yxc97's picture
Upload folder using huggingface_hub
62a2f1c verified
from tqdm import tqdm
import network
import utils
import os
import random
import argparse
import numpy as np
import json
from torch.utils import data
from datasets import VOCSegmentation, Cityscapes
from utils import ext_transforms as et
from metrics import StreamSegMetrics
from torch.utils.tensorboard import SummaryWriter # Added Line
import torch
import torch.nn as nn
from PIL import Image
import matplotlib
import matplotlib.pyplot as plt
def get_argparser():
parser = argparse.ArgumentParser()
parser.add_argument("--out_dir", type=str, default="run_0")
# Datset Options
parser.add_argument("--data_root", type=str, default='',
help="path to Dataset")
parser.add_argument("--dataset", type=str, default='voc',
choices=['voc'], help='Name of dataset')
parser.add_argument("--num_classes", type=int, default=None,
help="num classes (default: None)")
# Deeplab Options
parser.add_argument("--model", type=str, default='deeplabv3plus_resnet101',
choices=['deeplabv3plus_resnet101', 'deeplabv3plus_resnet50', 'deeplabv3plus_mobilenet',
'deeplabv3plus_xception', 'deeplabv3plus_hrnetv2_48', 'deeplabv3plus_hrnetv2_32',
'deeplabv3_resnet101', 'deeplabv3_resnet50', 'deeplabv3_mobilenet',
'deeplabv3_xception', 'deeplabv3_hrnetv2_48', 'deeplabv3_hrnetv2_32'],
help='model name')
parser.add_argument("--separable_conv", action='store_true', default=False,
help="apply separable conv to decoder and aspp")
parser.add_argument("--output_stride", type=int, default=16, choices=[8, 16])
# Enhanced Model Options
parser.add_argument("--use_eoaNet", action='store_true', default=True,
help="Use Entropy-Optimized Attention Network")
parser.add_argument("--no_eoaNet", action='store_false', dest='use_eoaNet',
help="Disable Entropy-Optimized Attention Network")
parser.add_argument("--msa_scales", nargs='+', type=int, default=[1, 2, 4],
help="Scales for Multi-Scale Attention")
parser.add_argument("--eog_beta", type=float, default=0.3,
help="Entropy threshold for Entropy-Optimized Gating")
# Train Options
parser.add_argument("--test_only", action='store_true', default=False)
parser.add_argument("--save_val_results", action='store_true', default=False,
help="save segmentation results to \"./results\"")
parser.add_argument("--total_itrs", type=int, default=30e3,
help="epoch number (default: 30k 30e3)")
parser.add_argument("--lr", type=float, default=0.02,
help="learning rate (default: 0.01)")
parser.add_argument("--lr_policy", type=str, default='poly', choices=['poly', 'step'],
help="learning rate scheduler policy")
parser.add_argument("--step_size", type=int, default=10000)
parser.add_argument("--crop_val", action='store_true', default=True,
help='crop validation (default: False)')
parser.add_argument("--batch_size", type=int, default=32,
help='batch size (default: 16)')
parser.add_argument("--val_batch_size", type=int, default=4,
help='batch size for validation (default: 4)')
parser.add_argument("--crop_size", type=int, default=513)
parser.add_argument("--ckpt", default=None, type=str,
help="restore from checkpoint")
parser.add_argument("--continue_training", action='store_true', default=False)
parser.add_argument("--loss_type", type=str, default='cross_entropy',
choices=['cross_entropy', 'focal_loss'], help="loss type (default: False)")
parser.add_argument("--gpu_id", type=str, default='0,1',
help="GPU ID")
parser.add_argument("--weight_decay", type=float, default=1e-4,
help='weight decay (default: 1e-4)')
parser.add_argument("--random_seed", type=int, default=1,
help="random seed (default: 1)")
parser.add_argument("--print_interval", type=int, default=10,
help="print interval of loss (default: 10)")
parser.add_argument("--val_interval", type=int, default=100,
help="epoch interval for eval (default: 100)")
parser.add_argument("--download", action='store_true', default=False,
help="download datasets")
# PASCAL VOC Options
parser.add_argument("--year", type=str, default='2012_aug',
choices=['2012_aug', '2012', '2011', '2009', '2008', '2007'], help='year of VOC')
return parser
def get_dataset(opts):
""" Dataset And Augmentation
"""
if opts.dataset == 'voc':
train_transform = et.ExtCompose([
