SetFit with sentence-transformers/paraphrase-multilingual-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
RELACIONAMENTO
  • 'Como vai você?'
  • 'Qual o seu nome?'
  • 'você é um robô ou uma máquina?'
FORA DE CONTEXTO
  • 'Qual a receita de bolo de chocolate?'
  • 'Quem ganhou o jogo ontem?'
  • 'Como funciona Bitcoin?'
NEURODIVERSIDADE
  • 'Tenho TDAH e não consigo me concentrar'
  • 'Meu filho é autista, preciso de ajuda'
  • 'Sintomas de dislexia em adultos'
CONTINUAÇÃO
  • 'Sim, pode continuar'
  • 'Entendi, e depois?'
  • 'Ok, continue'
INDEFINIDO
  • '...'
  • 'asdkjhasd'
  • 'Oi'

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Platypical/classificador-intencao-ptbr")
# Run inference
preds = model("talvez")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 3.5849 7
Label Training Sample Count
RELACIONAMENTO 10
FORA DE CONTEXTO 10
NEURODIVERSIDADE 10
CONTINUAÇÃO 12
INDEFINIDO 11

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 0.02
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0075 1 0.2716 -
0.3759 50 0.1379 -
0.7519 100 0.0377 -

Framework Versions

  • Python: 3.12.12
  • SetFit: 1.1.3
  • Sentence Transformers: 5.1.2
  • Transformers: 4.57.1
  • PyTorch: 2.9.0+cu126
  • Datasets: 4.0.0
  • Tokenizers: 0.22.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
11
Safetensors
Model size
0.3B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Platypical/classificador-intencao-ptbr