File size: 13,979 Bytes
62a2f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import os
import json
import time
import argparse
import pathlib
from tqdm import tqdm
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
from torch.optim.lr_scheduler import _LRScheduler
import traceback
import numpy as np
from harcnet import AdaptiveAugmentation, TemporalConsistencyRegularization

CIFAR100_TRAIN_MEAN = (0.5070751592371323, 0.48654887331495095, 0.4409178433670343)
CIFAR100_TRAIN_STD = (0.2673342858792401, 0.2564384629170883, 0.27615047132568404)
MILESTONES = [60, 120, 160]


class WideBasicBlock(nn.Module):
    def __init__(self, in_planes, out_planes, dropout_rate, stride=1):
        super(WideBasicBlock, self).__init__()
        self.bn1 = nn.BatchNorm2d(in_planes)
        self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.dropout = nn.Dropout(p=dropout_rate)
        self.bn2 = nn.BatchNorm2d(out_planes)
        self.conv2 = nn.Conv2d(out_planes, out_planes, kernel_size=3, stride=1, padding=1, bias=False)
        self.relu = nn.ReLU(inplace=True)

        if in_planes != out_planes:
            self.shortcut = nn.Conv2d(
                in_planes,
                out_planes,
                kernel_size=1,
                stride=stride,
                padding=0,
                bias=False,
            )
        else:
            self.shortcut = nn.Identity()

    def forward(self, x):
        out = self.relu(self.bn1(x))
        skip_x = x if isinstance(self.shortcut, nn.Identity) else out

        out = self.conv1(out)
        out = self.relu(self.bn2(out))
        out = self.dropout(out)
        out = self.conv2(out)
        out += self.shortcut(skip_x)

        return out


class WideResNet(nn.Module):
    def __init__(self, depth, widen_factor, num_classes, dropout_rate):
        super(WideResNet, self).__init__()

        assert (depth - 4) % 6 == 0, "Wide-resnet depth should be 6n+4"
        n = (depth - 4) / 6

        n_stages = [16, 16 * widen_factor, 32 * widen_factor, 64 * widen_factor]

        self.conv1 = nn.Conv2d(3, n_stages[0], kernel_size=3, stride=1, padding=1, bias=False)
        self.stage1 = self._make_wide_stage(WideBasicBlock, n_stages[0], n_stages[1], n, dropout_rate, stride=1)
        self.stage2 = self._make_wide_stage(WideBasicBlock, n_stages[1], n_stages[2], n, dropout_rate, stride=2)
        self.stage3 = self._make_wide_stage(WideBasicBlock, n_stages[2], n_stages[3], n, dropout_rate, stride=2)
        self.bn1 = nn.BatchNorm2d(n_stages[3])
        self.relu = nn.ReLU(inplace=True)
        self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
        self.linear = nn.Linear(n_stages[3], num_classes)

        self._init_params()

    @staticmethod
    def _make_wide_stage(block, in_planes, out_planes, num_blocks, dropout_rate, stride):
        stride_list = [stride] + [1] * (int(num_blocks) - 1)
        in_planes_list = [in_planes] + [out_planes] * (int(num_blocks) - 1)
        blocks = []

        for _in_planes, _stride in zip(in_planes_list, stride_list):
            blocks.append(block(_in_planes, out_planes, dropout_rate, _stride))

        return nn.Sequential(*blocks)

    def _init_params(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
            elif isinstance(m, nn.BatchNorm2d):
                if m.affine:
                    m.weight.data.fill_(1)
                    m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                if m.bias is not None:
                    m.bias.data.zero_()

    def forward(self, x):
        out = self.conv1(x)
        out = self.stage1(out)
        out = self.stage2(out)
        out = self.stage3(out)
        out = self.relu(self.bn1(out))
        out = self.avg_pool(out)
        out = out.view(out.size(0), -1)
        out = self.linear(out)

        return out


def wide_resnet_28_10_old():
    return WideResNet(
        depth=28,
        widen_factor=10,
        num_classes=100,
        dropout_rate=0.0,
    )