# et.ExtResize(size=opts.crop_size),
et.ExtRandomScale((0.5, 2.0)),
et.ExtRandomCrop(size=(opts.crop_size, opts.crop_size), pad_if_needed=True),
et.ExtRandomHorizontalFlip(),
et.ExtToTensor(),
et.ExtNormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
if opts.crop_val:
val_transform = et.ExtCompose([
et.ExtResize(opts.crop_size),
et.ExtCenterCrop(opts.crop_size),
et.ExtToTensor(),
et.ExtNormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
else:
val_transform = et.ExtCompose([
et.ExtToTensor(),
et.ExtNormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
train_dst = VOCSegmentation(root=opts.data_root, year=opts.year,
image_set='train', download=opts.download, transform=train_transform)
val_dst = VOCSegmentation(root=opts.data_root, year=opts.year,
image_set='val', download=False, transform=val_transform)
if opts.dataset == 'cityscapes':
train_transform = et.ExtCompose([
# et.ExtResize( 512 ),
et.ExtRandomCrop(size=(opts.crop_size, opts.crop_size)),
et.ExtColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),
et.ExtRandomHorizontalFlip(),
et.ExtToTensor(),
et.ExtNormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
val_transform = et.ExtCompose([
# et.ExtResize( 512 ),
et.ExtToTensor(),
et.ExtNormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
train_dst = Cityscapes(root=opts.data_root,
split='train', transform=train_transform)
val_dst = Cityscapes(root=opts.data_root,
split='val', transform=val_transform)
return train_dst, val_dst
def validate(opts, model, loader, device, metrics, ret_samples_ids=None):
"""Do validation and return specified samples"""
metrics.reset()
ret_samples = []
if opts.save_val_results:
if not os.path.exists('results'):
os.mkdir('results')
denorm = utils.Denormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
img_id = 0
with torch.no_grad():
for i, (images, labels) in tqdm(enumerate(loader)):
images = images.to(device, dtype=torch.float32)
labels = labels.to(device, dtype=torch.long)
outputs = model(images)
preds = outputs.detach().max(dim=1)[1].cpu().numpy()
targets = labels.cpu().numpy()
metrics.update(targets, preds)
if ret_samples_ids is not None and i in ret_samples_ids: # get vis samples
ret_samples.append(
(images[0].detach().cpu().numpy(), targets[0], preds[0]))
if opts.save_val_results:
for i in range(len(images)):
image = images[i].detach().cpu().numpy()
target = targets[i]
pred = preds[i]
image = (denorm(image) * 255).transpose(1, 2, 0).astype(np.uint8)
target = loader.dataset.decode_target(target).astype(np.uint8)
pred = loader.dataset.decode_target(pred).astype(np.uint8)
Image.fromarray(image).save('results/%d_image.png' % img_id)
Image.fromarray(target).save('results/%d_target.png' % img_id)
Image.fromarray(pred).save('results/%d_pred.png' % img_id)
fig = plt.figure()
plt.imshow(image)
plt.axis('off')
plt.imshow(pred, alpha=0.7)
ax = plt.gca()
ax.xaxis.set_major_locator(matplotlib.ticker.NullLocator())
ax.yaxis.set_major_locator(matplotlib.ticker.NullLocator())
plt.savefig('results/%d_overlay.png' % img_id, bbox_inches='tight', pad_inches=0)
plt.close()
img_id += 1
score = metrics.get_results()
return score, ret_samples
def main(opts):
if opts.dataset.lower() == 'voc':
opts.num_classes = 21
elif opts.dataset.lower() == 'cityscapes':
opts.num_classes = 19
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print("Device: %s" % device)
# Setup random seed
torch.manual_seed(opts.random_seed)
np.random.seed(opts.random_seed)
random.seed(opts.random_seed)
# Setup TensorBoard writer
writer = SummaryWriter(log_dir='logs') # Line 1071
# Setup dataloader
if opts.dataset == 'voc' and not opts.crop_val:
opts.val_batch_size = 1
train_dst, val_dst = get_dataset(opts)
# Adjust batch size if dataset is smaller than batch size
effective_batch_size = min(opts.batch_size, len(train_dst))
effective_val_batch_size = min(opts.val_batch_size, len(val_dst))
if effective_batch_size < opts.batch_size:
print(f"Warning: Reducing batch size from {opts.batch_size} to {effective_batch_size} due to small dataset")
train_loader = data.DataLoader(
train_dst, batch_size=opts.batch_size, shuffle=True, num_workers=2,
drop_last=False) # drop_last=True to ignore single-image batches.
