAL_ANNFILE: 'open_source_dataset/msvd_dataset/new_annotations/caption_msvd_val_cocostyle.json'
|
| 51 |
+
TEST_ANNFILE: 'open_source_dataset/msvd_dataset/new_annotations/caption_msvd_test_cocostyle.json'
|
| 52 |
+
GENERATION_MODE: True
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
ENGINE:
|
| 58 |
+
NAME: 'UnifiedTrainer'
|
| 59 |
+
|
| 60 |
+
MODEL:
|
| 61 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 62 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 63 |
+
|
| 64 |
+
SHARE_LAYERNORM: True
|
| 65 |
+
BERT:
|
| 66 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 67 |
+
DROP_PATH_PROB: 0.1
|
| 68 |
+
DROP_PATH_PROB_FIXED: True
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
MODEL_EMA: False
|
| 72 |
+
MODEL_EMA_DECAY: 0.9999
|
| 73 |
+
|
| 74 |
+
MAEParamsInit: True
|
| 75 |
+
POSEMBEDFIX: True
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
IMG_INPUT_SIZE: 224
|
| 79 |
+
PATCH_SIZE: 16
|
| 80 |
+
|
| 81 |
+
POSEMBED_SCALE: !!python/object/apply:eval ["160/224"]
|
| 82 |
+
CHECKPOINT_FILETER: False
|
| 83 |
+
OLD_CHECKPONT: True
|
| 84 |
+
|
| 85 |
+
LAYER_SCALE: True
|
| 86 |
+
LAYER_SCALE_INIT: 1e-3
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
DATALOADER:
|
| 90 |
+
USE_WEIGHTED_SAMPLER: True
|
| 91 |
+
UNIFIED_DATASET: True
|
| 92 |
+
NUM_WORKERS: 16
|
| 93 |
+
|
| 94 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
####################################### Optimizer #######################################
|
| 99 |
+
SOLVER:
|
| 100 |
+
NAME: 'Adam'
|
| 101 |
+
TORCH_OPTIMIZER: True
|
| 102 |
+
PARAMS_SEPERATE: True
|
| 103 |
+
# PARAMS_GROUP: True
|
| 104 |
+
# EPOCH: 1
|
| 105 |
+
MAX_ITER: 1000
|
| 106 |
+
CHECKPOINT_PERIOD: 500
|
| 107 |
+
EVAL_PERIOD: 200
|
| 108 |
+
BASE_LR: 0.00002
|
| 109 |
+
BIAS_LR_FACTOR: 1.0
|
| 110 |
+
WEIGHT_DECAY: 0.0001
|
| 111 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 112 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 113 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 114 |
+
MOMENTUM: 0.9
|
| 115 |
+
DAMPENING: 0.0
|
| 116 |
+
NESTEROV: 0.0
|
| 117 |
+
BETAS: [0.9, 0.95]
|
| 118 |
+
EPS: 1e-6
|
| 119 |
+
GRAD_CLIP: 0.1
|
| 120 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 121 |
+
ACCUM_ITER: 0
|
| 122 |
+
AMP_FP16: True
|
| 123 |
+
APEX_FP16: False # dangerous
|
| 124 |
+
|
| 125 |
+
WRITE_PERIOD: 50
|
| 126 |
+
MIN_LOSS_SCLE: 2048.0
|
| 127 |
+
# BF16: False # True
|
| 128 |
+
# ZEROSTAGE: 2
|
| 129 |
+
|
| 130 |
+
LOSS_SCALE_WINDOW: 200
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
####################################### lr scheduler #######################################
|
| 138 |
+
LR_SCHEDULER:
|
| 139 |
+
NAME: 'WarmupCosine'
|
| 140 |
+
WARMUP: 100
|
| 141 |
+
MIN_LR: 0.000001
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
find_unused_parameters: true
|
configs/BERT_L12_H768_experiments/finetuning/msvd_retrieval_finetuning.yaml
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "../base_model_bert_l12_h768.yaml"
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
TASKS:
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
-
|
| 9 |
+
NAME: msvd_retrieval
|
| 10 |
+
DATASETS:
|
| 11 |
+
TRAIN: 'MSVDDataset'
|
| 12 |
+
TEST: 'MSVDDataset'
|
| 13 |
+
TASK_TYPE: 'video_retrieval'
|
| 14 |
+
DATASET_NAME: 'MSVDDataset'
|
| 15 |
+
# TARGET_SET: ['Vocab_Word']
|
| 16 |
+
DATALOADER:
|
| 17 |
+
TRAIN_BATCH_SIZE: 16
|
| 18 |
+
TEST_BATCH_SIZE: 8
|
| 19 |
+
NUM_WORKERS: 8
|
| 20 |
+
