Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,69 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: agpl-3.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: agpl-3.0
|
| 3 |
+
language:
|
| 4 |
+
- ru
|
| 5 |
+
base_model:
|
| 6 |
+
- Daniil-Domino/yolo11x-text-detection
|
| 7 |
+
library_name: ultralytics
|
| 8 |
+
library_version: 8.3.155
|
| 9 |
+
pipeline_tag: object-detection
|
| 10 |
+
tags:
|
| 11 |
+
- yolo
|
| 12 |
+
- yolo11
|
| 13 |
+
- yolo11x
|
| 14 |
+
- htr
|
| 15 |
+
- text-detection
|
| 16 |
+
- dialectic
|
| 17 |
+
- linguistics
|
| 18 |
+
---
|
| 19 |
+
# Handwritten Russian Dialectic Text Detection using YOLO11
|
| 20 |
+
|
| 21 |
+
The [YOLO11x-text-detection](https://huggingface.co/Daniil-Domino/yolo11x-text-detection) model was fine-tuned on a dataset of nearly 150 images containing handwritten Russian dialectic texts.
|
| 22 |
+
|
| 23 |
+
## Model description
|
| 24 |
+
|
| 25 |
+
YOLO11x-text-detection was fine-tuned for Handwritten Russian Dialectic Text Detection in dialectological cards.
|
| 26 |
+
The model was trained for 100 epochs with a batch size of 32 using dual NVIDIA T4 GPUs. Fifteen layers were frozen during training as part of the transfer learning process. The entire training took approximately 7 minutes.
|
| 27 |
+
|
| 28 |
+
# Example Usage
|
| 29 |
+
|
| 30 |
+
```python
|
| 31 |
+
# Load libraries
|
| 32 |
+
import cv2
|
| 33 |
+
from ultralytics import YOLO
|
| 34 |
+
from pathlib import Path
|
| 35 |
+
import matplotlib.pyplot as plt
|
| 36 |
+
from huggingface_hub import hf_hub_download
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
# Download model
|
| 40 |
+
model_path = hf_hub_download(repo_id="Daniil-Domino/yolo11x-dialectic", filename="model.pt")
|
| 41 |
+
|
| 42 |
+
# Load model
|
| 43 |
+
model = YOLO(model_path)
|
| 44 |
+
|
| 45 |
+
# Inference
|
| 46 |
+
image_path = "/path/to/image"
|
| 47 |
+
image = cv2.imread(image_path).copy()
|
| 48 |
+
output = model.predict(image, conf=0.3)
|
| 49 |
+
|
| 50 |
+
# Draw bounding boxes
|
| 51 |
+
out_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 52 |
+
for data in output[0].boxes.data.tolist():
|
| 53 |
+
xmin, ymin, xmax, ymax, _, _ = map(int, data)
|
| 54 |
+
cv2.rectangle(out_image, (xmin, ymin), (xmax, ymax), color=(0, 0, 255), thickness=3)
|
| 55 |
+
|
| 56 |
+
# Display result
|
| 57 |
+
plt.figure(figsize=(15, 10))
|
| 58 |
+
plt.imshow(out_image)
|
| 59 |
+
plt.axis('off')
|
| 60 |
+
plt.show()
|
| 61 |
+
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
# Metrics
|
| 65 |
+
Below are the key evaluation metrics on the validation set:
|
| 66 |
+
- **Precision**: 0.940
|
| 67 |
+
- **Recall**: 0.924
|
| 68 |
+
- **mAP50**: 0.972
|
| 69 |
+
- **mAP50-95**: 0.656
|