val_loader = data.DataLoader(
val_dst, batch_size=effective_val_batch_size, shuffle=True, num_workers=2)
print("Dataset: %s, Train set: %d, Val set: %d" %
(opts.dataset, len(train_dst), len(val_dst)))
# Set up model (all models are 'constructed at network.modeling)
model = network.modeling.__dict__[opts.model](
num_classes=opts.num_classes,
output_stride=opts.output_stride,
use_eoaNet=opts.use_eoaNet,
msa_scales=opts.msa_scales,
eog_beta=opts.eog_beta
)
if opts.separable_conv and 'plus' in opts.model:
network.convert_to_separable_conv(model.classifier)
utils.set_bn_momentum(model.backbone, momentum=0.01)
# Set up metrics
metrics = StreamSegMetrics(opts.num_classes)
# Set up optimizer
optimizer = torch.optim.SGD(params=[
{'params': model.backbone.parameters(), 'lr': 0.1 * opts.lr},
{'params': model.classifier.parameters(), 'lr': opts.lr},
], lr=opts.lr, momentum=0.9, weight_decay=opts.weight_decay)
# optimizer = torch.optim.SGD(params=model.parameters(), lr=opts.lr, momentum=0.9, weight_decay=opts.weight_decay)
# torch.optim.lr_scheduler.StepLR(optimizer, step_size=opts.lr_decay_step, gamma=opts.lr_decay_factor)
if opts.lr_policy == 'poly':
scheduler = utils.PolyLR(optimizer, opts.total_itrs, power=0.9)
elif opts.lr_policy == 'step':
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=opts.step_size, gamma=0.1)
# Set up criterion
# criterion = utils.get_loss(opts.loss_type)
if opts.loss_type == 'focal_loss':
criterion = utils.FocalLoss(ignore_index=255, size_average=True)
elif opts.loss_type == 'cross_entropy':
criterion = nn.CrossEntropyLoss(ignore_index=255, reduction='mean')
def save_ckpt(path):
""" save current model
"""
torch.save({
"cur_itrs": cur_itrs,
"model_state": model.module.state_dict(),
"optimizer_state": optimizer.state_dict(),
"scheduler_state": scheduler.state_dict(),
"best_score": best_score,
}, path)
print("Model saved as %s" % path)
if not os.path.exists('checkpoints'):
os.mkdir('checkpoints')
# Restore
best_score = 0.0
cur_itrs = 0
cur_epochs = 0
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
if opts.ckpt is not None and os.path.isfile(opts.ckpt):
# https://github.com/VainF/DeepLabV3Plus-Pytorch/issues/8#issuecomment-605601402, @PytaichukBohdan
checkpoint = torch.load(opts.ckpt, map_location=torch.device('cpu'))
model.load_state_dict(checkpoint["model_state"])
model = nn.DataParallel(model)
model.to(device)
if opts.continue_training:
optimizer.load_state_dict(checkpoint["optimizer_state"])
scheduler.load_state_dict(checkpoint["scheduler_state"])
cur_itrs = checkpoint["cur_itrs"]
best_score = checkpoint['best_score']
print("Training state restored from %s" % opts.ckpt)
print("Model restored from %s" % opts.ckpt)
del checkpoint # free memory
else:
print("[!] Retrain")
model = nn.DataParallel(model)
model.to(device)
# ========== Train Loop ==========#
denorm = utils.Denormalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # denormalization for ori images
if opts.test_only:
model.eval()
val_score, ret_samples = validate(