FEATS_FOLDER: 'open_source_dataset/msvd_dataset/YouTubeClips'
|
| 21 |
+
ANNO_FOLDER: 'open_source_dataset/msvd_dataset/new_annotations'
|
| 22 |
+
STRIDE: 32
|
| 23 |
+
FRAMES_PER_CLIP: 4
|
| 24 |
+
S3_PATH: 's3://msvd/YouTubeClips/'
|
| 25 |
+
TIMESFORMER_AUG: True
|
| 26 |
+
SAMPLING_WEIGHT: 1.0
|
| 27 |
+
MODEL:
|
| 28 |
+
MAX_SEQ_LEN: 30
|
| 29 |
+
TEMP_NAME: logit_scale_retrieve
|
| 30 |
+
LOSSES:
|
| 31 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 32 |
+
LABELSMOOTHING: 0.1
|
| 33 |
+
LOSS_WEIGHT: 1.0
|
| 34 |
+
REDUCTION: 'mean'
|
| 35 |
+
INFERENCE:
|
| 36 |
+
NAME: 'RetrievalEvaler'
|
| 37 |
+
GENERATION_MODE: False
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
ENGINE:
|
| 41 |
+
NAME: 'UnifiedTrainer'
|
| 42 |
+
|
| 43 |
+
MODEL:
|
| 44 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 45 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 46 |
+
|
| 47 |
+
VIDEO_EMBED:
|
| 48 |
+
MAX_FRAMES: 8
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
SHARE_LAYERNORM: True
|
| 52 |
+
BERT:
|
| 53 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 54 |
+
DROP_PATH_PROB: 0.1
|
| 55 |
+
DROP_PATH_PROB_FIXED: True
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
MODEL_EMA: False
|
| 59 |
+
MODEL_EMA_DECAY: 0.9999
|
| 60 |
+
|
| 61 |
+
MAEParamsInit: True
|
| 62 |
+
POSEMBEDFIX: True
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
IMG_INPUT_SIZE: 224
|
| 66 |
+
PATCH_SIZE: 16
|
| 67 |
+
|
| 68 |
+
# POSEMBED_SCALE: !!python/object/apply:eval ["160/224"]
|
| 69 |
+
CHECKPOINT_FILETER: False
|
| 70 |
+
OLD_CHECKPONT: True
|
| 71 |
+
|
| 72 |
+
LAYER_SCALE: True
|
| 73 |
+
LAYER_SCALE_INIT: 1e-3
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
DATALOADER:
|
| 77 |
+
USE_WEIGHTED_SAMPLER: True
|
| 78 |
+
UNIFIED_DATASET: True
|
| 79 |
+
NUM_WORKERS: 8
|
| 80 |
+
|
| 81 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
####################################### Optimizer #######################################
|
| 86 |
+
SOLVER:
|
| 87 |
+
NAME: 'Adam'
|
| 88 |
+
TORCH_OPTIMIZER: True
|
| 89 |
+
PARAMS_SEPERATE: True
|
| 90 |
+
# PARAMS_GROUP: True
|
| 91 |
+
# EPOCH: 1
|
| 92 |
+
MAX_ITER: 2000
|
| 93 |
+
CHECKPOINT_PERIOD: 5000
|
| 94 |
+
EVAL_PERIOD: 200
|
| 95 |
+
BASE_LR: 0.000005
|
| 96 |
+
BIAS_LR_FACTOR: 1.0
|
| 97 |
+
WEIGHT_DECAY: 0.0001
|
| 98 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 99 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 100 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 101 |
+
MOMENTUM: 0.9
|
| 102 |
+
DAMPENING: 0.0
|
| 103 |
+
NESTEROV: 0.0
|
| 104 |
+
BETAS: [0.9, 0.95]
|
| 105 |
+
EPS: 1e-6
|
| 106 |
+
GRAD_CLIP: 0.1
|
| 107 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 108 |
+
ACCUM_ITER: 0
|
| 109 |
+
AMP_FP16: True
|
| 110 |
+
APEX_FP16: False # dangerous
|
| 111 |
+
WRITE_PERIOD: 50
|
| 112 |
+
MIN_LOSS_SCLE: 2048.0
|
| 113 |
+
# BF16: False # True
|
| 114 |
+
# ZEROSTAGE: 2
|
| 115 |
+
|
| 116 |
+
LOSS_SCALE_WINDOW: 200
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
####################################### lr scheduler #######################################
|
| 123 |
+
LR_SCHEDULER:
|
| 124 |
+
NAME: 'WarmupCosine'
|
| 125 |
+
WARMUP: 200
|
| 126 |
+
MIN_LR: 0.000001
|
| 127 |
+
|
| 128 |
+
find_unused_parameters: true
|
| 129 |
+
|
configs/BERT_L12_H768_experiments/finetuning/msvd_retrieval_finetuning_frames8.yaml
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "../base_model_bert_l12_h768.yaml"
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
