Upload model.py with huggingface_hub
Browse files
model.py
CHANGED
|
@@ -1,74 +1,86 @@
|
|
| 1 |
"""
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
"""
|
| 5 |
|
| 6 |
import torch
|
| 7 |
import torch.nn as nn
|
| 8 |
|
|
|
|
| 9 |
class ResidualBlock(nn.Module):
|
| 10 |
-
"""Residual block with two
|
| 11 |
-
def __init__(self, channels):
|
| 12 |
super().__init__()
|
| 13 |
self.conv1 = nn.Conv2d(channels, channels, 3, padding=1)
|
| 14 |
self.bn1 = nn.BatchNorm2d(channels)
|
| 15 |
self.conv2 = nn.Conv2d(channels, channels, 3, padding=1)
|
| 16 |
self.bn2 = nn.BatchNorm2d(channels)
|
| 17 |
self.relu = nn.ReLU(inplace=True)
|
|
|
|
| 18 |
|
| 19 |
def forward(self, x):
|
| 20 |
residual = x
|
| 21 |
out = self.relu(self.bn1(self.conv1(x)))
|
|
|
|
| 22 |
out = self.bn2(self.conv2(out))
|
| 23 |
out += residual
|
| 24 |
return self.relu(out)
|
| 25 |
|
|
|
|
| 26 |
class ResidualConvAutoencoder(nn.Module):
|
| 27 |
"""
|
| 28 |
-
Residual Convolutional Autoencoder for image reconstruction
|
| 29 |
|
| 30 |
Args:
|
| 31 |
-
latent_dim (int): Dimension of latent space
|
|
|
|
| 32 |
|
| 33 |
Input:
|
| 34 |
-
x: Tensor of shape (batch_size, 3, 128, 128)
|
|
|
|
| 35 |
|
| 36 |
Output:
|
| 37 |
-
reconstructed: Tensor of shape (batch_size, 3, 128, 128)
|
| 38 |
latent: Tensor of shape (batch_size, latent_dim)
|
| 39 |
"""
|
| 40 |
-
def __init__(self, latent_dim=512):
|
| 41 |
super().__init__()
|
| 42 |
-
self.latent_dim = latent_dim
|
| 43 |
|
| 44 |
# Encoder: 128x128 -> 4x4
|
| 45 |
self.encoder = nn.Sequential(
|
| 46 |
-
|
| 47 |
-
nn.Conv2d(3, 64, 4, stride=2, padding=1),
|
| 48 |
nn.BatchNorm2d(64),
|
| 49 |
nn.ReLU(inplace=True),
|
| 50 |
-
ResidualBlock(64),
|
| 51 |
|
| 52 |
-
|
| 53 |
-
nn.Conv2d(64, 128, 4, stride=2, padding=1),
|
| 54 |
nn.BatchNorm2d(128),
|
| 55 |
nn.ReLU(inplace=True),
|
| 56 |
-
ResidualBlock(128),
|
| 57 |
|
| 58 |
-
|
| 59 |
-
nn.Conv2d(128, 256, 4, stride=2, padding=1),
|
| 60 |
nn.BatchNorm2d(256),
|
| 61 |
nn.ReLU(inplace=True),
|
| 62 |
-
ResidualBlock(256),
|
| 63 |
|
| 64 |
-
|
| 65 |
-
nn.Conv2d(256, 512, 4, stride=2, padding=1),
|
| 66 |
nn.BatchNorm2d(512),
|
| 67 |
nn.ReLU(inplace=True),
|
| 68 |
-
ResidualBlock(512),
|
| 69 |
|
| 70 |
-
|
| 71 |
-
nn.Conv2d(512, 512, 4, stride=2, padding=1),
|
| 72 |
nn.BatchNorm2d(512),
|
| 73 |
nn.ReLU(inplace=True),
|
| 74 |
)
|
|
@@ -79,44 +91,39 @@ class ResidualConvAutoencoder(nn.Module):
|
|
| 79 |
|
| 80 |
# Decoder: 4x4 -> 128x128
|
| 81 |
self.decoder = nn.Sequential(
|
| 82 |
-
|
| 83 |
-
nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1),
|
| 84 |
nn.BatchNorm2d(512),
|
| 85 |
nn.ReLU(inplace=True),
|
| 86 |
-
ResidualBlock(512),
|
| 87 |
|
| 88 |
-
|
| 89 |
-
nn.ConvTranspose2d(512, 256, 4, stride=2, padding=1),
|
| 90 |
nn.BatchNorm2d(256),
|
| 91 |
nn.ReLU(inplace=True),
|
| 92 |
-
ResidualBlock(256),
|
| 93 |
|
| 94 |
-
|
| 95 |
-
nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1),
|
| 96 |
nn.BatchNorm2d(128),
|
| 97 |
nn.ReLU(inplace=True),
|
| 98 |
-
ResidualBlock(128),
|
| 99 |
|
| 100 |
-
|
| 101 |
-
nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1),
|
| 102 |
nn.BatchNorm2d(64),
|
| 103 |
nn.ReLU(inplace=True),
|
| 104 |
-
ResidualBlock(64),
|
| 105 |
|
| 106 |
-
|
| 107 |
-
nn.
