IndexTTS-Rust / tools /convert_to_onnx.py
ThreadAbort's picture
Refactor: Remove internationalization (i18n) support and related files
e3e7558
#!/usr/bin/env python3
"""
Convert IndexTTS-2 PyTorch models to ONNX format for Rust inference!
This script converts the three main models:
1. GPT model (gpt.pth) - Autoregressive text-to-semantic generation
2. S2Mel model (s2mel.pth) - Semantic-to-mel spectrogram conversion
3. BigVGAN - Mel-to-waveform vocoder (already available as ONNX from NVIDIA)
Usage:
python tools/convert_to_onnx.py
Output:
models/gpt.onnx
models/s2mel.onnx
models/bigvgan.onnx (if needed, otherwise use NVIDIA's)
Why ONNX?
- Cross-platform: Works on Windows, Linux, macOS, M1/M2 Macs
- Fast: ONNX Runtime is highly optimized
- Rust-native: ort crate provides excellent ONNX Runtime bindings
- No Python: Production inference without Python dependency hell!
Author: Aye & Hue @ 8b.is
"""
import os
import sys
# Setup paths
script_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.dirname(script_dir)
os.chdir(project_root)
# Set HF cache
os.environ['HF_HUB_CACHE'] = './checkpoints/hf_cache'
print("=" * 70)
print(" IndexTTS-2 PyTorch to ONNX Converter")
print(" For Rust inference with ort crate!")
print("=" * 70)
print()
# Check for models
if not os.path.exists("checkpoints/gpt.pth"):
print("ERROR: Models not found!")
print("Run: python tools/download_files.py -s huggingface")
sys.exit(1)
import torch
import torch.onnx
import numpy as np
from pathlib import Path
# Add reference code to path
sys.path.insert(0, "indextts - REMOVING - REF ONLY")
# Create output directory
output_dir = Path("models")
output_dir.mkdir(exist_ok=True)
print(f"PyTorch version: {torch.__version__}")
print(f"Output directory: {output_dir}")
print()
def export_speaker_encoder():
"""
Export the CAM++ speaker encoder to ONNX.
This model extracts speaker embeddings from reference audio.
Input: mel spectrogram [batch, n_mels, time]
Output: speaker embedding [batch, 192]
"""
print("\n" + "=" * 50)
print("Exporting Speaker Encoder (CAM++)")
print("=" * 50)
try:
from omegaconf import OmegaConf
from indextts.s2mel.modules.campplus.DTDNN import CAMPPlus
# Load config
cfg = OmegaConf.load("checkpoints/config.yaml")
# Create model
model = CAMPPlus(feat_dim=80, embedding_size=192)
# Load weights
weights_path = "./checkpoints/hf_cache/models--funasr--campplus/snapshots/fb71fe990cbf6031ae6987a2d76fe64f94377b7e/campplus_cn_common.bin"
if os.path.exists(weights_path):
state_dict = torch.load(weights_path, map_location='cpu')
model.load_state_dict(state_dict)
print(f"Loaded weights from: {weights_path}")
model.eval()
# CAMPPlus expects [batch, time, n_mels] NOT [batch, n_mels, time]!
# This is the key insight - the model processes time-series of mel features
dummy_input = torch.randn(1, 100, 80) # [batch, time, features]
# Verify forward pass works before export
with torch.no_grad():
test_output = model(dummy_input)
print(f"Forward pass works! Output shape: {test_output.shape}")
# Export to ONNX
output_path = output_dir / "speaker_encoder.onnx"
torch.onnx.export(
model,
dummy_input,
str(output_path),
input_names=['mel_spectrogram'],
output_names=['speaker_embedding'],
dynamic_axes={
'mel_spectrogram': {0: 'batch', 1: 'time'}, # time is dim 1!
'speaker_embedding': {0: 'batch'}
},
opset_version=18, # Use 18+ for latest features
do_constant_folding=True,
)
# Verify the export
import onnx
onnx_model = onnx.load(str(output_path))
onnx.checker.check_model(onnx_model)
print(f"✓ Exported: {output_path}")
print(f" Input: mel_spectrogram [batch, time, 80]") # Corrected!
print(f" Output: speaker_embedding [batch, 192]")
print(f"✓ ONNX model verified!")
return True
except Exception as e:
print(f"✗ Failed to export speaker encoder: {e}")
import traceback
traceback.print_exc()
return False
def export_gpt_model():
"""
Export the GPT autoregressive model to ONNX.
This is the most complex model - generates semantic tokens from text.
We may need to export it in parts due to KV caching.
Input: text_tokens [batch, seq_len], speaker_embedding [batch, 192]
Output: semantic_codes [batch, code_len]
"""
print("\n" + "=" * 50)
print("Exporting GPT Model (Autoregressive)")
print("=" * 50)
try:
from omegaconf import OmegaConf
# Load the full model config
cfg = OmegaConf.load("checkpoints/config.yaml")
# This is tricky - GPT models with KV caching are hard to export
# We might need to:
# 1. Export just the forward pass without caching
# 2. Or export separate encoder/decoder parts
print("GPT model export is complex due to:")
print(" - Autoregressive generation with KV caching")
print(" - Dynamic sequence lengths")
print(" - Multiple internal components")
print()
print("Options:")
print(" A) Export without KV cache (slower but simpler)")
print(" B) Export encoder + single-step decoder (efficient)")
print(" C) Use torch.compile + ONNX tracing")
print()
# For now, let's try the simpler approach
from infer_v2 import IndexTTS2
# Load model
tts = IndexTTS2(
cfg_path="checkpoints/config.yaml",
model_dir="checkpoints",
use_fp16=False,
device="cpu"
)
# Get the GPT component
gpt = tts.gpt
gpt.eval()
print(f"GPT model loaded: {type(gpt)}")
print(f"Parameters: {sum(p.numel() for p in gpt.parameters()):,}")
# The GPT model architecture:
# - Text encoder (embeddings + transformer)
# - Speaker conditioning
# - Autoregressive decoder
# Let's export the text encoder first
output_path = output_dir / "gpt_encoder.onnx"
# Create dummy inputs
text_tokens = torch.randint(0, 30000, (1, 32), dtype=torch.int64)