TASKS:
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
-
|
| 9 |
+
NAME: msvd_retrieval
|
| 10 |
+
DATASETS:
|
| 11 |
+
TRAIN: 'MSVDDataset'
|
| 12 |
+
TEST: 'MSVDDataset'
|
| 13 |
+
TASK_TYPE: 'video_retrieval'
|
| 14 |
+
DATASET_NAME: 'MSVDDataset'
|
| 15 |
+
# TARGET_SET: ['Vocab_Word']
|
| 16 |
+
DATALOADER:
|
| 17 |
+
TRAIN_BATCH_SIZE: 8
|
| 18 |
+
TEST_BATCH_SIZE: 8
|
| 19 |
+
NUM_WORKERS: 4
|
| 20 |
+
FEATS_FOLDER: 'open_source_dataset/msvd_dataset/YouTubeClips'
|
| 21 |
+
ANNO_FOLDER: 'open_source_dataset/msvd_dataset/new_annotations'
|
| 22 |
+
STRIDE: 32
|
| 23 |
+
FRAMES_PER_CLIP: 8
|
| 24 |
+
S3_PATH: 's3://msvd/YouTubeClips/'
|
| 25 |
+
TIMESFORMER_AUG: True
|
| 26 |
+
SAMPLING_WEIGHT: 1.0
|
| 27 |
+
MODEL:
|
| 28 |
+
MAX_SEQ_LEN: 30
|
| 29 |
+
TEMP_NAME: logit_scale_retrieve
|
| 30 |
+
LOSSES:
|
| 31 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 32 |
+
LABELSMOOTHING: 0.1
|
| 33 |
+
LOSS_WEIGHT: 1.0
|
| 34 |
+
REDUCTION: 'mean'
|
| 35 |
+
INFERENCE:
|
| 36 |
+
NAME: 'RetrievalEvaler'
|
| 37 |
+
GENERATION_MODE: False
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
ENGINE:
|
| 41 |
+
NAME: 'UnifiedTrainer'
|
| 42 |
+
|
| 43 |
+
MODEL:
|
| 44 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 45 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 46 |
+
|
| 47 |
+
SHARE_LAYERNORM: True
|
| 48 |
+
BERT:
|
| 49 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 50 |
+
DROP_PATH_PROB: 0.1
|
| 51 |
+
DROP_PATH_PROB_FIXED: True
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
MODEL_EMA: False
|
| 55 |
+
MODEL_EMA_DECAY: 0.9999
|
| 56 |
+
|
| 57 |
+
MAEParamsInit: True
|
| 58 |
+
POSEMBEDFIX: True
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
IMG_INPUT_SIZE: 224
|
| 62 |
+
PATCH_SIZE: 16
|
| 63 |
+
|
| 64 |
+
POSEMBED_SCALE: !!python/object/apply:eval ["160/224"]
|
| 65 |
+
CHECKPOINT_FILETER: False
|
| 66 |
+
OLD_CHECKPONT: True
|
| 67 |
+
|
| 68 |
+
LAYER_SCALE: True
|
| 69 |
+
LAYER_SCALE_INIT: 1e-3
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
DATALOADER:
|
| 73 |
+
USE_WEIGHTED_SAMPLER: True
|
| 74 |
+
UNIFIED_DATASET: True
|
| 75 |
+
NUM_WORKERS: 16
|
| 76 |
+
|
| 77 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
####################################### Optimizer #######################################
|
| 82 |
+
SOLVER:
|
| 83 |
+
NAME: 'Adam'
|
| 84 |
+
TORCH_OPTIMIZER: True
|
| 85 |
+
PARAMS_SEPERATE: True
|
| 86 |
+
# PARAMS_GROUP: True
|
| 87 |
+
# EPOCH: 1
|
| 88 |
+
MAX_ITER: 5000
|
| 89 |
+
CHECKPOINT_PERIOD: 50000
|
| 90 |
+
EVAL_PERIOD: 500
|
| 91 |
+
BASE_LR: 0.000005
|
| 92 |
+
BIAS_LR_FACTOR: 1.0
|
| 93 |
+
WEIGHT_DECAY: 0.0001
|
| 94 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 95 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 96 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 97 |
+
MOMENTUM: 0.9
|
| 98 |
+
DAMPENING: 0.0
|
| 99 |
+
NESTEROV: 0.0
|
| 100 |
+
BETAS: [0.9, 0.95]
|
| 101 |
+
EPS: 1e-6
|
| 102 |
+
GRAD_CLIP: 0.1
|
| 103 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 104 |
+
ACCUM_ITER: 0
|
| 105 |
+
AMP_FP16: True
|
| 106 |
+
APEX_FP16: False # dangerous
|
| 107 |
+
WRITE_PERIOD: 50
|
| 108 |
+
MIN_LOSS_SCLE: 2048.0
|
| 109 |
+
# BF16: False # True
|
| 110 |
+
# ZEROSTAGE: 2
|
| 111 |
+
|
| 112 |
+
LOSS_SCALE_WINDOW: 200
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
####################################### lr scheduler #######################################
|
| 119 |
+
LR_SCHEDULER:
|
| 120 |
+
NAME: 'WarmupCosine'