|
| 108 |
-
nn.Tanh() # Output in [-1, 1]
|
| 109 |
)
|
| 110 |
|
| 111 |
def forward(self, x):
|
| 112 |
"""
|
| 113 |
-
Forward pass through the autoencoder
|
| 114 |
|
| 115 |
Args:
|
| 116 |
x: Input tensor of shape (batch_size, 3, 128, 128)
|
| 117 |
|
| 118 |
Returns:
|
| 119 |
-
reconstructed: Reconstructed
|
| 120 |
latent: Latent representation of shape (batch_size, latent_dim)
|
| 121 |
"""
|
| 122 |
# Encode
|
|
@@ -131,63 +138,62 @@ class ResidualConvAutoencoder(nn.Module):
|
|
| 131 |
|
| 132 |
return reconstructed, latent
|
| 133 |
|
| 134 |
-
def
|
| 135 |
-
"""Extract latent representation only"""
|
| 136 |
-
x = self.encoder(x)
|
| 137 |
-
x = x.view(x.size(0), -1)
|
| 138 |
-
latent = self.fc_encoder(x)
|
| 139 |
-
return latent
|
| 140 |
-
|
| 141 |
-
def decode(self, latent):
|
| 142 |
-
"""Reconstruct from latent representation"""
|
| 143 |
-
x = self.fc_decoder(latent)
|
| 144 |
-
x = x.view(x.size(0), 512, 4, 4)
|
| 145 |
-
reconstructed = self.decoder(x)
|
| 146 |
-
return reconstructed
|
| 147 |
-
|
| 148 |
-
def reconstruction_error(self, x, reduction='mean'):
|
| 149 |
"""
|
| 150 |
-
|
| 151 |
-
Useful for anomaly/deepfake detection.
|
| 152 |
|
| 153 |
Args:
|
| 154 |
-
x: Input tensor
|
| 155 |
-
reduction: 'mean' for average error, 'none' for per-sample errors
|
| 156 |
|
| 157 |
Returns:
|
| 158 |
-
|
| 159 |
"""
|
| 160 |
reconstructed, _ = self.forward(x)
|
| 161 |
-
error = (reconstructed - x) ** 2
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
return error.mean()
|
| 165 |
-
elif reduction == 'none':
|
| 166 |
-
return error.view(x.size(0), -1).mean(dim=1)
|
| 167 |
-
else:
|
| 168 |
-
raise ValueError(f"Unknown reduction: {reduction}")
|
| 169 |
|
| 170 |
-
def load_model(checkpoint_path, device='cuda'):
|
| 171 |
"""
|
| 172 |
-
Load pretrained model from checkpoint
|
| 173 |
|
| 174 |
Args:
|
| 175 |
-
checkpoint_path: Path to
|
| 176 |
-
device: 'cuda' or 'cpu'
|
|
|
|
| 177 |
|
| 178 |
Returns:
|
| 179 |
-
model: Loaded ResidualConvAutoencoder in eval mode
|
|
|
|
| 180 |
"""
|
| 181 |
-
|
| 182 |
-
checkpoint = torch.load(checkpoint_path, map_location=device)
|
| 183 |
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
else:
|
| 189 |
-
model.load_state_dict(checkpoint)
|
| 190 |
|
| 191 |
-
model =
|
|
|
|
|
|
|
| 192 |
model.eval()
|
| 193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
"""
|
| 2 |
+
Residual Convolutional Autoencoder Model
|
| 3 |
+
|
| 4 |
+
Usage:
|
| 5 |
+
from model import ResidualConvAutoencoder, load_model
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
# Option 1: Create and load manually
|
| 9 |
+
model = ResidualConvAutoencoder(latent_dim=512)
|
| 10 |
+
checkpoint = torch.load('model_universal_best.ckpt')
|
| 11 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
| 12 |
+
model.eval()
|
| 13 |
+
|
| 14 |
+
# Option 2: Use helper function
|
| 15 |
+
model, checkpoint = load_model('model_universal_best.ckpt', device='cuda')
|
| 16 |
"""
|
| 17 |
|
| 18 |
import torch
|
| 19 |
import torch.nn as nn
|
| 20 |
|
| 21 |
+
|
| 22 |
class ResidualBlock(nn.Module):
|
| 23 |
+
"""Residual block with two convolutional layers and optional dropout"""