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--batch_size", type=int, default=128)
    parser.add_argument("--num_workers", type=int, default=4)
    parser.add_argument("--out_dir", type=str, default="run_5")
    parser.add_argument("--in_channels", type=int, default=3)
    parser.add_argument("--data_root", type=str, default='./datasets/imagenet')
    parser.add_argument("--learning_rate", type=float, default=0.1)
    parser.add_argument("--max_epoch", type=int, default=200)
    parser.add_argument("--val_per_epoch", type=int, default=5)
    # HARCNet parameters
    parser.add_argument("--alpha", type=float, default=0.6, help="Weight for variance in adaptive augmentation")
    parser.add_argument("--beta", type=float, default=0.6, help="Weight for entropy in adaptive augmentation")
    parser.add_argument("--gamma", type=float, default=2.2, help="Scaling factor for MixUp interpolation")
    parser.add_argument("--memory_size", type=int, default=5, help="Number of past predictions to store")
    parser.add_argument("--decay_rate", type=float, default=2.0, help="Decay rate for temporal consistency")
    parser.add_argument("--consistency_weight", type=float, default=0.05, help="Weight for consistency loss")
    parser.add_argument("--auxiliary_weight", type=float, default=0.05, help="Weight for auxiliary loss")
    parser.add_argument("--use_adaptive_aug", type=bool, default=True, help="Use adaptive augmentation")
    parser.add_argument("--use_temporal_consistency", type=bool, default=True, help="Use temporal consistency")
    config = parser.parse_args()


    try: 
        final_infos = {}
        all_results = {}

        pathlib.Path(config.out_dir).mkdir(parents=True, exist_ok=True)

        model = wide_resnet_28_10_old().cuda()
        
        # Initialize HARCNet components
        adaptive_aug = AdaptiveAugmentation(
            alpha=config.alpha,
            beta=config.beta,
            gamma=config.gamma
        )
        
        temporal_consistency = TemporalConsistencyRegularization(
            memory_size=config.memory_size,
            decay_rate=config.decay_rate,
            consistency_weight=config.consistency_weight
        )
        
        transform_train = transforms.Compose([
            transforms.ToTensor(),
            transforms.Lambda(lambda x: F.pad(x.unsqueeze(0),
                                            (4, 4, 4, 4), mode='reflect').squeeze()),
            transforms.ToPILImage(),
            transforms.RandomCrop(32),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize(CIFAR100_TRAIN_MEAN, CIFAR100_TRAIN_STD),
        ])

        transform_test = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize(CIFAR100_TRAIN_MEAN, CIFAR100_TRAIN_STD)
        ])
        
        train_dataset = datasets.CIFAR100(root=config.data_root, train=True,
                                        download=True, transform=transform_train)
        test_dataset = datasets.CIFAR100(root=config.data_root, train=False,
                                        download=True, transform=transform_test)
        
        # Create a dataset wrapper that provides sample indices
        class IndexedDataset(torch.utils.data.Dataset):
            def __init__(self, dataset):
                self.dataset = dataset
                
            def __getitem__(self, index):
                data, target = self.dataset[index]
                return data, target, index
                
            def __len__(self):
                return len(self.dataset)
        
        indexed_train_dataset = IndexedDataset(train_dataset)
        
        train_loader = DataLoader(indexed_train_dataset, shuffle=True, num_workers=config.num_workers, batch_size=config.batch_size)
        test_loader = DataLoader(test_dataset, shuffle=False, num_workers=config.num_workers, batch_size=config.batch_size)

        criterion = nn.CrossEntropyLoss().cuda()
        optimizer = torch.optim.SGD(model.parameters(), lr=config.learning_rate, momentum=0.9, weight_decay=5e-4,
                                    nesterov=True)
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, len(train_loader) * config.max_epoch)

        best_acc = 0.0
        start_time = time.time()
        for cur_epoch in tqdm(range(1, config.max_epoch + 1)):
            model.train()
            epoch_loss = 0.0
            epoch_cls_loss = 0.0
            epoch_consistency_loss = 0.0
            
            for batch_idx, (images, labels, indices) in enumerate(tqdm(train_loader)):
                images, labels, indices = images.cuda(), labels.cuda(), indices.cuda()
                