|
| 121 |
+
WARMUP: 200
|
| 122 |
+
MIN_LR: 0.000001
|
| 123 |
+
|
| 124 |
+
find_unused_parameters: true
|
| 125 |
+
|
configs/BERT_L12_H768_experiments/finetuning/vqa_finetuning_debug.yaml
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "../base_model_bert_l12_h768.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
-
|
| 7 |
+
NAME: 'VQA_Answer'
|
| 8 |
+
SHARED_TARGETS_CFG:
|
| 9 |
+
FILE_PATH: 'open_source_dataset/VQA_Answers_CLIP_with_endoftext.pkl'
|
| 10 |
+
DISTRIBUTED: True
|
| 11 |
+
|
| 12 |
+
TASKS:
|
| 13 |
+
-
|
| 14 |
+
NAME: vqa
|
| 15 |
+
DATASETS:
|
| 16 |
+
TRAIN: 'VQADataset'
|
| 17 |
+
VAL: 'VQADataset'
|
| 18 |
+
# TEST: 'VQADataset'
|
| 19 |
+
DATASET_NAME: 'VQA'
|
| 20 |
+
TASK_TYPE: 'vqa'
|
| 21 |
+
TARGET_SET: ['VQA_Answer']
|
| 22 |
+
DATALOADER:
|
| 23 |
+
TRAIN_BATCH_SIZE: 64
|
| 24 |
+
TEST_BATCH_SIZE: 128
|
| 25 |
+
NUM_WORKERS: 2
|
| 26 |
+
FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 27 |
+
ANNO_FOLDER: 'open_source_dataset/VQA'
|
| 28 |
+
SEQ_PER_SAMPLE: 1
|
| 29 |
+
MAX_FEAT_NUM: 51
|
| 30 |
+
SAMPLING_WEIGHT: 1.0
|
| 31 |
+
TRANSFORM: 'clip_transforms'
|
| 32 |
+
DO_AS_GEN: True
|
| 33 |
+
SINGLE_CLASS: True
|
| 34 |
+
MODEL:
|
| 35 |
+
MAX_SEQ_LEN: 23
|
| 36 |
+
TEMP_NAME: logit_scale_downstream
|
| 37 |
+
LOSSES:
|
| 38 |
+
# not single class
|
| 39 |
+
# NAMES: ['BCEWithLogits']
|
| 40 |
+
# LOSS_WEIGHT: 0.05
|
| 41 |
+
# for single class
|
| 42 |
+
NAMES: ['CrossEntropy', 'Accuracy']
|
| 43 |
+
LOSS_WEIGHT: 0.1
|
| 44 |
+
INFERENCE:
|
| 45 |
+
VOCAB: 'CLIP'
|
| 46 |
+
NAME: 'VQAEvaler'
|
| 47 |
+
ID_KEY: 'question_id'
|
| 48 |
+
VALUE: 'answer'
|
| 49 |
+
VAL_ANNFILE: 'open_source_dataset/VQA/val_target.pkl'
|
| 50 |
+
TEST_ANNFILE: ''
|
| 51 |
+
GENERATION_MODE: False
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
######################################### Engine #########################################
|
| 55 |
+
ENGINE:
|
| 56 |
+
NAME: 'UnifiedTrainer'
|
| 57 |
+
|
| 58 |
+
MODEL:
|
| 59 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 60 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 61 |
+
|
| 62 |
+
BERT:
|
| 63 |
+
DROP_PATH_PROB: 0.1
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
MODEL_EMA: False
|
| 67 |
+
MODEL_EMA_DECAY: 0.9999
|
| 68 |
+
|
| 69 |
+
MAEParamsInit: True
|
| 70 |
+
POSEMBEDFIX: True
|
| 71 |
+
|
| 72 |
+
TEMP_NAME: logit_scale_downstream
|
| 73 |
+
PRED_TEMPERATURE: 0.03
|
| 74 |
+
LEARN_TEMP: False
|
| 75 |
+
CLS_TOKEN: True
|
| 76 |
+
|
| 77 |
+
IMG_INPUT_SIZE: 224
|
| 78 |
+
PATCH_SIZE: 16
|
| 79 |
+
|
| 80 |
+
POSEMBED_SCALE: !!python/object/apply:eval ["160/224"]
|
| 81 |
+
CHECKPOINT_FILETER: False
|
| 82 |
+
OLD_CHECKPONT: True
|
| 83 |
+
|
| 84 |
+
LAYER_SCALE: True
|
| 85 |
+
LAYER_SCALE_INIT: 1e-3
|
| 86 |
+
|
| 87 |
+
DATALOADER:
|
| 88 |
+
USE_WEIGHTED_SAMPLER: True
|
| 89 |
+
UNIFIED_DATASET: True
|
| 90 |
+
|
| 91 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 92 |
+
|
| 93 |
+
####################################### Optimizer #######################################
|
| 94 |
+
SOLVER:
|
| 95 |
+
NAME: 'Adam'
|
| 96 |
+
# EPOCH: 1
|
| 97 |
+
MAX_ITER: 20000
|
| 98 |
+
CHECKPOINT_PERIOD: 1000
|
| 99 |
+
EVAL_PERIOD: 1000
|
| 100 |
+
CHECKPOINT_MAX_SAVE: 2
|
| 101 |
+
BASE_LR: 0.00004
|
| 102 |
+
BIAS_LR_FACTOR: 1.0
|
| 103 |
+
WEIGHT_DECAY: 0.05
|
| 104 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 105 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 106 |
+
MOMENTUM: 0.9
|
| 107 |
+
DAMPENING: 0.0
|
