Qwerky-Optimized-Llama3.1-Mamba-0.2-8B-Instruct / configuration_qwerky_llama_mamba_hybrid.py
ulmentflam's picture
Upload folder using huggingface_hub
1e2779e verified
# coding=utf-8
# Copyright (c) 2025, Qwerky AI, Inc. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""QwerkyLlamaMambaHybrid model configuration"""
from typing import List, Optional
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class QwerkyLlamaMambaHybridConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MambaInLlamaMambaModel`]. It consolidates
both the transformer config and mamba config into a single configuration file.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs.
Read the documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the MambaInLlama model.
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the model.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer.
num_key_value_heads (`int`, *optional*, defaults to 32):
Number of key-value heads for grouped query attention.
hidden_act (`str`, *optional*, defaults to "silu"):
The non-linear activation function in the MLP layers.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-6):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions.
pad_token_id (`int`, *optional*, defaults to 0):
The id of the padding token.
bos_token_id (`int`, *optional*, defaults to 1):
The id of the "beginning-of-sequence" token.
eos_token_id (`int`, *optional*, defaults to 2):
The id of the "end-of-sequence" token.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
# Mamba-specific config
d_model (`int`, *optional*):
Model dimension for Mamba layers. If not provided, defaults to `hidden_size`.
d_inner (`int`, *optional*):
Inner dimension for Mamba layers. If not provided, defaults to `intermediate_size`.
d_xb (`int`, *optional*, defaults to 2560):
Dimension for Mamba xB projection.
ssm_cfg (`dict`, *optional*, defaults to `{}`):
State space model configuration dictionary.
attn_layers (`List[int]`, *optional*, defaults to `[]`):
List of layer indices that use attention instead of Mamba.
"""
model_type = "qwerky_llama_mamba_hybrid"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size: int = 32000,
hidden_size: int = 4096,
intermediate_size: int = 11008,
num_hidden_layers: int = 32,
num_attention_heads: int = 32,
num_key_value_heads: Optional[int] = None,
hidden_act: str = "silu",
max_position_embeddings: int = 2048,
initializer_range: float = 0.02,
rms_norm_eps: float = 1e-6,
use_cache: bool = True,
pad_token_id: int = 0,
bos_token_id: int = 1,
eos_token_id: int = 2,
tie_word_embeddings: bool = False,
rope_theta: float = 10000.0,
rope_scaling: Optional[dict] = None,
attention_dropout: float = 0.0,
# Mamba-specific parameters
d_model: Optional[int] = None,
d_inner: Optional[int] = None,
d_xb: int = 2560,
ssm_cfg: Optional[dict] = None,
attn_layers: Optional[List[int]] = None,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = (
num_key_value_heads
if num_key_value_heads is not None
else num_attention_heads
)
self.hidden_act = hidden_act
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_dropout = attention_dropout
# Mamba-specific parameters
self.d_model = d_model if d_model is not None else hidden_size
self.d_inner = d_inner if d_inner is not None else intermediate_size
self.d_xb = d_xb
self.ssm_cfg = ssm_cfg if ssm_cfg is not None else {}
self.attn_layers = attn_layers if attn_layers is not None else []
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
# Set auto_map for external code loading
if "auto_map" not in kwargs:
self.auto_map = {
"AutoConfig": "configuration_qwerky_llama_mamba_hybrid.QwerkyLlamaMambaHybridConfig",
"AutoModelForCausalLM": "modeling_qwerky_llama_mamba_hybrid.QwerkyLlamaMambaHybridForCausalLM",
}
# Set architectures field
if "architectures" not in kwargs:
self.architectures = ["QwerkyLlamaMambaHybridForCausalLM"]