|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""QwerkyLlamaMambaHybrid model configuration""" |
|
|
|
|
|
from typing import List, Optional |
|
|
from transformers.configuration_utils import PretrainedConfig |
|
|
from transformers.utils import logging |
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
class QwerkyLlamaMambaHybridConfig(PretrainedConfig): |
|
|
r""" |
|
|
This is the configuration class to store the configuration of a [`MambaInLlamaMambaModel`]. It consolidates |
|
|
both the transformer config and mamba config into a single configuration file. |
|
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. |
|
|
Read the documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
|
vocab_size (`int`, *optional*, defaults to 32000): |
|
|
Vocabulary size of the MambaInLlama model. |
|
|
hidden_size (`int`, *optional*, defaults to 4096): |
|
|
Dimension of the hidden representations. |
|
|
intermediate_size (`int`, *optional*, defaults to 11008): |
|
|
Dimension of the MLP representations. |
|
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
|
Number of hidden layers in the model. |
|
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
|
Number of attention heads for each attention layer. |
|
|
num_key_value_heads (`int`, *optional*, defaults to 32): |
|
|
Number of key-value heads for grouped query attention. |
|
|
hidden_act (`str`, *optional*, defaults to "silu"): |
|
|
The non-linear activation function in the MLP layers. |
|
|
max_position_embeddings (`int`, *optional*, defaults to 2048): |
|
|
The maximum sequence length that this model might ever be used with. |
|
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
|
rms_norm_eps (`float`, *optional*, defaults to 1e-6): |
|
|
The epsilon used by the rms normalization layers. |
|
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
|
Whether or not the model should return the last key/values attentions. |
|
|
pad_token_id (`int`, *optional*, defaults to 0): |
|
|
The id of the padding token. |
|
|
bos_token_id (`int`, *optional*, defaults to 1): |
|
|
The id of the "beginning-of-sequence" token. |
|
|
eos_token_id (`int`, *optional*, defaults to 2): |
|
|
The id of the "end-of-sequence" token. |
|
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
|
Whether the model's input and output word embeddings should be tied. |
|
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
|
The base period of the RoPE embeddings. |
|
|
rope_scaling (`dict`, *optional*): |
|
|
Dictionary containing the scaling configuration for the RoPE embeddings. |
|
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
|
The dropout ratio for the attention probabilities. |
|
|
# Mamba-specific config |
|
|
d_model (`int`, *optional*): |
|
|
Model dimension for Mamba layers. If not provided, defaults to `hidden_size`. |
|
|
d_inner (`int`, *optional*): |
|
|
Inner dimension for Mamba layers. If not provided, defaults to `intermediate_size`. |
|
|
d_xb (`int`, *optional*, defaults to 2560): |
|
|
Dimension for Mamba xB projection. |
|
|
ssm_cfg (`dict`, *optional*, defaults to `{}`): |
|
|
State space model configuration dictionary. |
|
|
attn_layers (`List[int]`, *optional*, defaults to `[]`): |
|
|
List of layer indices that use attention instead of Mamba. |
|
|
""" |
|
|
|
|
|
model_type = "qwerky_llama_mamba_hybrid" |
|
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
vocab_size: int = 32000, |
|
|
hidden_size: int = 4096, |
|
|
intermediate_size: int = 11008, |
|
|
num_hidden_layers: int = 32, |
|
|
num_attention_heads: int = 32, |
|
|
num_key_value_heads: Optional[int] = None, |
|
|
hidden_act: str = "silu", |
|
|
max_position_embeddings: int = 2048, |
|
|
initializer_range: float = 0.02, |
|
|
rms_norm_eps: float = 1e-6, |
|
|
use_cache: bool = True, |
|
|
pad_token_id: int = 0, |
|
|
bos_token_id: int = 1, |
|
|
eos_token_id: int = 2, |
|
|
tie_word_embeddings: bool = False, |
|
|
rope_theta: float = 10000.0, |
|
|
rope_scaling: Optional[dict] = None, |
|
|
attention_dropout: float = 0.0, |
|
|
|
|
|
d_model: Optional[int] = None, |
|
|
d_inner: Optional[int] = None, |
|
|
d_xb: int = 2560, |
|
|
ssm_cfg: Optional[dict] = None, |
|
|
attn_layers: Optional[List[int]] = None, |
|
|
**kwargs, |
|
|
): |
|
|
self.vocab_size = vocab_size |
|
|
self.hidden_size = hidden_size |
|
|
self.intermediate_size = intermediate_size |
|
|
self.num_hidden_layers = num_hidden_layers |
|
|
self.num_attention_heads = num_attention_heads |
|
|
self.num_key_value_heads = ( |
|
|
num_key_value_heads |
|
|
if num_key_value_heads is not None |
|
|
else num_attention_heads |
|
|
) |
|
|
self.hidden_act = hidden_act |
|
|
self.max_position_embeddings = max_position_embeddings |
|
|
self.initializer_range = initializer_range |
|
|
self.rms_norm_eps = rms_norm_eps |
|
|
self.use_cache = use_cache |
|
|
self.rope_theta = rope_theta |
|
|
self.rope_scaling = rope_scaling |
|
|
self.attention_dropout = attention_dropout |
|
|
|
|
|
|
|
|
self.d_model = d_model if d_model is not None else hidden_size |
|
|
self.d_inner = d_inner if d_inner is not None else intermediate_size |
|
|
self.d_xb = d_xb |
|
|
self.ssm_cfg = ssm_cfg if ssm_cfg is not None else {} |
|
|
self.attn_layers = attn_layers if attn_layers is not None else [] |
|
|
|
|
|
super().__init__( |
|
|
pad_token_id=pad_token_id, |
|
|
bos_token_id=bos_token_id, |
|
|
eos_token_id=eos_token_id, |
|
|
tie_word_embeddings=tie_word_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
if "auto_map" not in kwargs: |
|
|
self.auto_map = { |
|
|
"AutoConfig": "configuration_qwerky_llama_mamba_hybrid.QwerkyLlamaMambaHybridConfig", |
|
|
"AutoModelForCausalLM": "modeling_qwerky_llama_mamba_hybrid.QwerkyLlamaMambaHybridForCausalLM", |
|
|
} |
|
|
|
|
|
|
|
|
if "architectures" not in kwargs: |
|
|
self.architectures = ["QwerkyLlamaMambaHybridForCausalLM"] |
|
|
|