TAR functionality
Browse files- unit-test_PDFfolder.py +9 -52
unit-test_PDFfolder.py
CHANGED
|
@@ -8,34 +8,20 @@ logger = datasets.logging.get_logger(__name__)
|
|
| 8 |
|
| 9 |
_DESCRIPTION = "A generic pdf folder"
|
| 10 |
|
| 11 |
-
_CLASSES = ["categoryA", "categoryB"]
|
| 12 |
|
| 13 |
_URL = "https://huggingface.co/datasets/jordyvl/unit-test_PDFfolder/resolve/main/data/data.tar.gz"
|
| 14 |
|
| 15 |
-
#folder
|
| 16 |
# train
|
| 17 |
# categoryA
|
| 18 |
# file1
|
| 19 |
# test
|
| 20 |
-
|
| 21 |
|
| 22 |
-
#RVL-CDIP_multi
|
| 23 |
|
| 24 |
class PdfFolder(datasets.GeneratorBasedBuilder):
|
| 25 |
def _info(self):
|
| 26 |
-
|
| 27 |
-
"""
|
| 28 |
-
folder = None
|
| 29 |
-
elif isinstance(self.config.data_files, str):
|
| 30 |
-
folder = self.config.data_files
|
| 31 |
-
elif isinstance(self.config.data_files, dict):
|
| 32 |
-
folder = self.config.data_files.get("train", None)
|
| 33 |
-
|
| 34 |
-
if folder is None:
|
| 35 |
-
raise RuntimeError()
|
| 36 |
-
"""
|
| 37 |
-
#classes = sorted([x.name.lower() for x in Path(_URL).glob("*/**")])
|
| 38 |
-
|
| 39 |
return datasets.DatasetInfo(
|
| 40 |
description=_DESCRIPTION,
|
| 41 |
features=datasets.Features(
|
|
@@ -58,66 +44,37 @@ class PdfFolder(datasets.GeneratorBasedBuilder):
|
|
| 58 |
name=datasets.Split.TRAIN,
|
| 59 |
gen_kwargs={
|
| 60 |
"archive_iterator": dl_manager.iter_archive(archive_path),
|
| 61 |
-
"supposed_labelset": "train"
|
| 62 |
},
|
| 63 |
),
|
| 64 |
datasets.SplitGenerator(
|
| 65 |
name=datasets.Split.TEST,
|
| 66 |
gen_kwargs={
|
| 67 |
"archive_iterator": dl_manager.iter_archive(archive_path),
|
| 68 |
-
"supposed_labelset": "test"
|
| 69 |
},
|
| 70 |
),
|
| 71 |
datasets.SplitGenerator(
|
| 72 |
name=datasets.Split.VALIDATION,
|
| 73 |
gen_kwargs={
|
| 74 |
"archive_iterator": dl_manager.iter_archive(archive_path),
|
| 75 |
-
"supposed_labelset": "val"
|
| 76 |
},
|
| 77 |
),
|
| 78 |
]
|
| 79 |
|
| 80 |
-
|
| 81 |
-
# if isinstance(self.config.data_files, str):
|
| 82 |
-
# return [
|
| 83 |
-
# datasets.SplitGenerator(
|
| 84 |
-
# name=datasets.Split.TRAIN, gen_kwargs={"archive_path": self.config.data_files}
|
| 85 |
-
# )
|
| 86 |
-
# ]
|
| 87 |
-
|
| 88 |
-
# splits = []
|
| 89 |
-
# for split_name, folder in self.config.data_files.items():
|
| 90 |
-
# splits.append(
|
| 91 |
-
# datasets.SplitGenerator(name=split_name, gen_kwargs={"archive_path": folder})
|
| 92 |
-
# )
|
| 93 |
-
|
| 94 |
-
# return splits
|
| 95 |
-
|
| 96 |
def _generate_examples(self, archive_iterator, supposed_labelset):
|
| 97 |
|
| 98 |
-
#could also get the label from somewhere else
|
| 99 |
-
|
| 100 |
-
#data/train/categoryB/581261-brown-invoice-10-29-11-04-12-2-13530037073412-pdf.pdf
|
| 101 |
-
#folder/labelset/label/filename