                # Apply adaptive augmentation if enabled
                if config.use_adaptive_aug:
                    # First forward pass to get predictions for adaptive augmentation
                    with torch.no_grad():
                        initial_outputs = model(images)
                        initial_probs = F.softmax(initial_outputs, dim=1)
                    
                    # Apply MixUp with adaptive coefficient
                    if np.random.rand() < 0.5:  # Apply MixUp with 50% probability
                        mixed_images, labels_a, labels_b, lam = adaptive_aug.apply_mixup(images, labels, num_classes=100)
                        images = mixed_images
                        
                        # Forward pass with mixed images
                        outputs = model(images)
                        
                        # MixUp loss
                        cls_loss = lam * criterion(outputs, labels_a) + (1 - lam) * criterion(outputs, labels_b)
                    else:
                        # Forward pass without MixUp
                        outputs = model(images)
                        cls_loss = criterion(outputs, labels)
                else:
                    # Standard forward pass without adaptive augmentation
                    outputs = model(images)
                    cls_loss = criterion(outputs, labels)
                
                # Compute consistency loss if enabled
                consistency_loss = torch.tensor(0.0).cuda()
                if config.use_temporal_consistency:
                    # Get softmax probabilities
                    probs = F.softmax(outputs, dim=1)
                    
                    # Update prediction history
                    temporal_consistency.update_history(indices, probs)
                    
                    # Compute consistency loss
                    consistency_loss = temporal_consistency.compute_consistency_loss(probs, indices)
                
                # Total loss
                loss = cls_loss + config.consistency_weight * consistency_loss
                
                # Backward and optimize
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                scheduler.step()
                
                # Track losses
                epoch_loss += loss.item()
                epoch_cls_loss += cls_loss.item()
                epoch_consistency_loss += consistency_loss.item() if isinstance(consistency_loss, torch.Tensor) else 0
            
            # Calculate average losses
            avg_loss = epoch_loss / len(train_loader)
            avg_cls_loss = epoch_cls_loss / len(train_loader)
            avg_consistency_loss = epoch_consistency_loss / len(train_loader)
            
            print(f'Epoch {cur_epoch} - Loss: {avg_loss:.4f}, Cls Loss: {avg_cls_loss:.4f}, Consistency Loss: {avg_consistency_loss:.4f}')
            print(f'Finished epoch {cur_epoch} training.')

            if (cur_epoch % config.val_per_epoch == 0 and cur_epoch != 0) or cur_epoch == (config.max_epoch - 1):
                model.eval()
                correct = 0.0
                for images, labels in tqdm(test_loader):
                    images, labels = images.cuda(), labels.cuda()
                    with torch.no_grad():
                        outputs = model(images)

                    _, preds = outputs.max(1)
                    correct += preds.eq(labels).sum()
                cur_acc = correct.float() / len(test_loader.dataset)
                print(f"Epoch: {cur_epoch}, Accuracy: {correct.float() / len(test_loader.dataset)}")

                if cur_acc > best_acc:
                    best_acc = cur_acc
                    best_epoch = cur_epoch
                    torch.save(model.state_dict(), os.path.join(config.out_dir, 'best.pth'))

        final_infos = {
            "cifar100": {
                "means": {
                    "best_acc": best_acc.item(),
                    "epoch": best_epoch
                },
                "config": {
                    "alpha": config.alpha,
                    "beta": config.beta,
                    "gamma": config.gamma,
                    "memory_size": config.memory_size,
                    "decay_rate": config.decay_rate,
                    "consistency_weight": config.consistency_weight,
                    "auxiliary_weight": config.auxiliary_weight,
                    "use_adaptive_aug": config.use_adaptive_aug,
                    "use_temporal_consistency": config.use_temporal_consistency
                }
            }
        }

        with open(os.path.join(config.out_dir, "final_info.json"), "w") as f:
            json.dump(final_infos, f)

    except Exception as e:
        print("Original error in subprocess:", flush=True)
        traceback.print_exc(file=open(os.path.join(config.out_dir, "traceback.log"), "w"))
        raise