| 108 |
+
NESTEROV: 0.0
|
| 109 |
+
BETAS: [0.9, 0.999]
|
| 110 |
+
EPS: 1e-8
|
| 111 |
+
GRAD_CLIP: 0.0
|
| 112 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 113 |
+
ACCUM_ITER: 0
|
| 114 |
+
AMP_FP16: True
|
| 115 |
+
APEX_FP16: False # dangerous
|
| 116 |
+
WRITE_PERIOD: 50
|
| 117 |
+
MIN_LOSS_SCLE: 2048.0
|
| 118 |
+
LOSS_SCALE_WINDOW: 500
|
| 119 |
+
|
| 120 |
+
####################################### lr scheduler #######################################
|
| 121 |
+
LR_SCHEDULER:
|
| 122 |
+
NAME: 'WarmupCosine'
|
| 123 |
+
WARMUP: 1000
|
| 124 |
+
MIN_LR: 0.00000001
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
find_unused_parameters: true
|
configs/BERT_L12_H768_experiments/in1k_training.yaml
ADDED
|
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base_model_bert_l12_h768.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
|
| 5 |
+
-
|
| 6 |
+
NAME: 'ImageNet1k'
|
| 7 |
+
SHARED_TARGETS_CFG:
|
| 8 |
+
FILE_PATH: 'open_source_dataset/imagenet_class_name_CLIP_with_endoftext.pkl'
|
| 9 |
+
DISTRIBUTED: False
|
| 10 |
+
|
| 11 |
+
# -
|
| 12 |
+
# NAME: 'Vocab_Word'
|
| 13 |
+
# SHARED_TARGETS_CFG:
|
| 14 |
+
# FILE_PATH: 'open_source_dataset/vocabulary_CLIP_with_endoftext.pkl'
|
| 15 |
+
# DISTRIBUTED: True
|
| 16 |
+
|
| 17 |
+
TASKS:
|
| 18 |
+
|
| 19 |
+
-
|
| 20 |
+
NAME: imagenet
|
| 21 |
+
DATASETS:
|
| 22 |
+
TRAIN: 'ImageNetDataset'
|
| 23 |
+
VAL: 'ImageNetDataset'
|
| 24 |
+
TASK_TYPE: 'image_classification'
|
| 25 |
+
DATASET_NAME: 'ImageNet1k'
|
| 26 |
+
TARGET_SET: ['ImageNet1k']
|
| 27 |
+
|
| 28 |
+
DATALOADER:
|
| 29 |
+
TRAIN_BATCH_SIZE: 128
|
| 30 |
+
TEST_BATCH_SIZE: 128
|
| 31 |
+
NUM_WORKERS: 4 # will be used as numworker for testing loader
|
| 32 |
+
FEATS_FOLDER: 'open_source_dataset/imagenet'
|
| 33 |
+
S3_PATH: 'cluster2:s3://imagenet'
|
| 34 |
+
ANNO_FOLDER: 'open_source_dataset/imagenet/meta'
|
| 35 |
+
SAMPLING_WEIGHT: 1.0
|
| 36 |
+
CLASS_NAME_FILE: 'open_source_dataset/imagenet_class_name.pkl'
|
| 37 |
+
MIXUP: 0.8
|
| 38 |
+
CUTMIX: 1.0
|
| 39 |
+
MIXUP_PROB: 1.0
|
| 40 |
+
MIXUP_SWITCH_PROB: 0.5
|
| 41 |
+
MIXUP_MODE: 'batch'
|
| 42 |
+
MIXUP_LABEL_SMOOTHING: 0.1
|
| 43 |
+
MODEL:
|
| 44 |
+
MAX_SEQ_LEN: -1
|
| 45 |
+
LABELS_NUM: 1000
|
| 46 |
+
TEMP_NAME: logit_scale_img_cls
|
| 47 |
+
LOSSES:
|
| 48 |
+
NAMES: ['SoftTargetCrossEntropy', 'Accuracy']
|
| 49 |
+
LOSS_WEIGHT: 1.0
|
| 50 |
+
REDUCTION: 'mean'
|
| 51 |
+
# LOSS_FP32: True
|
| 52 |
+
INFERENCE:
|
| 53 |
+
NAME: 'ImageNetEvaler'
|
| 54 |
+
ID_KEY: 'image_id'
|
| 55 |
+
VALUE: 'cls_logits'
|
| 56 |
+
VAL_ANNFILE: 'open_source_dataset/imagenet/meta/val.txt'
|
| 57 |
+
TEST_ANNFILE: ''
|
| 58 |
+
GENERATION_MODE: False
|
| 59 |
+
|
| 60 |
+
# -
|
| 61 |
+
# NAME: bookswiki_pretrain
|
| 62 |
+
# DATASETS:
|
| 63 |
+
# TRAIN: 'GeneralCorpusDataset'
|
| 64 |
+
# TASK_TYPE: 'text_mlm'
|
| 65 |
+
# DATASET_NAME: 'BooksWiki'
|
| 66 |
+
# TARGET_SET: ['Vocab_Word']
|
| 67 |
+
# DATALOADER:
|
| 68 |
+
# TRAIN_BATCH_SIZE: 128
|
| 69 |
+
# TEST_BATCH_SIZE: 32
|
| 70 |
+
# NUM_WORKERS: 2
|
| 71 |
+
# ANNO_FOLDER: 'open_source_dataset/bert_pretrain_data/bookswiki'
|
| 72 |
+
# # ANNO_FOLDER: 'open_source_dataset/bert_pretrain_data/bookswiki'
|
| 73 |
+
# SEQ_PER_SAMPLE: 1
|
| 74 |
+
# SAMPLER: NodeDistributed
|
| 75 |
+
# CACHE_MODE: True
|
| 76 |
+
# SEQ_PER_SAMPLE: 128
|
| 77 |
+
# MIN_SEQ_PER_SAMPLE: 128
|
| 78 |
+
# APPEND_EOS: True
|
| 79 |
+
# ONE_STREAM: False
|
| 80 |
+
# SAMPLING_WEIGHT: 1.0
|
| 81 |
+
# RANDOM_MASK: True
|
| 82 |