|
| 102 |
-
|
| 103 |
-
#full_path = os.path.join(archive_iterator.args[0], file_path)
|
| 104 |
-
|
| 105 |
-
#archive_path = archive_iterator.args[0]
|
| 106 |
-
|
| 107 |
extensions = {"pdf", "PDF"}
|
| 108 |
for file_path, file_obj in archive_iterator:
|
| 109 |
|
| 110 |
-
if file_path.split(".")[-1] not in extensions:
|
| 111 |
continue
|
| 112 |
|
| 113 |
folder, labelset, label, filename = file_path.split("/")
|
| 114 |
if labelset != supposed_labelset:
|
| 115 |
continue
|
| 116 |
-
|
| 117 |
-
images = pdf2image.convert_from_bytes(file_obj.read()) #can only read it once
|
| 118 |
-
#simple = {"path": file_path, "bytes": file_obj.read(), "labels": label}
|
| 119 |
|
| 120 |
-
|
| 121 |
|
| 122 |
-
|
| 123 |
-
#labels.encode_example(path.parent.name.lower())
|
|
|
|
| 8 |
|
| 9 |
_DESCRIPTION = "A generic pdf folder"
|
| 10 |
|
| 11 |
+
_CLASSES = ["categoryA", "categoryB"] # define in advance
|
| 12 |
|
| 13 |
_URL = "https://huggingface.co/datasets/jordyvl/unit-test_PDFfolder/resolve/main/data/data.tar.gz"
|
| 14 |
|
| 15 |
+
# folder
|
| 16 |
# train
|
| 17 |
# categoryA
|
| 18 |
# file1
|
| 19 |
# test
|
| 20 |
+
# ...
|
| 21 |
|
|
|
|
| 22 |
|
| 23 |
class PdfFolder(datasets.GeneratorBasedBuilder):
|
| 24 |
def _info(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
return datasets.DatasetInfo(
|
| 26 |
description=_DESCRIPTION,
|
| 27 |
features=datasets.Features(
|
|
|
|
| 44 |
name=datasets.Split.TRAIN,
|
| 45 |
gen_kwargs={
|
| 46 |
"archive_iterator": dl_manager.iter_archive(archive_path),
|
| 47 |
+
"supposed_labelset": "train",
|
| 48 |
},
|
| 49 |
),
|
| 50 |
datasets.SplitGenerator(
|
| 51 |
name=datasets.Split.TEST,
|
| 52 |
gen_kwargs={
|
| 53 |
"archive_iterator": dl_manager.iter_archive(archive_path),
|
| 54 |
+
"supposed_labelset": "test",
|
| 55 |
},
|
| 56 |
),
|
| 57 |
datasets.SplitGenerator(
|
| 58 |
name=datasets.Split.VALIDATION,
|
| 59 |
gen_kwargs={
|
| 60 |
"archive_iterator": dl_manager.iter_archive(archive_path),
|
| 61 |
+
"supposed_labelset": "val",
|
| 62 |
},
|
| 63 |
),
|
| 64 |
]
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
def _generate_examples(self, archive_iterator, supposed_labelset):
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
extensions = {"pdf", "PDF"}
|
| 69 |
for file_path, file_obj in archive_iterator:
|
| 70 |
|
| 71 |
+
if file_path.split(".")[-1] not in extensions: # metadata.jsonlines
|
| 72 |
continue
|
| 73 |
|
| 74 |
folder, labelset, label, filename = file_path.split("/")
|
| 75 |
if labelset != supposed_labelset:
|
| 76 |
continue
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
+
images = pdf2image.convert_from_bytes(file_obj.read())
|
| 79 |
|
| 80 |
+
yield file_path, {"file": images, "labels": label}
|
|
|