# This will likely fail due to complex control flow
# but let's try!
print(f"Attempting GPT export (may require modifications)...")
# For now, just report what we learned
print()
print("Note: Full GPT export requires modifying the model code")
print("to remove dynamic control flow. Creating a wrapper...")
return False
except Exception as e:
print(f"✗ Failed to export GPT: {e}")
import traceback
traceback.print_exc()
return False
def export_s2mel_model():
"""
Export the Semantic-to-Mel model (flow matching).
This converts semantic codes to mel spectrograms.
Input: semantic_codes [batch, code_len], speaker_embedding [batch, 192]
Output: mel_spectrogram [batch, 80, mel_len]
"""
print("\n" + "=" * 50)
print("Exporting S2Mel Model (Flow Matching)")
print("=" * 50)
try:
from omegaconf import OmegaConf
cfg = OmegaConf.load("checkpoints/config.yaml")
print("S2Mel model (Diffusion/Flow Matching) is also complex:")
print(" - Multiple denoising steps (iterative)")
print(" - CFM (Conditional Flow Matching) requires ODE solving")
print()
print("Export strategy:")
print(" 1. Export the single denoising step")
print(" 2. Run iteration loop in Rust")
print()
return False
except Exception as e:
print(f"✗ Failed to export S2Mel: {e}")
import traceback
traceback.print_exc()
return False
def export_bigvgan():
"""
Export BigVGAN vocoder to ONNX.
Good news: NVIDIA provides pre-trained BigVGAN models!
Even better: They're designed for easy ONNX export.
Input: mel_spectrogram [batch, 80, mel_len]
Output: waveform [batch, 1, wave_len]
"""
print("\n" + "=" * 50)
print("Exporting BigVGAN Vocoder")
print("=" * 50)
try:
# BigVGAN from NVIDIA is easier to export
# Let's check if we already have it
print("BigVGAN options:")
print(" 1. Use NVIDIA's pre-exported ONNX (recommended)")
print(" https://github.com/NVIDIA/BigVGAN")
print()
print(" 2. Export from PyTorch weights (we'll do this)")
print()
# Try to load BigVGAN
try:
from bigvgan import bigvgan
model = bigvgan.BigVGAN.from_pretrained(
'nvidia/bigvgan_v2_22khz_80band_256x',
use_cuda_kernel=False
)
model.eval()
model.remove_weight_norm() # Important for ONNX!
print(f"BigVGAN loaded from HuggingFace")
print(f"Parameters: {sum(p.numel() for p in model.parameters()):,}")
# Create dummy input
dummy_mel = torch.randn(1, 80, 100)
# Export
output_path = output_dir / "bigvgan.onnx"
torch.onnx.export(
model,
dummy_mel,
str(output_path),
input_names=['mel_spectrogram'],
output_names=['waveform'],
dynamic_axes={
'mel_spectrogram': {0: 'batch', 2: 'mel_length'},
'waveform': {0: 'batch', 2: 'wave_length'}
},
opset_version=18, # Use 18+ for latest features
do_constant_folding=True,
)
print(f"✓ Exported: {output_path}")
print(f" Input: mel_spectrogram [batch, 80, mel_len]")
print(f" Output: waveform [batch, 1, wave_len]")
# Verify the export
import onnx
onnx_model = onnx.load(str(output_path))
onnx.checker.check_model(onnx_model)
print(f"✓ ONNX model verified!")
return True
except ImportError:
print("bigvgan package not installed, installing...")
os.system("pip install bigvgan")
print("Please re-run the script.")
return False
except Exception as e:
print(f"✗ Failed to export BigVGAN: {e}")
import traceback
traceback.print_exc()
return False
def main():
print("\nStarting ONNX conversion...\n")
results = {}
# Export each component
results['speaker_encoder'] = export_speaker_encoder()
results['gpt'] = export_gpt_model()
results['s2mel'] = export_s2mel_model()
results['bigvgan'] = export_bigvgan()
# Summary
print("\n" + "=" * 70)
print(" CONVERSION SUMMARY")
print("=" * 70)
for name, success in results.items():
status = "✓ SUCCESS" if success else "✗ NEEDS WORK"
print(f" {name:20} {status}")
print()
if all(results.values()):
print("All models converted! Ready for Rust inference.")
else:
print("Some models need manual intervention.")
print()
print("For complex models (GPT, S2Mel), consider:")
print(" 1. Modifying the Python code to remove dynamic control flow")
print(" 2. Using torch.jit.trace with concrete inputs")
print(" 3. Exporting subcomponents separately")
print(" 4. Using ONNX Runtime's transformer optimizations")
print()
print("Output directory:", output_dir.absolute())
if __name__ == "__main__":
main()