File size: 3,315 Bytes
4931a34
 
 
 
 
 
 
 
 
 
e6c1bd2
4931a34
5f99f39
 
 
 
 
 
 
 
87725fb
4931a34
 
 
87725fb
cb04d6a
 
4931a34
 
cb04d6a
4931a34
 
 
87725fb
5f99f39
cb04d6a
4931a34
 
 
 
 
e6c1bd2
4931a34
 
 
 
 
cb04d6a
 
 
4931a34
81b580c
 
 
e6c1bd2
81b580c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4931a34
 
cb04d6a
4931a34
cb04d6a
 
4931a34
 
5898575
4931a34
cb04d6a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from pathlib import Path
from typing import List

import datasets
import pdf2image

logger = datasets.logging.get_logger(__name__)

_DESCRIPTION = "A generic pdf folder"

_CLASSES = ["categoryA", "categoryB"] #define in advance

_URL = "https://huggingface.co/datasets/jordyvl/unit-test_PDFfolder/resolve/main/data/data_dir.tar.gz"

#folder
#   train
#       categoryA
#           file1
#   test
#...

class PdfFolder(datasets.GeneratorBasedBuilder):
    def _info(self):

        """
        folder = None
        elif isinstance(self.config.data_files, str):
            folder = self.config.data_files
        elif isinstance(self.config.data_files, dict):
            folder = self.config.data_files.get("train", None)

        if folder is None:
            raise RuntimeError()
        """
        #classes = sorted([x.name.lower() for x in Path(_URL).glob("*/**")])

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "file": datasets.Sequence(datasets.Image()),
                    "labels": datasets.features.ClassLabel(names=_CLASSES),
                }
            ),
            task_templates=None,
        )

    def _split_generators(
        self, dl_manager: datasets.DownloadManager
    ) -> List[datasets.SplitGenerator]:

        archive_path = dl_manager.download(_URL)

        import pdb; pdb.set_trace()  # breakpoint aef4d417 //


        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "archive_iterator": dl_manager.iter_archive(archive_path),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "archive_iterator": dl_manager.iter_archive(archive_path),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "archive_iterator": dl_manager.iter_archive(archive_path),
                },
            ),
        ]


        # if isinstance(self.config.data_files, str):
        #     return [
        #         datasets.SplitGenerator(
        #             name=datasets.Split.TRAIN, gen_kwargs={"archive_path": self.config.data_files}
        #         )
        #     ]

        # splits = []
        # for split_name, folder in self.config.data_files.items():
        #     splits.append(
        #         datasets.SplitGenerator(name=split_name, gen_kwargs={"archive_path": folder})
        #     )

        # return splits

    def _generate_examples(self, archive_path):
        labels = self.info.features["labels"]
        logger.info("generating examples from = %s", archive_path)
        extensions = {".pdf"}
        for i, path in enumerate(Path(archive_path).glob("**/*")):
            if path.suffix in extensions:

                images = pdf2image.convert_from_bytes(path.posix()) #alternatively https://huggingface.co/docs/datasets/v2.8.0/en/package_reference/main_classes#datasets.Dataset.set_transform

                # convert PDF to list of images
                yield i, {"file": images, "labels": labels.encode_example(path.parent.name.lower())}