File size: 5,481 Bytes
b0c0df0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Generating gpt_4o_vs_Qwen_VL_72B_Instruct split: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 218/218 [00:00<00:00, 288.42 examples/s]\n"
     ]
    }
   ],
   "source": [
    "from datasets import load_dataset\n",
    "\n",
    "dataset = load_dataset(\"lmms-lab/LiveBenchDetailedResultsComparison\", \"2024-09\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "DatasetDict({\n",
       "    gpt_4o_vs_Qwen_VL_72B_Instruct: Dataset({\n",
       "        features: ['id', 'images', 'question', 'ground_truth', 'criteria', 'subtask', 'website', 'score_1', 'score_2', 'reason_1', 'reason_2', 'response_1', 'response_2', 'delta'],\n",
       "        num_rows: 218\n",
       "    })\n",
       "})"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "df = dataset[\"gpt_4o_vs_Qwen_VL_72B_Instruct\"].to_pandas()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "item = df[df[\"id\"] == 287].to_dict()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Based on the final position of the chess game depicted in the image (after 29.Rxg6#), write a Python program to create a 2D list representing this final position, where empty squares are represented by '0' and pieces are represented by their standard notation (e.g., 'K' for king, 'Q' for queen, etc.). Then, implement a function to print this board representation to the console. Ensure the board is printed with '.' for empty squares.\n"
     ]
    }
   ],
   "source": [
    "print(item[\"question\"][8])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Here's a Python program that represents the final position:\n",
      "\n",
      "```python\n",
      "def create_chess_board():\n",
      "    board = [\n",
      "        ['r', '0', '0', '0', '0', '0', 'k', 'r'],\n",
      "        ['p', '0', '0', 'P', '0', '0', '0', 'b'],\n",
      "        ['0', '0', 'p', '0', '0', '0', 'p', '0'],\n",
      "        ['0', '0', '0', '0', 'Q', 'P', '0', '0'],\n",
      "        ['q', '0', '0', '0', '0', '0', '0', '0'],\n",
      "        ['0', '0', '0', '0', '0', '0', '0', '0'],\n",
      "        ['P', 'P', 'P', '0', '0', '0', 'P', 'P'],\n",
      "        ['0', '0', '0', 'R', '0', 'R', 'K', '0']\n",
      "    ]\n",
      "    return board\n",
      "\n",
      "\n",
      "def print_board(board):\n",
      "    for row in board:\n",
      "        print(' '.join(piece if piece != '0' else '.' for piece in row))\n",
      "\n",
      "\n",
      "chess_board = create_chess_board()\n",
      "print_board(chess_board)\n",
      "```\n",
      "\n",
      "This program creates a 2D list representing the final chess position and prints it to the console, using '.' for empty squares.\n"
     ]
    }
   ],
   "source": [
    "print(item[\"ground_truth\"][8])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "r . . . . . k r\n",
      "p . . P . . . b\n",
      ". . p . . . p .\n",
      ". . . . Q P . .\n",
      "q . . . . . . .\n",
      ". . . . . . . .\n",
      "P P P . . . P P\n",
      ". . . R . R K .\n"
     ]
    }
   ],
   "source": [
    "def create_chess_board():\n",
    "    board = [\n",
    "        [\"r\", \"0\", \"0\", \"0\", \"0\", \"0\", \"k\", \"r\"],\n",
    "        [\"p\", \"0\", \"0\", \"P\", \"0\", \"0\", \"0\", \"b\"],\n",
    "        [\"0\", \"0\", \"p\", \"0\", \"0\", \"0\", \"p\", \"0\"],\n",
    "        [\"0\", \"0\", \"0\", \"0\", \"Q\", \"P\", \"0\", \"0\"],\n",
    "        [\"q\", \"0\", \"0\", \"0\", \"0\", \"0\", \"0\", \"0\"],\n",
    "        [\"0\", \"0\", \"0\", \"0\", \"0\", \"0\", \"0\", \"0\"],\n",
    "        [\"P\", \"P\", \"P\", \"0\", \"0\", \"0\", \"P\", \"P\"],\n",
    "        [\"0\", \"0\", \"0\", \"R\", \"0\", \"R\", \"K\", \"0\"],\n",
    "    ]\n",
    "    return board\n",
    "\n",
    "\n",
    "def print_board(board):\n",
    "    for row in board:\n",
    "        print(\" \".join(piece if piece != \"0\" else \".\" for piece in row))\n",
    "\n",
    "\n",
    "chess_board = create_chess_board()\n",
    "print_board(chess_board)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "live_bench",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}