|
| 24 |
+
def __init__(self, channels, dropout=0.1):
|
| 25 |
super().__init__()
|
| 26 |
self.conv1 = nn.Conv2d(channels, channels, 3, padding=1)
|
| 27 |
self.bn1 = nn.BatchNorm2d(channels)
|
| 28 |
self.conv2 = nn.Conv2d(channels, channels, 3, padding=1)
|
| 29 |
self.bn2 = nn.BatchNorm2d(channels)
|
| 30 |
self.relu = nn.ReLU(inplace=True)
|
| 31 |
+
self.dropout = nn.Dropout2d(dropout) if dropout > 0 else nn.Identity()
|
| 32 |
|
| 33 |
def forward(self, x):
|
| 34 |
residual = x
|
| 35 |
out = self.relu(self.bn1(self.conv1(x)))
|
| 36 |
+
out = self.dropout(out)
|
| 37 |
out = self.bn2(self.conv2(out))
|
| 38 |
out += residual
|
| 39 |
return self.relu(out)
|
| 40 |
|
| 41 |
+
|
| 42 |
class ResidualConvAutoencoder(nn.Module):
|
| 43 |
"""
|
| 44 |
+
Residual Convolutional Autoencoder for image reconstruction
|
| 45 |
|
| 46 |
Args:
|
| 47 |
+
latent_dim (int): Dimension of the latent space. Default: 512
|
| 48 |
+
dropout (float): Dropout rate for regularization. Default: 0.1
|
| 49 |
|
| 50 |
Input:
|
| 51 |
+
x: Tensor of shape (batch_size, 3, 128, 128)
|
| 52 |
+
Values should be normalized to [-1, 1]
|
| 53 |
|
| 54 |
Output:
|
| 55 |
+
reconstructed: Tensor of shape (batch_size, 3, 128, 128)
|
| 56 |
latent: Tensor of shape (batch_size, latent_dim)
|
| 57 |
"""
|
| 58 |
+
def __init__(self, latent_dim=512, dropout=0.1):
|
| 59 |
super().__init__()
|
|
|
|
| 60 |
|
| 61 |
# Encoder: 128x128 -> 4x4
|
| 62 |
self.encoder = nn.Sequential(
|
| 63 |
+
nn.Conv2d(3, 64, 4, stride=2, padding=1), # 128 -> 64
|
|
|
|
| 64 |
nn.BatchNorm2d(64),
|
| 65 |
nn.ReLU(inplace=True),
|
| 66 |
+
ResidualBlock(64, dropout),
|
| 67 |
|
| 68 |
+
nn.Conv2d(64, 128, 4, stride=2, padding=1), # 64 -> 32
|
|
|
|
| 69 |
nn.BatchNorm2d(128),
|
| 70 |
nn.ReLU(inplace=True),
|
| 71 |
+
ResidualBlock(128, dropout),
|
| 72 |
|
| 73 |
+
nn.Conv2d(128, 256, 4, stride=2, padding=1), # 32 -> 16
|
|
|
|
| 74 |
nn.BatchNorm2d(256),
|
| 75 |
nn.ReLU(inplace=True),
|
| 76 |
+
ResidualBlock(256, dropout),
|
| 77 |
|
| 78 |
+
nn.Conv2d(256, 512, 4, stride=2, padding=1), # 16 -> 8
|
|
|
|
| 79 |
nn.BatchNorm2d(512),
|
| 80 |
nn.ReLU(inplace=True),
|
| 81 |
+
ResidualBlock(512, dropout),
|
| 82 |
|
| 83 |
+
nn.Conv2d(512, 512, 4, stride=2, padding=1), # 8 -> 4
|
|
|
|
| 84 |
nn.BatchNorm2d(512),
|
| 85 |
nn.ReLU(inplace=True),
|
| 86 |
)
|
|
|
|
| 91 |
|
| 92 |
# Decoder: 4x4 -> 128x128
|
| 93 |
self.decoder = nn.Sequential(
|
| 94 |
+
nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1), # 4 -> 8
|
|
|
|
| 95 |
nn.BatchNorm2d(512),
|
| 96 |
nn.ReLU(inplace=True),
|
| 97 |
+
ResidualBlock(512, dropout),
|
| 98 |
|
| 99 |
+
nn.ConvTranspose2d(512, 256, 4, stride=2, padding=1), # 8 -> 16
|
|
|
|
| 100 |
nn.BatchNorm2d(256),
|
| 101 |
nn.ReLU(inplace=True),
|
| 102 |
+
ResidualBlock(256, dropout),
|
| 103 |
|
| 104 |
+
nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1), # 16 -> 32
|
|
|
|
| 105 |
nn.BatchNorm2d(128),
|
| 106 |
nn.ReLU(inplace=True),
|
| 107 |
+
ResidualBlock(128, dropout),
|
| 108 |
|
| 109 |
+
nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1), # 32 -> 64
|
|
|
|
| 110 |