+
# MODEL:
|
| 83 |
+
# MAX_SEQ_LEN: 128
|
| 84 |
+
# TEMP_NAME: logit_scale_text_mlm
|
| 85 |
+
# LOSSES:
|
| 86 |
+
# NAMES: ['CrossEntropy', 'Accuracy']
|
| 87 |
+
# LOSS_WEIGHT: 0.33333
|
| 88 |
+
# REDUCTION: 'mean'
|
| 89 |
+
# INFERENCE:
|
| 90 |
+
# VOCAB: 'CLIP'
|
| 91 |
+
# GENERATION_MODE: False
|
| 92 |
+
|
| 93 |
+
# -
|
| 94 |
+
# NAME: mscoco_caption
|
| 95 |
+
# DATASETS:
|
| 96 |
+
# TRAIN: 'ImageTextPairDataset'
|
| 97 |
+
# # VAL: 'ImageTextPairDataset'
|
| 98 |
+
# # TEST: 'ImageTextPairDataset'
|
| 99 |
+
# TASK_TYPE: 'image_caption'
|
| 100 |
+
# DATASET_NAME: 'MSCOCO'
|
| 101 |
+
# TARGET_SET: ['Vocab_Word']
|
| 102 |
+
# DATALOADER:
|
| 103 |
+
# TRAIN_BATCH_SIZE: 64
|
| 104 |
+
# TEST_BATCH_SIZE: 32
|
| 105 |
+
# NUM_WORKERS: 4
|
| 106 |
+
# FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 107 |
+
# ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 108 |
+
# S3_PATH: 's3://coco/'
|
| 109 |
+
# SEQ_PER_SAMPLE: 1
|
| 110 |
+
# CACHE_MODE: True
|
| 111 |
+
# CIRCULAR_CACHE_MODE: False
|
| 112 |
+
# ZIP_MODE: False
|
| 113 |
+
# CACHE_ORIGIN_IMAGE: False
|
| 114 |
+
# RANDOM_CAPTION: False
|
| 115 |
+
# AS_NUMPY_AS_POSSIBLE: False
|
| 116 |
+
# SAMPLING_WEIGHT: 1.0
|
| 117 |
+
# TRANSFORM: 'clip_transforms'
|
| 118 |
+
# RANDOM_MASK: True
|
| 119 |
+
# MODEL:
|
| 120 |
+
# MAX_SEQ_LEN: 50
|
| 121 |
+
# EVAL_MAX_SEQ_LEN: 21
|
| 122 |
+
# TEMP_NAME: logit_scale_caption
|
| 123 |
+
# LOSSES:
|
| 124 |
+
# NAMES: ['CrossEntropy', 'Accuracy']
|
| 125 |
+
# LOSS_WEIGHT: 0.33333
|
| 126 |
+
# REDUCTION: 'mean'
|
| 127 |
+
# DECODE_STRATEGY:
|
| 128 |
+
# NAME: 'CaptionBeamSearcherV3'
|
| 129 |
+
# BEAM_SIZE: 2
|
| 130 |
+
# # LEN_PENALTY: 1.0
|
| 131 |
+
# INFERENCE:
|
| 132 |
+
# NAME: 'COCOEvaler'
|
| 133 |
+
# VOCAB: 'CLIP'
|
| 134 |
+
# ID_KEY: 'image_id'
|
| 135 |
+
# VALUE: 'caption'
|
| 136 |
+
# VAL_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_val5k.json'
|
| 137 |
+
# TEST_ANNFILE: 'open_source_dataset/mscoco_dataset/new_annotations/captions_test5k.json'
|
| 138 |
+
# GENERATION_MODE: True
|
| 139 |
+
|
| 140 |
+
# -
|
| 141 |
+
# NAME: mscoco_retrieve
|
| 142 |
+
# DATASETS:
|
| 143 |
+
# TRAIN: 'ImageTextPairDataset'
|
| 144 |
+
# # TEST: 'ImageTextPairDataset'
|
| 145 |
+
# TASK_TYPE: 'image_retrieval'
|
| 146 |
+
# DATASET_NAME: 'MSCOCO'
|
| 147 |
+
# DATALOADER:
|
| 148 |
+
# TRAIN_BATCH_SIZE: 100
|
| 149 |
+
# TEST_BATCH_SIZE: 32
|
| 150 |
+
# NUM_WORKERS: 1
|
| 151 |
+
# FEATS_FOLDER: 'open_source_dataset/mscoco_dataset/coco_origin'
|
| 152 |
+
# ANNO_FOLDER: 'open_source_dataset/mscoco_dataset/new_annotations'
|
| 153 |
+
# S3_PATH: 's3://coco/'
|
| 154 |
+
# SEQ_PER_SAMPLE: 1
|
| 155 |
+
# CACHE_MODE: True
|
| 156 |
+
# CIRCULAR_CACHE_MODE: False
|
| 157 |
+
# ZIP_MODE: False
|
| 158 |
+
# CACHE_ORIGIN_IMAGE: False
|
| 159 |
+
# RANDOM_CAPTION: False
|
| 160 |
+
# AS_NUMPY_AS_POSSIBLE: False
|
| 161 |
+
# SAMPLING_WEIGHT: 1.0
|
| 162 |
+
# TRANSFORM: 'clip_transforms'
|
| 163 |
+
# MODEL:
|
| 164 |
+
# MAX_SEQ_LEN: 50
|
| 165 |
+
# TEMP_NAME: logit_scale_retrieve
|
| 166 |
+
# LOSSES:
|
| 167 |
+
# NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 168 |
+
# LABELSMOOTHING: 0.1
|
| 169 |
+
# LOSS_WEIGHT: 1.0
|
| 170 |
+
# REDUCTION: 'mean'
|
| 171 |
+
# INFERENCE:
|
| 172 |
+
# VOCAB: 'CLIP'
|
| 173 |
+
# ID_KEY: 'image_id'
|
| 174 |
+
# VALUE: 'caption'
|
| 175 |
+
# NAME: 'RetrievalEvaler'
|
| 176 |
+
# VAL_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_val_set0_2014.jsonline'
|
