InternAgent
/
examples
/AutoSeg_VOC12
/EntropyOptimizedAttentionNet
/network
/backbone
/mobilenetv2.py
| from torch import nn | |
| try: # for torchvision<0.4 | |
| from torchvision.models.utils import load_state_dict_from_url | |
| except: # for torchvision>=0.4 | |
| from torch.hub import load_state_dict_from_url | |
| import torch.nn.functional as F | |
| __all__ = ['MobileNetV2', 'mobilenet_v2'] | |
| model_urls = { | |
| 'mobilenet_v2': 'https://download.pytorch.org/models/mobilenet_v2-b0353104.pth', | |
| } | |
| def _make_divisible(v, divisor, min_value=None): | |
| """ | |
| This function is taken from the original tf repo. | |
| It ensures that all layers have a channel number that is divisible by 8 | |
| It can be seen here: | |
| https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py | |
| :param v: | |
| :param divisor: | |
| :param min_value: | |
| :return: | |
| """ | |
| if min_value is None: | |
| min_value = divisor | |
| new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) | |
| # Make sure that round down does not go down by more than 10%. | |
| if new_v < 0.9 * v: | |
| new_v += divisor | |
| return new_v | |
| class ConvBNReLU(nn.Sequential): | |
| def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, dilation=1, groups=1): | |
| #padding = (kernel_size - 1) // 2 | |
| super(ConvBNReLU, self).__init__( | |
| nn.Conv2d(in_planes, out_planes, kernel_size, stride, 0, dilation=dilation, groups=groups, bias=False), | |
| nn.BatchNorm2d(out_planes), | |
| nn.ReLU6(inplace=True) | |
| ) | |
| def fixed_padding(kernel_size, dilation): | |
| kernel_size_effective = kernel_size + (kernel_size - 1) * (dilation - 1) | |
| pad_total = kernel_size_effective - 1 | |
| pad_beg = pad_total // 2 | |
| pad_end = pad_total - pad_beg | |
| return (pad_beg, pad_end, pad_beg, pad_end) | |
| class InvertedResidual(nn.Module): | |
| def __init__(self, inp, oup, stride, dilation, expand_ratio): | |
| super(InvertedResidual, self).__init__() | |
| self.stride = stride | |
| assert stride in [1, 2] | |
| hidden_dim = int(round(inp * expand_ratio)) | |
| self.use_res_connect = self.stride == 1 and inp == oup | |
| layers = [] | |
| if expand_ratio != 1: | |
| # pw | |
| layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) | |
| layers.extend([ | |
| # dw | |
| ConvBNReLU(hidden_dim, hidden_dim, stride=stride, dilation=dilation, groups=hidden_dim), | |
| # pw-linear | |
| nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), | |
| nn.BatchNorm2d(oup), | |
| ]) | |
| self.conv = nn.Sequential(*layers) | |
| self.input_padding = fixed_padding( 3, dilation ) | |
| def forward(self, x): | |
| x_pad = F.pad(x, self.input_padding) | |
| if self.use_res_connect: | |
| return x + self.conv(x_pad) | |
| else: | |
| return self.conv(x_pad) | |
| class MobileNetV2(nn.Module): | |
| def __init__(self, num_classes=1000, output_stride=8, width_mult=1.0, inverted_residual_setting=None, round_nearest=8): | |
| """ | |
| MobileNet V2 main class | |
| Args: | |
| num_classes (int): Number of classes | |
| width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount | |
| inverted_residual_setting: Network structure | |
| round_nearest (int): Round the number of channels in each layer to be a multiple of this number | |
| Set to 1 to turn off rounding | |
| """ | |
| super(MobileNetV2, self).__init__() | |
| block = InvertedResidual | |
| input_channel = 32 | |
| last_channel = 1280 | |
| self.output_stride = output_stride | |
| current_stride = 1 | |
| if inverted_residual_setting is None: | |
| inverted_residual_setting = [ | |
| # t, c, n, s | |
| [1, 16, 1, 1], | |
| [6, 24, 2, 2], | |
| [6, 32, 3, 2], | |
| [6, 64, 4, 2], | |
| [6, 96, 3, 1], | |
| [6, 160, 3, 2], | |
| [6, 320, 1, 1], | |
| ] | |
| # only check the first element, assuming user knows t,c,n,s are required | |
| if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4: | |
| raise ValueError("inverted_residual_setting should be non-empty " | |
| "or a 4-element list, got {}".format(inverted_residual_setting)) | |
| # building first layer | |
| input_channel = _make_divisible(input_channel * width_mult, round_nearest) | |
| self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest) | |
| features = [ConvBNReLU(3, input_channel, stride=2)] | |
| current_stride *= 2 | |
| dilation=1 | |
| previous_dilation = 1 | |
| # building inverted residual blocks | |
| for t, c, n, s in inverted_residual_setting: | |
| output_channel = _make_divisible(c * width_mult, round_nearest) | |
| previous_dilation = dilation | |
| if current_stride == output_stride: | |
| stride = 1 | |
| dilation *= s | |
| else: | |
| stride = s | |
| current_stride *= s | |
| output_channel = int(c * width_mult) | |
| for i in range(n): | |
| if i==0: | |
| features.append(block(input_channel, output_channel, stride, previous_dilation, expand_ratio=t)) | |
| else: | |
| features.append(block(input_channel, output_channel, 1, dilation, expand_ratio=t)) | |
| input_channel = output_channel | |
| # building last several layers | |
| features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1)) | |
| # make it nn.Sequential | |
| self.features = nn.Sequential(*features) | |
| # building classifier | |
| self.classifier = nn.Sequential( | |
| nn.Dropout(0.2), | |
| nn.Linear(self.last_channel, num_classes), | |
| ) | |
| # weight initialization | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| nn.init.kaiming_normal_(m.weight, mode='fan_out') | |
| if m.bias is not None: | |
| nn.init.zeros_(m.bias) | |
| elif isinstance(m, nn.BatchNorm2d): | |
| nn.init.ones_(m.weight) | |
| nn.init.zeros_(m.bias) | |
| elif isinstance(m, nn.Linear): | |
| nn.init.normal_(m.weight, 0, 0.01) | |
| nn.init.zeros_(m.bias) | |
| def forward(self, x): | |
| x = self.features(x) | |
| x = x.mean([2, 3]) | |
| x = self.classifier(x) | |
| return x | |
| def mobilenet_v2(pretrained=False, progress=True, **kwargs): | |
| """ | |
| Constructs a MobileNetV2 architecture from | |
| `"MobileNetV2: Inverted Residuals and Linear Bottlenecks" <https://arxiv.org/abs/1801.04381>`_. | |
| Args: | |
| pretrained (bool): If True, returns a model pre-trained on ImageNet | |
| progress (bool): If True, displays a progress bar of the download to stderr | |
| """ | |
| model = MobileNetV2(**kwargs) | |
| if pretrained: | |
| state_dict = load_state_dict_from_url(model_urls['mobilenet_v2'], | |
| progress=progress) | |
| model.load_state_dict(state_dict) | |
| return model | |