SetFit with TurkuNLP/bert-base-finnish-cased-v1
This is a SetFit model that can be used for Text Classification. This SetFit model uses TurkuNLP/bert-base-finnish-cased-v1 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: TurkuNLP/bert-base-finnish-cased-v1
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
| Label | Examples |
|---|---|
| 0 |
|
| 1 |
|
Evaluation
Metrics
| Label | Metric |
|---|---|
| all | 0.8719 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Finnish-actions/SetFit-FinBERT1-Avg-statement")
# Run inference
preds = model("Kohta on lisää lapsia sairaalassa koronan vuoksi ☹")
Training Details
Training Set Metrics
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 1 | 19.9323 | 213 |
| Label | Training Sample Count |
|---|---|
| 0 | 218 |
| 1 | 624 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 6
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- evaluation_strategy: epoch
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0016 | 1 | 0.2335 | - |
| 0.0791 | 50 | 0.2607 | - |
| 0.1582 | 100 | 0.238 | - |
| 0.2373 | 150 | 0.1995 | - |
| 0.3165 | 200 | 0.1685 | - |
| 0.3956 | 250 | 0.0844 | - |
| 0.4747 | 300 | 0.0443 | - |
| 0.5538 | 350 | 0.0202 | - |
| 0.6329 | 400 | 0.0151 | - |
| 0.7120 | 450 | 0.0103 | - |
| 0.7911 | 500 | 0.0089 | - |
| 0.8703 | 550 | 0.0098 | - |
| 0.9494 | 600 | 0.0043 | - |
| 1.0 | 632 | - | 0.1711 |
| 1.0285 | 650 | 0.0007 | - |
| 1.1076 | 700 | 0.0002 | - |
| 1.1867 | 750 | 0.0006 | - |
| 1.2658 | 800 | 0.0001 | - |
| 1.3449 | 850 | 0.0012 | - |
| 1.4241 | 900 | 0.0006 | - |
| 1.5032 | 950 | 0.0001 | - |
| 1.5823 | 1000 | 0.0001 | - |
| 1.6614 | 1050 | 0.0002 | - |
| 1.7405 | 1100 | 0.0001 | - |
| 1.8196 | 1150 | 0.0001 | - |
| 1.8987 | 1200 | 0.0001 | - |
| 1.9778 | 1250 | 0.0001 | - |
| 2.0 | 1264 | - | 0.1870 |
| 2.0570 | 1300 | 0.0001 | - |
| 2.1361 | 1350 | 0.0001 | - |
| 2.2152 | 1400 | 0.0001 | - |
| 2.2943 | 1450 | 0.0001 | - |
| 2.3734 | 1500 | 0.0001 | - |
| 2.4525 | 1550 | 0.0 | - |
| 2.5316 | 1600 | 0.0001 | - |
| 2.6108 | 1650 | 0.0001 | - |
| 2.6899 | 1700 | 0.0001 | - |
| 2.7690 | 1750 | 0.0001 | - |
| 2.8481 | 1800 | 0.0 | - |
| 2.9272 | 1850 | 0.0001 | - |
| 3.0 | 1896 | - | 0.1924 |
| 3.0063 | 1900 | 0.0 | - |
| 3.0854 | 1950 | 0.0 | - |
| 3.1646 | 2000 | 0.0001 | - |
| 3.2437 | 2050 | 0.0 | - |
| 3.3228 | 2100 | 0.0 | - |
| 3.4019 | 2150 | 0.0 | - |
| 3.4810 | 2200 | 0.0 | - |
| 3.5601 | 2250 | 0.0001 | - |
| 3.6392 | 2300 | 0.0001 | - |
| 3.7184 | 2350 | 0.0 | - |
| 3.7975 | 2400 | 0.0 | - |
| 3.8766 | 2450 | 0.0 | - |
| 3.9557 | 2500 | 0.0 | - |
| 4.0 | 2528 | - | 0.1996 |
Framework Versions
- Python: 3.11.9
- SetFit: 1.1.3
- Sentence Transformers: 3.2.0
- Transformers: 4.44.0
- PyTorch: 2.4.0+cu124
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 17
Model tree for Finnish-actions/SetFit-FinBERT1-Avg-statement
Base model
TurkuNLP/bert-base-finnish-cased-v1Evaluation results
- Metric on Unknowntest set self-reported0.872