| 177 |
+
# TEST_ANNFILE: 'open_source_dataset/flickr30k/all_data_final_test_set0_2014.jsonline'
|
| 178 |
+
# GENERATION_MODE: False
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
ENGINE:
|
| 183 |
+
NAME: 'UnifiedTrainer'
|
| 184 |
+
|
| 185 |
+
MODEL:
|
| 186 |
+
META_ARCHITECTURE: 'MultiTaskTransformerEncoder'
|
| 187 |
+
ENCODER: 'UnifiedBertEncoder'
|
| 188 |
+
|
| 189 |
+
IN_TUNING: True # use IN1k instead of 22k
|
| 190 |
+
SHARE_LAYERNORM: True
|
| 191 |
+
BERT:
|
| 192 |
+
NORMALIZE_DECISION: "BERTPre"
|
| 193 |
+
DROP_PATH_PROB: 0.1
|
| 194 |
+
DROP_PATH_PROB_FIXED: True
|
| 195 |
+
|
| 196 |
+
UNIFY_QKV: True
|
| 197 |
+
|
| 198 |
+
MODEL_EMA: False
|
| 199 |
+
MODEL_EMA_DECAY: 0.9999
|
| 200 |
+
|
| 201 |
+
MAEParamsInit: True
|
| 202 |
+
POSEMBEDFIX: True
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
IMG_INPUT_SIZE: 224
|
| 206 |
+
PATCH_SIZE: 16
|
| 207 |
+
|
| 208 |
+
LAYER_SCALE: True
|
| 209 |
+
LAYER_SCALE_INIT: 1e-3
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
DATALOADER:
|
| 213 |
+
USE_WEIGHTED_SAMPLER: True
|
| 214 |
+
UNIFIED_DATASET: True
|
| 215 |
+
NUM_WORKERS: 16
|
| 216 |
+
|
| 217 |
+
PADDING_TO_MAX: False # True for debugging or token moe with distributed moe
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
####################################### Optimizer #######################################
|
| 222 |
+
SOLVER:
|
| 223 |
+
NAME: 'Adam'
|
| 224 |
+
TORCH_OPTIMIZER: True
|
| 225 |
+
PARAMS_SEPERATE: True
|
| 226 |
+
# PARAMS_GROUP: True
|
| 227 |
+
# EPOCH: 1
|
| 228 |
+
MAX_ITER: 200000
|
| 229 |
+
CHECKPOINT_PERIOD: 50000
|
| 230 |
+
EVAL_PERIOD: 500000
|
| 231 |
+
BASE_LR: 0.001
|
| 232 |
+
BIAS_LR_FACTOR: 1.0
|
| 233 |
+
WEIGHT_DECAY: 0.05
|
| 234 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 235 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 236 |
+
WEIGHT_DECAY_EMBEDDING: 0.0
|
| 237 |
+
MOMENTUM: 0.9
|
| 238 |
+
DAMPENING: 0.0
|
| 239 |
+
NESTEROV: 0.0
|
| 240 |
+
BETAS: [0.9, 0.95]
|
| 241 |
+
EPS: 1e-6
|
| 242 |
+
GRAD_CLIP: 0.1
|
| 243 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 244 |
+
ACCUM_ITER: 0
|
| 245 |
+
AMP_FP16: True
|
| 246 |
+
APEX_FP16: False # dangerous
|
| 247 |
+
|
| 248 |
+
WRITE_PERIOD: 50
|
| 249 |
+
MIN_LOSS_SCLE: 2048.0
|
| 250 |
+
# BF16: False # True
|
| 251 |
+
# ZEROSTAGE: 2
|
| 252 |
+
|
| 253 |
+
LOSS_SCALE_WINDOW: 200
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
####################################### lr scheduler #######################################
|
| 261 |
+
LR_SCHEDULER:
|
| 262 |
+
NAME: 'WarmupCosine'
|
| 263 |
+
WARMUP: 20000
|
| 264 |
+
MIN_LR: 0.000001
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
####################################### evaluation #######################################
|
| 270 |
+
INFERENCE:
|
| 271 |
+
|
| 272 |
+
VOCAB: 'CLIP'
|
| 273 |
+
ITER_BASED: True
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
find_unused_parameters: true
|
| 277 |
+
|
| 278 |
+
# ENCODERS:
|
| 279 |
+
# -
|
| 280 |
+
# NAME: VisualEncoder
|
| 281 |
+
# TYPE: VisualEncoder
|
| 282 |
+
# DROP_PATH_PROB: 0.0
|
| 283 |
+
# HIDDEN_SIZE: 192
|
| 284 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 285 |
+
# HIDDEN_ACT: "gelu"
|
| 286 |
+
# NUM_ATTENTION_HEADS: 3
|
| 287 |
+
# INTERMEDIATE_SIZE: 768
|
| 288 |
+
# INTERMEDIATE_DROP: 0.
|
| 289 |
+
# FFN_DROPOUT_PROB: 0.
|
| 290 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 291 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 292 |