opts=opts, model=model, loader=val_loader, device=device, metrics=metrics)
print(metrics.to_str(val_score))
writer.close() # Close writer before returning # Line 1089
return
interval_loss = 0
latest_checkpoints = []
if not os.path.exists(f'checkpoints'):
os.mkdir(f'checkpoints')
while True: # cur_itrs < opts.total_itrs:
# ===== Train =====
model.train()
cur_epochs += 1
for (images, labels) in train_loader:
cur_itrs += 1
images = images.to(device, dtype=torch.float32)
labels = labels.to(device, dtype=torch.long)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
np_loss = loss.detach().cpu().numpy()
interval_loss += np_loss
writer.add_scalar('Loss/train', np_loss, cur_itrs) # Line 1093
if (cur_itrs) % 10 == 0:
interval_loss = interval_loss / 10
print("Epoch %d, Itrs %d/%d, Loss=%f" %
(cur_epochs, cur_itrs, opts.total_itrs, interval_loss))
interval_loss = 0.0
if (cur_itrs) % opts.val_interval == 0:
ckpt_path = f'checkpoints/latest_{cur_itrs}_{opts.model}_{opts.dataset}_os{opts.output_stride}.pth'
save_ckpt(ckpt_path)
latest_checkpoints.append(ckpt_path)
# Keep only the latest 2 checkpoints
if len(latest_checkpoints) > 2:
# Get the path of the oldest checkpoint to remove
oldest_ckpt_path = latest_checkpoints.pop(0)
try:
# Attempt to remove the file from the filesystem
os.remove(oldest_ckpt_path)
print(f"Successfully removed old checkpoint: {oldest_ckpt_path}") # Optional: logging/confirmation
except FileNotFoundError:
# Handle the case where the file might already be gone for some reason
print(f"Warning: Could not remove checkpoint because it was not found: {oldest_ckpt_path}")
except OSError as e:
# Handle other potential errors like permission issues
print(f"Error removing checkpoint {oldest_ckpt_path}: {e}")
print("validation...")
model.eval()
val_score, ret_samples = validate(
opts=opts, model=model, loader=val_loader, device=device, metrics=metrics)
print(metrics.to_str(val_score))
# Log validation metrics to TensorBoard
writer.add_scalar('Metrics/Mean_IoU', val_score['Mean IoU'], cur_itrs) # Line 1128
writer.add_scalar('Metrics/Overall_Acc', val_score['Overall Acc'], cur_itrs) # Line 1129
writer.add_scalar('Metrics/Mean_Acc', val_score['Mean Acc'], cur_itrs) # Line 1130
if val_score['Mean IoU'] > best_score: # save best model
best_score = val_score['Mean IoU']
save_ckpt(f'checkpoints/best_{opts.model}_{opts.dataset}_os{opts.output_stride}.pth')
with open(f'checkpoints/best_score.txt', 'a') as f:
f.write(f"iter:{cur_itrs}\n{str(best_score)}\n")
with open(f"final_info.json", "w") as f:
final_info = {
"voc12_aug": {
"means": {
"mIoU": val_score['Mean IoU'],
"OA": val_score['Overall Acc'],
"mAcc": val_score['Mean IoU']
}
}
}
json.dump(final_info, f, indent=4)
model.train()
scheduler.step()
if cur_itrs >= opts.total_itrs:
writer.close()
return
if __name__ == '__main__':
args = get_argparser().parse_args()
try:
main(args)
except Exception as e:
import traceback
print("Original error in subprocess:", flush=True)
traceback.print_exc(file=open("traceback.log", "w"))
raise