Commit
·
36e28a3
1
Parent(s):
e8fa15d
Upload train_roberta_extractive_qa.py
Browse files- train_roberta_extractive_qa.py +100 -0
train_roberta_extractive_qa.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# TODO: BEFORE RUNNING: pip install git+https://github.com/gaussalgo/adaptor.git@QA_to_objectives
|
| 2 |
+
|
| 3 |
+
from adaptor.objectives.question_answering import ExtractiveQA
|
| 4 |
+
import json
|
| 5 |
+
|
| 6 |
+
from adaptor.adapter import Adapter
|
| 7 |
+
from adaptor.evaluators.question_answering import BLEUForQA
|
| 8 |
+
from adaptor.lang_module import LangModule
|
| 9 |
+
from adaptor.schedules import ParallelSchedule
|
| 10 |
+
from adaptor.utils import AdaptationArguments, StoppingStrategy
|
| 11 |
+
|
| 12 |
+
# custom classes
|
| 13 |
+
from datasets import load_dataset
|
| 14 |
+
|
| 15 |
+
model_name = "bert-base-multilingual-cased"
|
| 16 |
+
|
| 17 |
+
lang_module = LangModule(model_name)
|
| 18 |
+
|
| 19 |
+
training_arguments = AdaptationArguments(output_dir="train_dir",
|
| 20 |
+
learning_rate=4e-5,
|
| 21 |
+
stopping_strategy=StoppingStrategy.ALL_OBJECTIVES_CONVERGED,
|
| 22 |
+
do_train=True,
|
| 23 |
+
do_eval=True,
|
| 24 |
+
warmup_steps=1000,
|
| 25 |
+
max_steps=100000,
|
| 26 |
+
gradient_accumulation_steps=1,
|
| 27 |
+
eval_steps=1,
|
| 28 |
+
logging_steps=10,
|
| 29 |
+
save_steps=1000,
|
| 30 |
+
num_train_epochs=30,
|
| 31 |
+
evaluation_strategy="steps")
|
| 32 |
+
|
| 33 |
+
val_metrics = [BLEUForQA(decides_convergence=True)]
|
| 34 |
+
|
| 35 |
+
# get eval and train dataset
|
| 36 |
+
squad_dataset = json.load(open("data/czech_squad.json"))
|
| 37 |
+
questions = []
|
| 38 |
+
contexts = []
|
| 39 |
+
answers = []
|
| 40 |
+
skipped = 0
|
| 41 |
+
|
| 42 |
+
for i, entry in squad_dataset.items():
|
| 43 |
+
if entry["answers"]["text"][0] in entry["context"]:
|
| 44 |
+
# and len(entry["context"]) < 1024: # these are characters, will be automatically truncated from input anyway
|
| 45 |
+
questions.append(entry["question"])
|
| 46 |
+
contexts.append(entry["context"])
|
| 47 |
+
answers.append(entry["answers"]["text"][0])
|
| 48 |
+
else:
|
| 49 |
+
skipped += 1
|
| 50 |
+
|
| 51 |
+
print("Skipped examples from SQuAD-cs: %s" % skipped)
|
| 52 |
+
|
| 53 |
+
train_questions = questions[:-200]
|
| 54 |
+
val_questions = questions[-200:]
|
| 55 |
+
|
| 56 |
+
train_answers = answers[:-200]
|
| 57 |
+
val_answers = answers[-200:]
|
| 58 |
+
|
| 59 |
+
train_context = contexts[:-200]
|
| 60 |
+
val_context = contexts[-200:]
|
| 61 |
+
|
| 62 |
+
# declaration of extractive question answering objective
|
| 63 |
+
generative_qa_cs = ExtractiveQA(lang_module,
|
| 64 |
+
texts_or_path=train_questions,
|
| 65 |
+
text_pair_or_path=train_context,
|
| 66 |
+
labels_or_path=train_answers,
|
| 67 |
+
val_texts_or_path=val_questions,
|
| 68 |
+
val_text_pair_or_path=val_context,
|
| 69 |
+
val_labels_or_path=val_answers,
|
| 70 |
+
batch_size=1,
|
| 71 |
+
val_evaluators=val_metrics,
|
| 72 |
+
objective_id="SQUAD-cs")
|
| 73 |
+
|
| 74 |
+
# english SQuAD
|
| 75 |
+
squad_en = load_dataset("squad")
|
| 76 |
+
squad_train = squad_en["train"].filter(lambda entry: len(entry["context"]) < 2000)
|
| 77 |
+
|
| 78 |
+
train_contexts_questions_en = ["question: %s context: %s" % (q, c) for q, c in zip(squad_train["question"],
|
| 79 |
+
squad_train["context"])]
|
| 80 |
+
val_contexts_questions_en = ["question: %s context: %s" % (q, c) for q, c in zip(squad_en["validation"]["question"],
|
| 81 |
+
squad_en["validation"]["context"])]
|
| 82 |
+
train_answers_en = [a["text"][0] for a in squad_train["answers"]]
|
| 83 |
+
val_answers_en = [a["text"][0] for a in squad_en["validation"]["answers"]]
|
| 84 |
+
|
| 85 |
+
generative_qa_en = ExtractiveQA(lang_module,
|
| 86 |
+
texts_or_path=squad_train["question"],
|
| 87 |
+
text_pair_or_path=squad_train["context"],
|
| 88 |
+
labels_or_path=[a["text"][0] for a in squad_train["answers"]],
|
| 89 |
+
val_texts_or_path=squad_en["validation"]["question"][:200],
|
| 90 |
+
val_text_pair_or_path=squad_en["validation"]["context"][:200],
|
| 91 |
+
val_labels_or_path=[a["text"][0] for a in squad_en["validation"]["answers"]][:200],
|
| 92 |
+
batch_size=10,
|
| 93 |
+
val_evaluators=val_metrics,
|
| 94 |
+
objective_id="SQUAD-en")
|
| 95 |
+
|
| 96 |
+
schedule = ParallelSchedule(objectives=[generative_qa_cs, generative_qa_en],
|
| 97 |
+
args=training_arguments)
|
| 98 |
+
|
| 99 |
+
adapter = Adapter(lang_module, schedule, args=training_arguments)
|
| 100 |
+
adapter.train()
|