+
# NUM_GENERATION_LAYERS: 0
|
| 293 |
+
# DROP_PATH_PROB_FIXED: True
|
| 294 |
+
|
| 295 |
+
# -
|
| 296 |
+
# NAME: TextEncoder
|
| 297 |
+
# TYPE: TextEncoder
|
| 298 |
+
# DROP_PATH_PROB: 0.0
|
| 299 |
+
# HIDDEN_SIZE: 192
|
| 300 |
+
# HIDDEN_DROPOUT_PROB: 0.
|
| 301 |
+
# HIDDEN_ACT: "gelu"
|
| 302 |
+
# NUM_ATTENTION_HEADS: 3
|
| 303 |
+
# INTERMEDIATE_SIZE: 768
|
| 304 |
+
# INTERMEDIATE_DROP: 0.
|
| 305 |
+
# FFN_DROPOUT_PROB: 0.
|
| 306 |
+
# ATTENTION_PROBS_DROPOUT_PROB: 0.
|
| 307 |
+
# NUM_HIDDEN_LAYERS: 6
|
| 308 |
+
# NUM_GENERATION_LAYERS: 0
|
| 309 |
+
# DROP_PATH_PROB_FIXED: True
|
| 310 |
+
|
configs/BERT_L12_H768_experiments/moe_finetuning/GLUE_finetuning_experiments/GLUE_CoLA_mlm_finetune.yaml
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_BASE_: "base.yaml"
|
| 2 |
+
|
| 3 |
+
SHARED_TARGETS:
|
| 4 |
+
-
|
| 5 |
+
NAME: 'CoLA-target'
|
| 6 |
+
SHARED_TARGETS_CFG:
|
| 7 |
+
FILE_PATH: 'open_source_dataset/GLUE_classnames/CoLA_class_name_CLIP_with_endoftext.pkl'
|
| 8 |
+
DISTRIBUTED: False
|
| 9 |
+
TASKS:
|
| 10 |
+
-
|
| 11 |
+
NAME: CoLA
|
| 12 |
+
DATASETS:
|
| 13 |
+
TRAIN: 'GLUEDataset'
|
| 14 |
+
# TEST: 'GLUEDataset'
|
| 15 |
+
VAL: 'GLUEDataset'
|
| 16 |
+
TASK_TYPE: 'text_classification'
|
| 17 |
+
DATASET_NAME: 'CoLA'
|
| 18 |
+
TARGET_SET: ['CoLA-target']
|
| 19 |
+
DATALOADER:
|
| 20 |
+
TRAIN_BATCH_SIZE: 16
|
| 21 |
+
TEST_BATCH_SIZE: 64
|
| 22 |
+
NUM_WORKERS: 4
|
| 23 |
+
ANNO_FOLDER: 'open_source_dataset/bert_pretrain_data/glue_data/'
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
MODEL:
|
| 27 |
+
MAX_SEQ_LEN: 256
|
| 28 |
+
TEMP_NAME: logit_scale_text_mlm
|
| 29 |
+
LOSSES:
|
| 30 |
+
NAMES: ['LabelSmoothingCrossEntropy', 'Accuracy']
|
| 31 |
+
LABELSMOOTHING: 0.1
|
| 32 |
+
# LOSS_WEIGHT: 1
|
| 33 |
+
REDUCTION: 'mean'
|
| 34 |
+
LOSS_FP32: False
|
| 35 |
+
INFERENCE:
|
| 36 |
+
NAME: 'GLUEEvaler'
|
| 37 |
+
VOCAB: 'CLIP'
|
| 38 |
+
GENERATION_MODE: False
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
ENGINE:
|
| 44 |
+
NAME: 'UnifiedTrainer'
|
| 45 |
+
|
| 46 |
+
DATALOADER:
|
| 47 |
+
USE_WEIGHTED_SAMPLER: True
|
| 48 |
+
UNIFIED_DATASET: True
|
| 49 |
+
NUM_WORKERS: 16
|
| 50 |
+
|
| 51 |
+
######################################### MODEL #########################################
|
| 52 |
+
MODEL:
|
| 53 |
+
MODEL_EMA: False
|
| 54 |
+
MODEL_EMA_DECAY: 0.9999
|
| 55 |
+
|
| 56 |
+
####################################### Optimizer #######################################
|
| 57 |
+
SOLVER:
|
| 58 |
+
NAME: 'Adam'
|
| 59 |
+
# EPOCH: 1
|
| 60 |
+
MAX_ITER: 5600
|
| 61 |
+
CHECKPOINT_PERIOD: 1000000
|
| 62 |
+
EVAL_PERIOD: 200
|
| 63 |
+
CHECKPOINT_MAX_SAVE: 1
|
| 64 |
+
BASE_LR: 0.00001
|
| 65 |
+
BIAS_LR_FACTOR: 1.0
|
| 66 |
+
WEIGHT_DECAY: 0.1
|
| 67 |
+
WEIGHT_DECAY_NORM: 0.0
|
| 68 |
+
WEIGHT_DECAY_BIAS: 0.0
|
| 69 |
+
MOMENTUM: 0.9
|
| 70 |
+
DAMPENING: 0.0
|
| 71 |
+
NESTEROV: 0.0
|
| 72 |
+
BETAS: [0.9, 0.98]
|
| 73 |
+
EPS: 1e-8
|
| 74 |
+
GRAD_CLIP: 0.5
|
| 75 |
+
GRAD_CLIP_TYPE: 'norm'
|
| 76 |
+
ACCUM_ITER: 0
|
| 77 |
+
AMP_FP16: True
|
| 78 |
+
APEX_FP16: False # dangerous
|
| 79 |
+
WRITE_PERIOD: 20
|
| 80 |
+
|
| 81 |
+
####################################### lr scheduler #######################################
|
| 82 |
+
LR_SCHEDULER:
|
| 83 |
+
NAME: 'WarmupCosine'
|
| 84 |
+
WARMUP: 400
|
| 85 |
+
MIN_LR: 0.00000001
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
find_unused_parameters: true
|