nn.BatchNorm2d(64),
|
| 111 |
nn.ReLU(inplace=True),
|
| 112 |
+
ResidualBlock(64, dropout),
|
| 113 |
|
| 114 |
+
nn.ConvTranspose2d(64, 3, 4, stride=2, padding=1), # 64 -> 128
|
| 115 |
+
nn.Tanh()
|
|
|
|
| 116 |
)
|
| 117 |
|
| 118 |
def forward(self, x):
|
| 119 |
"""
|
| 120 |
+
Forward pass through the autoencoder
|
| 121 |
|
| 122 |
Args:
|
| 123 |
x: Input tensor of shape (batch_size, 3, 128, 128)
|
| 124 |
|
| 125 |
Returns:
|
| 126 |
+
reconstructed: Reconstructed tensor of shape (batch_size, 3, 128, 128)
|
| 127 |
latent: Latent representation of shape (batch_size, latent_dim)
|
| 128 |
"""
|
| 129 |
# Encode
|
|
|
|
| 138 |
|
| 139 |
return reconstructed, latent
|
| 140 |
|
| 141 |
+
def reconstruction_error(self, x):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
"""
|
| 143 |
+
Compute per-sample reconstruction error (MSE)
|
|
|
|
| 144 |
|
| 145 |
Args:
|
| 146 |
+
x: Input tensor of shape (batch_size, 3, 128, 128)
|
|
|
|
| 147 |
|
| 148 |
Returns:
|
| 149 |
+
error: Tensor of shape (batch_size,) containing MSE for each sample
|
| 150 |
"""
|
| 151 |
reconstructed, _ = self.forward(x)
|
| 152 |
+
error = ((reconstructed - x) ** 2).view(x.size(0), -1).mean(dim=1)
|
| 153 |
+
return error
|
| 154 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
+
def load_model(checkpoint_path, device='cuda', dropout=0.1):
|
| 157 |
"""
|
| 158 |
+
Load a pretrained model from checkpoint
|
| 159 |
|
| 160 |
Args:
|
| 161 |
+
checkpoint_path: Path to the checkpoint file
|
| 162 |
+
device: Device to load the model on ('cuda' or 'cpu')
|
| 163 |
+
dropout: Dropout rate (must match training config)
|
| 164 |
|
| 165 |
Returns:
|
| 166 |
+
model: Loaded ResidualConvAutoencoder model in eval mode
|
| 167 |
+
checkpoint: Full checkpoint dictionary with metadata
|
| 168 |
"""
|
| 169 |
+
checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
|
|
|
|
| 170 |
|
| 171 |
+
# Get config if available
|
| 172 |
+
config = checkpoint.get('config', {})
|
| 173 |
+
latent_dim = config.get('latent_dim', 512)
|
| 174 |
+
dropout = config.get('dropout', dropout)
|
|
|
|
|
|
|
| 175 |
|
| 176 |
+
model = ResidualConvAutoencoder(latent_dim=latent_dim, dropout=dropout)
|
| 177 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
| 178 |
+
model.to(device)
|
| 179 |
model.eval()
|
| 180 |
+
|
| 181 |
+
return model, checkpoint
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
if __name__ == "__main__":
|
| 185 |
+
# Test the model
|
| 186 |
+
model = ResidualConvAutoencoder(latent_dim=512, dropout=0.1)
|
| 187 |
+
print(f"Model created with {sum(p.numel() for p in model.parameters()):,} parameters")
|
| 188 |
+
|
| 189 |
+
# Test forward pass
|
| 190 |
+
x = torch.randn(2, 3, 128, 128)
|
| 191 |
+
reconstructed, latent = model(x)
|
| 192 |
+
print(f"Input shape: {x.shape}")
|
| 193 |
+
print(f"Reconstructed shape: {reconstructed.shape}")
|
| 194 |
+
print(f"Latent shape: {latent.shape}")
|
| 195 |
+
|
| 196 |
+
# Test reconstruction error
|
| 197 |
+
error = model.reconstruction_error(x)
|
| 198 |
+
print(f"Reconstruction error shape: {error.shape}")
|
| 199 |
+
print(f"Mean error: {error.mean().item():.6f}")
|