File size: 6,601 Bytes
2bbfbb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
//! Model inference module for IndexTTS
//!
//! Provides ONNX Runtime-based model inference for TTS components

mod gpt;
mod embedding;
mod session;

pub use gpt::{GptModel, GptConfig};
pub use embedding::{SpeakerEncoder, EmotionEncoder, SemanticEncoder};
pub use session::{OnnxSession, ModelCache};


/// Sampling strategy for generation
#[derive(Debug, Clone)]
pub enum SamplingStrategy {
    /// Greedy decoding (always pick most likely token)
    Greedy,
    /// Top-k sampling
    TopK { k: usize },
    /// Top-p (nucleus) sampling
    TopP { p: f32 },
    /// Combined top-k and top-p
    TopKP { k: usize, p: f32 },
    /// Temperature-scaled sampling
    Temperature { temp: f32 },
}

impl Default for SamplingStrategy {
    fn default() -> Self {
        SamplingStrategy::TopKP { k: 50, p: 0.95 }
    }
}

/// Sample from logits using specified strategy
pub fn sample_from_logits(logits: &[f32], strategy: &SamplingStrategy) -> usize {
    match strategy {
        SamplingStrategy::Greedy => {
            logits
                .iter()
                .enumerate()
                .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
                .map(|(i, _)| i)
                .unwrap_or(0)
        }
        SamplingStrategy::TopK { k } => {
            let mut indexed: Vec<(usize, f32)> = logits.iter().cloned().enumerate().collect();
            indexed.sort_by(|(_, a), (_, b)| b.partial_cmp(a).unwrap());
            indexed.truncate(*k);

            // Apply softmax to top-k
            let max_logit = indexed[0].1;
            let exp_sum: f32 = indexed.iter().map(|(_, l)| (l - max_logit).exp()).sum();
            let probs: Vec<f32> = indexed
                .iter()
                .map(|(_, l)| (l - max_logit).exp() / exp_sum)
                .collect();

            sample_categorical(&indexed.iter().map(|(i, _)| *i).collect::<Vec<_>>(), &probs)
        }
        SamplingStrategy::TopP { p } => {
            let mut indexed: Vec<(usize, f32)> = logits.iter().cloned().enumerate().collect();
            indexed.sort_by(|(_, a), (_, b)| b.partial_cmp(a).unwrap());

            // Apply softmax
            let max_logit = indexed[0].1;
            let exp_sum: f32 = indexed.iter().map(|(_, l)| (l - max_logit).exp()).sum();
            let probs: Vec<f32> = indexed
                .iter()
                .map(|(_, l)| (l - max_logit).exp() / exp_sum)
                .collect();

            // Find nucleus
            let mut cumsum = 0.0;
            let mut nucleus_size = probs.len();
            for (i, prob) in probs.iter().enumerate() {
                cumsum += prob;
                if cumsum >= *p {
                    nucleus_size = i + 1;
                    break;
                }
            }

            // Renormalize nucleus
            let nucleus_sum: f32 = probs[..nucleus_size].iter().sum();
            let nucleus_probs: Vec<f32> = probs[..nucleus_size]
                .iter()
                .map(|p| p / nucleus_sum)
                .collect();

            sample_categorical(
                &indexed[..nucleus_size]
                    .iter()
                    .map(|(i, _)| *i)
                    .collect::<Vec<_>>(),
                &nucleus_probs,
            )
        }
        SamplingStrategy::TopKP { k, p } => {
            let mut indexed: Vec<(usize, f32)> = logits.iter().cloned().enumerate().collect();
            indexed.sort_by(|(_, a), (_, b)| b.partial_cmp(a).unwrap());
            indexed.truncate(*k);

            // Apply softmax
            let max_logit = indexed[0].1;
            let exp_sum: f32 = indexed.iter().map(|(_, l)| (l - max_logit).exp()).sum();
            let probs: Vec<f32> = indexed
                .iter()
                .map(|(_, l)| (l - max_logit).exp() / exp_sum)
                .collect();

            // Find nucleus within top-k
            let mut cumsum = 0.0;
            let mut nucleus_size = probs.len();
            for (i, prob) in probs.iter().enumerate() {
                cumsum += prob;
                if cumsum >= *p {
                    nucleus_size = i + 1;
                    break;
                }
            }

            let nucleus_sum: f32 = probs[..nucleus_size].iter().sum();
            let nucleus_probs: Vec<f32> = probs[..nucleus_size]
                .iter()
                .map(|p| p / nucleus_sum)
                .collect();

            sample_categorical(
                &indexed[..nucleus_size]
                    .iter()
                    .map(|(i, _)| *i)
                    .collect::<Vec<_>>(),
                &nucleus_probs,
            )
        }
        SamplingStrategy::Temperature { temp } => {
            let scaled: Vec<f32> = logits.iter().map(|l| l / temp).collect();
            let max_logit = scaled.iter().cloned().fold(f32::NEG_INFINITY, f32::max);
            let exp_sum: f32 = scaled.iter().map(|l| (l - max_logit).exp()).sum();
            let probs: Vec<f32> = scaled
                .iter()
                .map(|l| (l - max_logit).exp() / exp_sum)
                .collect();

            sample_categorical(&(0..probs.len()).collect::<Vec<_>>(), &probs)
        }
    }
}

/// Sample from categorical distribution
fn sample_categorical(indices: &[usize], probs: &[f32]) -> usize {
    use rand::Rng;
    let mut rng = rand::thread_rng();
    let r: f32 = rng.gen();

    let mut cumsum = 0.0;
    for (i, &p) in probs.iter().enumerate() {
        cumsum += p;
        if r <= cumsum {
            return indices[i];
        }
    }

    indices[indices.len() - 1]
}

/// Apply repetition penalty to logits
pub fn apply_repetition_penalty(logits: &mut [f32], previous_tokens: &[usize], penalty: f32) {
    for &token in previous_tokens {
        if token < logits.len() {
            if logits[token] > 0.0 {
                logits[token] /= penalty;
            } else {
                logits[token] *= penalty;
            }
        }
    }
}

/// Softmax function
pub fn softmax(logits: &[f32]) -> Vec<f32> {
    let max_logit = logits.iter().cloned().fold(f32::NEG_INFINITY, f32::max);
    let exp_sum: f32 = logits.iter().map(|l| (l - max_logit).exp()).sum();
    logits
        .iter()
        .map(|l| (l - max_logit).exp() / exp_sum)
        .collect()
}

/// Log softmax function
pub fn log_softmax(logits: &[f32]) -> Vec<f32> {
    let max_logit = logits.iter().cloned().fold(f32::NEG_INFINITY, f32::max);
    let exp_sum: f32 = logits.iter().map(|l| (l - max_logit).exp()).sum();
    let log_sum = exp_sum.ln();
    logits.iter().map(|l| l - max_logit - log_sum).collect()
}